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Abstract

We describe our current efforts toward building a high-level planner suitable for robots
functioning in the assembly domain. We detail the overall system architecture in which
planning is composed of two distinct phases, a strategic planning phase which works from
a broad definition of the assembly task and description of objects, and a tactical planning
phase which takes in a restricted set of task-level operations and outputs a series of position
and stiffness signals to the lower-level arm and hand controllers. This report decribes the
initial design and development for the strategic planner within this framework. Our current
implementation and the behavior of the system on a few simple assembly tasks are detailed.

!Preparation of this paper was supported in part by grant number IST-8513989 from NSF
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1. Introduction

The planning problem in the robotic domain can be characterized as one of transform-
ing a set of task specifications provided by the user, which are at the level of identifying
what objects are involved in the task to a set of commands executable by a robot control
system. The approach adopted by traditional planning systems [11], [28], [36] is based on
the specification of an initial world model and the changes effected by each primitive action
on the current state of the world. However, the characterization of the initial world and
the effects of actions are rigidly specified. In the case of a robot system operating in the
assembly domain, the information available to the system is often inaccurate. There are
essentially three different sources of uncertainty: uncertainty in the geometric models of
objects in the robot’s environment; uncertainty in the information obtained from sensors;
and uncertainty arising from the inaccuracies of the manipulator control system [3]. The
subactions, such as grasp, move and manipulate are parametrized and the choice of pa-
rameters for each of these subactions is highly interdependent. Thus, all the information
pertaining to the applicability of operators may not be known a priori and it is difficult to
predict the effects of actions with certainty. In an effort to contend with dynamic changes
in the environment and inherent uncertainty, we have extended the role of planning to
include monitoring for the successful execution of the plan, and neccessary replanning as
well. In essence, the planner does not function as an off-line planner, but instead deploys
the sensors to monitor the environment and correspondingly effects changes in the plan,
where necessary. We refer to such an approach to planning as dynamic planning. A more
detailed account of the motivations and objectives for taking such an approach are detailed
in [35].

We consider the salient characteristics of a dynamic planning component of a robot
sytem to be the following:

1. It incrementally constructs a plan, starting with tnadequate information and procur-
ing information and refining the plan as it proceeds.

2. It dynamically revises its plans and goals corresponding to perceived changes in
the environment. In particular, the plan is considered to need revision when the
environment resulting from the execution of the plan fails to meet certain specified
critersa.

3. Planning and execution may be snterleaved, it is not necessary that all the planning
precede all the execution.
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The problem of decomposing and successfully executing a specified assembly task re-
quires decision making at several levels. In order Lo separate the global considerations (e.g.,
ordering of the assembly operations, accessibility of an object, choice of grasp sites on an
object) in arriving at a reasonable plan for the given task from more local considerations
(e.g., specific configuration of the hand to be used in grasping an object, local obstacle
avoidance, choice of appropriate sensors to be invoked to verify the successful execution of
a task) we have separated planning into two components:

e The strategic planner which, from models of the task, environment and the robot,
arrives at the appropriate sequence of operations that can be executed with the aid
of sensors and knowledge of a fairly localized segment of the environment;

o The tactical planner, which then executes the operations output by the strategic
planner with the aid of dynamic sensory information by sending appropriate signals
to the robot controller as well as the sensors.

In addition to these two planning subsystems, we have delegated the problem of finding
a collision-free path for the robot arm and hand in effecting gross motions to be carried out
by a distinct subsytem, the path planner. The path planner takes as input the intended
start and goal locations of the robot end-effector and outputs a piecewise linear path
that avoids collisions with other objects in the environment. The path planner may be
invoked by both the strategic and tactical planners. This paper concerns itself with the
development of the strategic planner and its interface with the other subsystems.

The planning efforts in the field of robotics itself have centered around the development
of high-level languages that would require the user to specify a task in terms of the physical
relationships between objects rather than the robot motions required to carry out the task.
To date, no complete system has been implemented due to the complexity of the problem.
Examples of such systems are AUTOPASS [16] and LAMA [19]. However, considerable
progress has been made in specific subproblems of the overall problem of planning robot
motions, namely, grasp planning [18], [13], [14], gross motion planning [34], [20], [4], [5], [6]
and fine-motion planning [32], [9], [21], [24]. Currently, there are revived efforts to solve
the overall planning problem by integrating solutions to the specific subproblems [22],
[15]. As the solutions to the subproblems are highly inter-dependent (as in choice of grasp
parameters and the subsequent fine-motion that is carried out), these systems propose
constraint propagation as a suitable mechanism for dealing with the inter-dependencies.
As opposed to this bottom-up approach of combining individual solutions to subproblems,

| 3 . 3

.3 -3 3 _3 _3 _13

L j

1

1 __3



43 T3 —3 T3 —3a —3 ™T3a ™1

Assembly Planner 4

our work attempts to allow the constraints to evolve as we work on the problem proceeding
in a top-down fashion.

The approach we are taking towards building a dynamic planner is to develop a static
planner for the assembly domain, with a simple control structure. As a first step to dynamic
planning we allow the planner to request simulated sensory input. Subsequently, we will
simulate manipulator actions and also experiment with more flexible control structures.
The final phase of the work will be to integrate the planner with an actual robot system.
The following section describes the overall system of which the planner is a part. Section
3 details the problem domain we are working with, the input language to the strategic
planner, the structure of the object database the planner interacts with and the commands
ouput to the tactical planner. Section 4 describes the approach we adopt towards problem
decomposition and details the components of our current implementation of the planner.
In section 5, we discuss the behavior of the planner on three simple assembly tasks that
we have studied in some detail. Section 6 discusses limitations of our current system and
future directions of research.

2. System Overview

The overall system consists of the strategic planner, tactical planner, path planner,
object database, sensory systems, controllers for the arm, wrist and hand and the necessary
hardware. A schematic of the overall system and the relationship between the various
subsystems is shown in Figure 1.

We start by outlining the basic characteristics of the underlying hardware. We assume:

e a six degree of freedom robot arm which has three positional degrees of freedom, and
a three rotational degrees of freedom wrist;

e a dextrous hand mounted on the wrist;

e availability of force information from the wrist and from strain gauges mounted on
the fingers of the dextrous hand;

o tactile sensors mounted on the fingers and palm of the hand;

e a visual system that produces location information (position and orientation in three
dimensional space), and also some visual features. This would involve a stereo camera
system, or a camera and range-finder, connected to a preprocessor system.
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Above and separate from the sensor hardware we assume some preprocessing elements.
A tactile preprocessing system implements useful tactile algorithms as has been described
in [2] and [25]. Tactile and force information will be dealt with in a unified fashion. The
visual preprocessor takes the input from the camera system and produces object features.
The preprocessor could use information from the object database, allowing it to classify
objects.

We separate the control of the robot system at the lowest level into a hand controller, an
arm controller, and sensor drivers which effect movement of sensory systems such as moving
the camera. Separate controllers are used for arm and hand, because their respective
functions are quite different. The arm is used only for gross position placement, fine-
tuning being accomplished by the fingers of the hand. The arm controller allows the hand

to be directed along a given trajectory. Both the hand and arm controllers share control

of the wrist degrees of freedom. The hand controller allows the fingers of the hand to
be placed in particular configurations, and also allows the stiffness of the fingers to be
controlled.

The high-level robot control is divided into two hierarchical units: the strategic planner,
which takes a broad definition of the assembly task and, using the data-base of objects,
generates a more specific sequence of operations; and the tactical planner, whose input is a
restricted set of task-level operations, and whose output is a series of position and stiffness
signals to the lower-level arm and hand controllers. A path planner and object database
are subsytems that are used by both strategic and tactical planners. The remainder of
this document deals in more detail with the strategic planner component of the system.

3. The Strategic Planner

The problem domain that we are concerned with, initially, is that of simple assembly
tasks. The parts lie in the workplace of a robot and the planner is given a very high-level
plan for the assembly of the finished product. The high-level instructions will refer to
objects by name and will not generally include any specification of parameters for actual
robot movements, such as position, velocity, stiffness, etc. These instructions are then
broken down into more detailed instructions using world knowledge present in the system
and environmental knowledge obtained using sensors. The assembly plan is thus refined
at several levels of detail until the plan can be expressed as a set of low-level commands
that may be directed at the sensory system or the manipulator control system.
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3.1 Input Language to the Strategic Planner

The problem that the strategic planner is faced with is one of starting from a set of
initial instructions, which are of the form:

operation object! .. object2

Some examples are:

Fit Xinto Y
Thread U with V
Double-insert A into B

Starting with a set of instructions of this nature, and a description of the objects present
in the workspace in the object database, the strategic planner attempts to break down the
given instructions into a series of output commands to the tactical planner.

3.2 Object Database

The object database contains information relating to each of the objects involved in the
assembly. As can be scen from Figure 1, the object database is also shared by the tactical
planner and is updated by the preprocessed information obtained from the sensors.

We are currently concerned with the class of rigid objects. While we store some general
information about an object and its gross dimensions in the representation of an object
itself, more detailed information about an object is stored in substructures that describe
the features of an object. A feature is defined as “a specific geometric configuration formed
on the surface, edge, or corner of a workpiece intended to modify or to aid in achieving a
given function.”[7]. Such a representation for objects has been motivated by the fact that
in most assembly operations, it is the specific features of objects that dictate how these
objects may be assembled together. The features we consider are quite similar to the ones
considered by Popplestone, Ambler and Bellos in describing spatial relationships between

features [27].

The information pertaining to each object is stored in a frame structure. We maintain
the following information about each object in the workspace:

e general shape,

.3 _3 .3 _3 _1
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e length, width, and height (which are derived as the dimensions of the smallest rect-
angular parallelopiped into which the part will fit. Its largest dimension is expressed
as the length of the part, the second largest as its width and the smallest as its
height.),

e volume,

e surface area,

position (expressed in terms of the workspace coordinates),

a list of features, such as cylindrical hole, thread, etc.

We embed a coordinate frame within each object. The origin of the coordinate frame
lies at the center of mass of the object and the X, Y, and Z-axes of the frame are along
the length, width and height of the object?. Features are specified in terms of the object
coordinate frame, circumventing the problem of having to update the position of each
feature when the object is moved. Thus, the position slot in an object frame is in fact a
4x4 transformation matrix, specifying the location of the origin and orientation of the axes
of the object coordinate frame in terms of the workspace coordinate frame[26).

The data preprocessed and received from various sensors are used to dynamically up-
date the object database. These object models integrate standard structural information
about the object along with functional information as to how the-object may be recognized,
inspected, and manipulated. The strategic planner uses these models for object representa-
tion and when features relevant to the planning process are absent in the model, the object
database module is responsible for directing the sensory systems to attempt to obtain this
information. In addition, the knowledge about objects embodied in the object database
can be used as constraints to guide the identification of objects that are of interest to the
current planning problem.

3.2.1 Object Features

While we have not restricted the objects handled by the planner in terms of their shape,
currently our planner is only equipped to handle the types of features listed in Table 1. The
information relating to features fall into two categories: geometric and topological. On the

“These choices for origin and axes of the object coordinate frame are a possible set of choices; not necessary
ones. The basic scheme works even if a different origin and orientations for axes are chosen.
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Figure 2: An Object and its Feature Graph

one hand, there is positional and dimensional information required to define the geometry
of a feature. On the other hand, there is information pertaining to how the features of a
single object or subassembly are positioned with respect to each other. This is expressed as
relationships between the features of an object or subassembly. The relationships currently
defined are: adjacent, overlapping, inclusive and encompassing. Conceptually, the features
of an object may be represented as a graph, where each feature is represented as a node,
and a relationship existing between two features is represented by an arc, appropriately
labelled, between the corresponding nodes. We will refer to this entity as the feature graph
of an object. An example of a box with a hole in it is seen in Figure 2, along with its

corresponding feature graph.

While toplogical information can be deduced from the positional information, it is
appropriate to represent this explicitly, in order to be able to infer the possible effects of
operations involving one feature on related features of the same object or subassembly. For
example, in Figure 2, an assembly task operation might require a peg to be fnserted into
the hole (feature F7). Another operation might require another block of a similar size to
be placed adjacent to any one of the faces (features F1 through F6). Since F7 is included
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Feature Type Dimensional Information
Cylindrical hole: internal-diameter of the cylinder
depth of the hole
Rectangular hole: length of the rectangle

width of the rectangle

depth of the hole

Thread: whether the thread is internal or external
diameter

width of the thread

pitch of the thread

Rectangular plane face: length of the rectangle
width of the rectangle

Circular plane face: diameter of the circle

Cylindrical surface: height of the cylinder

diameter of the cylinder
Semi-cylindrical depression: | diameter
depth

Table 1: Feature Types and Dimensional Information

in F1, their relationship constrains the place operation to be relative to only features F2
through F6.

Individual features are described by specifying their position, dimensions and type
(cylindrical hole, rectangular hole, etc.). The position of each feature is described by
specifying the center of the feature and its normal azis. The definitions of center and
normal axis for each feature type listed in Table 1 are provided in Figure 3. The normal
axis always passes through the center of the feature and the direction of the normal axis
is away from the object. Thus, the position of a feature may equivalently be described by
the specification of the center and the plane passing through the center, perpendicular to
the normal axis, expressed in terms of the object coordinate frame.

The dimensional information required about features varies depending on the feature
type and is described in Table 1 for each of the feature types.
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3.3 Output Commands

As noted in Figure 1, we group the low-level commands produced by the strategic
planner into three classes: grasp commands, reorientation commands and manipulation
commands. In the following, we list our current working set of commands organized
within the three classes:

Grasp Command: As detailed in [1] the grasp action is essentially carried out in two
phases: the preshape phase, where the hand is configured to the preshape configuration
and carried to the vicinity of the object and the grip phase where the hand acquires the
object in a manner suitable for subsequent manipulation.

Grasp(object, compliance-measure, operation): The command instructs the tactical plan-
ner to grasp the specified object by providing a set of grasp parameters along with
the object identification. A more detailed description of the command parameters
are given below:

object: The object parameter corresponds to a structure that includes the following
information: the feature(s) to be used for grasping specified by their position
relative to the workspace coordinates; the normal axis (or axes) of the mating
feature(s) of the object being grasped.

compliance-measure: This parameter indicates the extent of compliance required in
the subsequent operation. The possible range of values lie between 0 and 10,
where a specification of 10 would imply a need for maximum compliance and a
specification of 0 would imply a firm grasp.

operation: This parameter specifies the assembly operation to be executed in order
that the grasping subsystem may choose an appropriate grasp configuration.

The feedback from the tactical planner to the strategic planner is a signal indicating
whether the Grasp command was successfully executed. In case of failure, it would indicate
whether the failure occurred in the preshape or grip phase of the operation. A failure
in the preshape phase would indicate that due to the presence of other objects in the
environment the grasp coufiguration chosen, and consequently the preshape configuration,
is inappropriate. A failure in the grip phase may arise either from a failure to acquire the
object stably, or because the resulting grasp configuration overconstrains the object for the
subsequent manipulation.



Assembly Planner 13

Reorientation Commands:

All of the following commands assume that the robot hand is currently holding an
object. They are expressad in terms of a relation that is required to exist between a point,
line or plane in the object coordinate frame and a corresponding entity in the workspace
coordinates. Axes and planes are oriented; each axis has a specified direction (so that two
collinear axes may be aligned or opposed), and each plane has a specified normal. These
reorientation commands are not directly passed on to the tactical planner, but instead are
sent to the path planner and the trajectory produced by the path planner is then passed
on to the tactical planner.

oppose(azisl, aris2): axisl is specified in terms of the coordinate frame of the object
being held, while azis2 is specified in terms of the workspace coordinates. The
command instructs the robot to reorient the object in such a manner that the two
specified axes are opposed (i.e., the axes lie along the same line oriented in opposite
directions).

align (azis1, azis2): azisl and azis2 are to coincide, with their directions being the same.

place-parallel (azisl, azis2, [plane[): azis1 and azis2 are to be made parallel. When
an optional parameter specifying a plane is provided, there is an added requirement
that azis! should lie on the specified plane.

place-perpendicular (azisl, azis2, [plane]): azisl is to be made perpendicular to azis2.
When a plane is also specified, azis! is required to lie on the specified plane.

place(point1, point2): This command requires the robot hand to reorient the object being
held such that point1 specified in terms of the object coordinate frame coincides with
point2 specified in the workspace coordinate frame.

align(point1, line): This command requires that point1, which is specified in the object
coordinate frame, lie on the specified line. The parameter line is specified in the
workspace coordinate frame.

coplanar (azis1, plane): azisl is to be made to lie on the specified plane.

merge(planel, plane2): This command requires a reorientation of the object such that
planel, specified in terms of object coordinates, coincides with plane?2, specified in
terms of workspace coordinates.
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against (plenel, plane2): Requires that the normals of the planes be opposed while the
planes coincide.

The path planner, when successful in finding a collision-free path to achieve the specified
pose, passes this path to the tactical planner. When it fails to find a path, failure indication
is sent back to the strategic planner along with the identification of objects in the workspace
that act as obstacles for possible use in plan modification. There is still a possibility that
the tactical planner may succeed or fail in accomplishing the pose. The feedback from
the tactical planner on all of these commands is an indication as to whether the operation
was successfully executed, the part was dropped, or if there was a failure to achieve the
required pose. In the case of failing to achieve the specified position and orientation while
still holding the object, the tactical planner passes back to the strategic planner the current
pose of the object and the path segment that is left unexecuted.

Manipulation Commands: These commands assume the objéct is being held by the
hand.

insert (insertion-azis, object-compliance, insertion-amount). Requests the tactical plan-
ner to perform an insert action which translates into a translation motion by the
specified amount along the insertion-azis. The object-compliance is specified as a
3-component vector which specifies the compliance along the insertion-axis and two
axes orthogonal to ihe insertion-axis.

thread (rotation-azis, object-compliance, rotation-amount): Requires the tactical planner
to execute a thread operation which in turn translates into a rotational motion by the
specified rotation-amount about the rotation-azis. The object-compliance parameter
is the same as described in the insert operation.

double-insert (insertion-azes, object-compliance, insertion-amount): Requires the tacti-
cal planner to execute a double-insert operation which translates into a translation
motion by the specified tnsertion-amount along the fnsertion azes.

The feedback from the tactical planner on any of the manipulation commands is an
indication of whether the execution of the operation succeeded or failed. In case of failure of
insert or double-insert operations, the tactical planner returns the actual insertion amount
along with the failure flag. In the case of failure of thread operations, the tactical planner
returns the amount of rotation achieved, translation of the object along the axis of rotation
and the termination torque.
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4. Structure of the Planner

The input to the planner is provided in terms of specifying the assembly operation to
be carried out and the objects involved in the operation. As noted in Figure 4, the planner
must refine this task level description into a series of commands to the tactical planner and
path planner. The first level of problem refinement is in identifying the specific features
of the objects that are to be mated during the assembly operation. Having obtained a
feature-level description of the task, knowledge about the specific operations is employed
to refine the problem further into a set of spatial relationships that are to hold between
the features. The last level of problem refinement is in identifying the tactical planner
level commands that would accomplish these spatial relationships. As indicated in Figure
4, problems encountered at any of the levels will percolate to change decisions made at
higher levels in the hierarchy. The current implementation adequately handles the first-
level of refinement from object to feature-level descriptions. The refinement to spatial
relationships is included in the current implementation; however, reasoning about these
spatial relationships and generating commands to be communicated to the tactical and
path planners are to be implemented in the near future. In the following, we describe
the control structure of our current planner, representations used for goals and operators,
heuristics used, constraint propagation mechanism and the set of spatial relationships we
are concerned with.

4.1 Control Structure

The object information given to the planner provides a partial description of the world
model while the high-level assembly instructions provide the goals. The first level of
refinement consists in identifying precisely the object features involved in the assembly
and subsequent levels to define the goal in terms of spatial relations and primitives to the
path and tactical planners. Thus, the goals are refined successively to obtain a clearer
statement of the goals, and in subsequent levels, to arrive at a set of subgoals that are
easier to solve and whose solutions are sufficient to solve the original problem. Thus, the
approach adopted by the planner is one of problem reduction or backward-reasoning while
using object related information as heuristics to prune the search tree.

The planner includes explicit representation of the goals, at the various levels described
above, as a network of nodes. The network of goals, at any time, reflects the current
state of problem refinement. Aside from the goals, the planner includes representation
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of the operations and the geometric constraints associated with each of the operations;
These geometric constraints are used initially to guide the problem refinement process by
eliminating possible pairs of mating features that do not satisfy these geometric constraints.
At this stage, the planner has no reason to prefer one alternative over the other. This is
reflected by associating an equal confidence measure, a number ranging between O and 1,
with each of the feature level subgoals. A set of reasoning heuristics, specific to assembly
operations, are then applied which alter the confidence rates associated with the feature
level subgoals appropriately when there is evidence to believe that one set of mating
features is more plausible than others. These reasoning heuristics which serve to further
refine the problem are represented as rules in a rulebase. When alternative solutions
are recognized to be equivalent, the planner selects one and stores the others as choice
points [31] for later consideration. When the constraints and heuristics do not completely
determine a single alternative as the viable one, the planner uses a strategy of guessing by
picking one that appears most likely to succeed. The planner also includes a mechanism
by which accessibility constraints are propagated across the network of goal nodes and
analyzed for interactions between the proposed solutions. When such interactions are
detected, the choice-point mechanism allows the planner to consider other alternatives.
The constraint formulation, propagation and satisfaction mechanisms are also encoded
as rules in the rule base. In the following subsections, we describe each of the major
components of the planner in more detail.

4.2 Representation of Goals

The input instructions are object-level goals, represented as a network of nodes. As
each input instruction is further refined, subgoals are added to the network, maintained at
levels which correspond to the levels of problem refinement. The representation resembles
the procedural networks employed by Sacerdoti in NOAH [28] and extended by Tate in
NONLIN [31]. The specific information associated with each goal as slots in the structure
defining a goal is described below:

Goal description: The input instruction, specifying the operation and the objects (or
features) involved.

Level: An indication of whether the goal being described is at the object level, feature
level, spatial relationship level, or primstive actions level.

1
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Node-type: Indicates if the goal being represented is an AND type node (all of the
subgoals have to be accomplished) or an OR type node (exactly one of the subgoals
has to be accomplished).

Parent-goal: Specifies the goal at the immediately higher level of which the current goal
is a subgoal.

Preceding goals: Goals that have been specified or identified to be required to have been
completed before initiating execution of the current goal.

Successor goals: Goals that have been specified or identified to be required to execute
after the completion of the current goal.

Subgoals: Specifies a list of goals that constitute the set of subgoals of the current goal.

Preconditions: Conditions that have to be true in order that the operation can be exe-
cuted.

Postconditions: Conditions that are required to be true after execution of the operation.
Typically, this is composed of preconditions of successor goals that are likely to be
affected by execution of the operation, from geometric considerations.

Effects: Conditions that are made true as a result of accomplishing the current goal.

Choice Points: Alternative subgoals, that could be considered should the current choice
fail, are stored in a list.

Heuristics applied: The heuristics that have been used so far for problem solution.

Rules applied: The rules that have been used so far.

The description of a goal as given above blurs the distinction between goals, which are
conditions that are desired to be true in the world model, and actions, which represent
operations that effect changes in the world model. Specifically, the preconditions, post-
conditions and effects slots refer to the action associated with a goal, while the remaining
slots refer to the desired state of the world model.



Assembly Planner 19

4.3 Representation of Operators

The planner currently handles three operations: FIT, THREAD and DOUBLE-INSERT
as seen in Figure 5. With each of these operations, we associate a structure which represents
the basic high-level information required to execute the operation. Thus, the structure
associated with the FIT operation consists of slots for the specific mating features of the
two objects that are involved in the operation and the symmetry of the insertion object
about the axis of insertion. In refining an object-level goal of the form “Fit X into Y7,
the planner instantiates a structure associated with the FIT operation and overlays this
structure atop the goal structure described earlier for each of the feature-level subgoals
generated. The planner needs to apply some reasoning using heuristics and constraints to
determine the specific values to fill the slots before further refinement of the operation can
be undertaken. The slots of the structures associated with the operations FIT, THREAD

and DOUBLE-INSERT are given in Figure 5.

The angle of rotation slot refers to the maximum amount (in degrees) by which the
insertion object has to be rotated, after the normal axes of the two features are aligned
and before the movement along the axis takes place. This angle of rotation is derived from
considering the symmetry of the mating features identified, about their respective normal
axes. For example, inserting a cylindrical peg into a cylindrical hole would have an angle
of rotation of 0 degrees as both mating features are completely symmetric about their
normal axes. On the other hand, inserting a square peg into a square hole would have an
angle of rotation of 90 degrees as each of the mating features has an angle of symmetry of
90 degrees about its normal axis.

Aside from these structures that are used for representing the various options, a set of
constraints are associated with each of the operations which are detailed below:

Constraints with the FIT operation:

1. The dimensions of the mating feature of the receiver object should be at least as
large as the mating feature of the insertion object.

2. The mating feature of the receiver object should be hollow.
Constraints with the THREAD operation:

1. The mating features of both objects should be of type ‘thread’; The threading on
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FIT

name of operation:
mating-feature of receiver:
mating-feature of insertion:
angle of rotation:

THREAD:

name of operation:
mating-feature of outer object:
mating-feature of inner object:

DOUBLE- INSERT:

name of operation:

mating-feature-1 of receiver:
mating-feature-1 of insertion:
mating-feature-2 of receiver:
mating-feature-2 of insertion:

distance between mating-features of receiver:

distance between mating-features of insertion:

Figure 5: Operation Structures
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the outer object should be internal while the threading on the inner object should be
external.

2. The diameter of the cylindrical surface on which the threads lie should be nearly
equal.

3. The width and pitch of the threads on either feature should be nearly equal.

Constraints with the DOUBLE- INSERT operation:

1. The distance between the two mating features of the receiver involved in the opera-
tion should be nearly equal to the distance between the two mating features of the
insertion involved in the double-insert operation.

2. The two features of the receiver should both be hollow.

3. The dimensions of the mating features of the receiver object should be at least as
large as the corresponding mating features of the insertion object.

4.4 Use of Confidence Rates

The initial assignment of confidence rates to the various feature-level subgoals is given
by 1 over the number of possible alternatives. Any subsequent modifications to the confi-
dence rates associated with feature-level subgoals of the same object level goal are effected
so as to maintain the sum of the confidence rates over the feature-level subgoals to be
equal to 1. The mechanism we use for altering the confidence rates is as follows:

Let fg1, fg2, ..., fgn denote the feature-level subgoals associated with a single object-
level goal. Let ic,,icg, ..., ic, denote their corresponding confidence rates, before appli-
cation of a specific heuristic. Let Promoted-goals denote the set of subgoals which are
favored by the heuristic and Demoted-goals denote the remaining set of subgoals. Let
fey, fez, ..., fen denote the confidence rates of the feature-level subgoals as a result of the

application of the heuristic.
If fg; € Demoted-goals, then fe; = fc; + 2.

For subgoals in Promoted-goals, the confidence rates are incremented by an equal
amount €.
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fei=ic; + ¢ for fg; € Promoted-goals

where ¢ is determined as

e=)Y_ {(fc; —1ic;)/ | Promoted-goals | l 7, fg; € Demoted-goals }

4.5 Reasoning Heuristics

The planner currently includes three heuristics, all of which are involved with reasoning
about the mating features of an operation. These are:

Closeness-of-fit: This heuristic is applicable specifically to goals that represent insertion
operations, such as FIT and DOUBLE-INSERT. It essentially compares the differ-
ence in dimension between each pair of mating features occuring in each alternative
feature-level subgoal associated with a goal, and results in increasing the confidence
rate associated with the feature-level subgoals that have the least difference, and cor-
respondingly reducing the confidence rate associated with the remaining subgoals,
as described in the previous section.

Distinguishing features: This heuristic works on the feature-level subgoal that has
the highest confidence rating. Thus, one may view this as a heuristic that is used
to reinforce an carlier generated hypothesis. The heuristic works by requesting more
detailed information about the objects involved in the operation around the mating
features represented in the specific feature-level subgoal. This would invoke the
sensory systems or the object database to obtain this information. The result of this
request might be an augmentation to the feature graph, either in terms of identifying
new features that are related to the mating feature(s) in consideration, or in terms of
identifying new relationships between that mating feature and other existing features.
If no change results in the feature graph, the application of the heuristic leaves the
solution state intact. If indeed there are changes in the feature graphs of the two
objects, the changes may be compared and analyzed to see if there is additional
evidence to increase the confidence measure of the feature-level subgoal.

Feature Symmetry: If after applying the above heuristics, there are several possible
sets of mating features that can be considered for executing an operation, the feature
symmetry heuristic analyzes the options to see if a pair of subgoals are identical
except for considering two distinct but symmetric features from the same object.
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Two features from the same object are considered to be symmetric if they are of the
same type, have the same dimensions and bear the same relationships with other
features of the object’. When sugoals are found to represent such alternatives, the
planner defers one of the subgoals by removing it from the list of subgoals and storing
it among the list of choice points for later consideration.

4.6 Constraint formulation and propagation

The information currently encoded as constraints in the system are in terms of the
accessibility of features identified to be mating features of an operation. When a feature f;
of an object occurs as a mating feature in a feature-level subgoal, the predicate accessible
f; is added to the set of preconditions associated with the corresponding object-level goal.

Subsequently, the constraint is propagated forward to any of the preceding goals that:

e has the object(O) of which f; is a feature as one its operands;

e has a feature f; among the mating features of O considered in its list of feature-level
subgoals, such that f; and f; are related by any one of the relations defined over the
set of fcatures.

Any goal that satisfies the above conditions has the constraint added to its set of
postconditions.

The propagated constraints may then be used to constrain the solution space i ecause
the choice of feature-level subgoal considered for a goal should ensure the satisfaction of
these conditions upon completion of the operation. Typically, this would require that the
planner build a model of the subassembly resulting from the operation and verify that
there is enough clearance to reach the object(O) along the normal axis of the feature (f;).
As a first approximation to this, the planner deduces the inaccessibility of a feature based
on the operation, feature type and dimensions of the feature and posts this information
among the effects of executing the goal. Examples of this are a close fit or a threading
opertion, where the mating features of the operation essentially disappear as a result of
executing the operation. For a more formal treatment of this see [17].

SWe would like to note here that symmetry as defined here does not refer to strict positional symmetry
but can best be described as functional symmetry
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When it is not feasible to deduce conclusively whether or not the execution of an
operation violates a postcondition associated with the goal, we handle this by querying the
user about whether or not the accessibility constraint will be satisfied, given the operation
and mating features. Such a user query may correspond to having the system initiate
execution, but with preplanned alternatives, and continue with the execution or backtrack
to an assigned point based on sensory information obtained. Such scenarios provide a
testing ground for our ideas on dynamic planning where a choice exists between adopting
a computationally intensive modelling approach versus an execute-and-replan dynamic
planning approach which may have strong demands on real-time response time.

4.7 Transformations from Feature-level to Spatial-Relationships

Refinement of feature-level goals to goals that describe spatial relationships between
features is essentially a function of the assembly operation involved. Suppose we have a
goal ‘Fit object; into object,’ and that the mating features of the objects that have been
identified are referred to as f} and f, respectively. Let a denote the angle of rotation. In
refining the problem, two alternatives exist. Either object, may be positioned stably (using
a fixture if necessary), and object, moved to where object; is positioned and the operation
carried out, or the roles of object, and object; may be reversed. We describe below the
component actions that are required for one of the alternatives. (The other alternative
may be expanded in a similar fashion.)

1. Stabilize object, (mandatory).

2. Orient object, so that the normal axis of f; is parallel to the Z-axis of the workspace.
(this is desirable but not mandatory; i.e., if the normal axis of f, is constrained to
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