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ABSTRACT

An outstanding problem in model-based recognition of objects by robot systems
is how the system should proceed when the acquired data are insufficient to identify
uniquely the model instance and model pose that best interpret the object. Such a
situation can arise when there are multiple model instances that could be interpre-
tations of the object, or when there are ambiguous poses for a model instance.

This work proposes a generic method for automatically finding a path along which
the robot could move a tactile sensor, so that the robot system can uniquely identify
the object. Using assumptions that satisfy real-world sensing constraints, it is shown
that polygons on a plane can be identified by finding a linear path that passes through
an unsensed face of each interpretation. A computationally feasible method is pre-
sented for the two-dimensional case, based on a conversion of the problem to that of
finding the intersection of all paths passing through each unsensed face. Extensions
of the method, including the important case of recognizing polyhedral objects, are
briefly examined.

This research was supported in part by the Office of Naval Research under Contract N00O14-
84-K-0564, and by the General Dynamics Corporation under Grant DEY-601550. Publication as a
COINS Technical Report was recommended by Prof. Allen Hanson.
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1. Introduction

This work addresses the question of how a robot equipped with a tactile sensor
can recognize and locate an object in its workspace. Specifically, we consider the
situation in which some tactile data about the object are already available, but the
data do not uniquely identify the object and its pose. The problem is to acquire and
process new tactile data in a sequential and efficient manner, so that the object can
be recognized and its location and orientation determined. An object model, in this

initial analysis of the problem, is 2 polygon located on a plane.

The problem we address — acquiring new tactile data - occurs in the context of
the more general problem of object recognition. Our system for the recognition of
objects from tactile data has the following overall structure:

1. Acquire the initial set of tactile data.

2. Interpret these data by sequentially applying local and global geometric con-
straints between the data and the object models, i.e., find the possible transla-

tions and rotations of each model that are consistent with the data.

3. Repeatedly:

e Find a path along which to move a sensor.

e Execute the path, stopping when the sensor comes into contact with an

object.

e Interpret the acquired datum: either it uniquely identifies the object, or

it reduces the set of interpretations to a new, smaller set.

This work concentrates on the problem of intelligently acquiring new data (the third
principal item). The questions of how to acquire the initial data and how to interpret

them, while important, are peripheral to the present discussion.
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In our research paradigm we suppose that there is a single object in the robot’s
workspace, and that some initial data-acquisition strategy, e.g., regular or random
sensing, has been used to gather tactile data. These tactile data are contact points
on the object’s surface; each datum is a pair of vectors, representing the approximate
location and local surface normal of that part of the object. A number of object
models can fit these initial data, and the problem we seek to solve is how efficiently
to acquire new tactile data to determine uniquely the model type and location that

best describe the object.

Briefly, our acquisition methodology is to examine unsensed portions of the object
that is in the workspace. When there are multiple interpretations of the initial data,
e.g., several different models could fit the data, there are a number of faces from
different models that have not yet been sensed. If we imagine the models to be
superposed, then some of the unsensed faces “line up” - if a sensor placed on the tip
of a long rod were moved along a special line, it would pass through (or pierce) these
faces. Since only one of these model interpretations can really occur, we can tell which
one is the correct one by determining which face was hit, i.e., which position and local
surface normal were actually detected by the sensor. Figure 1.1 shows a simple two-
dimensional object, and several superposed interpretations of some tactile data; the
little circles indicate where an automatically planned linear path would contact each
interpretation. If executed, this path would uniquely identify which interpretation of

the original data was the correct one.

Identification of an object from ambiguous data can be accomplished if a line can
be found that passes through an unassigned face of each valid model interpretation
(modulo sensor limitations). Our method for finding these lines involves changing
the representation of the problem, and asking what sheaf of lines can possibly pass
through each unassigned face of each model. The intersection of the sheaves of a set
of faces is the sheaf of lines that pass through all of the faces. We will show below
that it is possible to find an element of this intersection — and thus find a sensing

path for the robot — in an efficient and general manner.
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Figure 1.1: An object model, four interpretations of data, and where a path might
contact each interpretation.

1.1 Object Models and Tactile Data

The recognition methodology we follow here is that of Grimson and Lozano-Pérez
[2], (4]}, [5]. In this methodology, an object is represented as a polygon, i.e., as a set
of line segments. The tactile data consist of a position, a local surface normal, and
the maximum error value of each of these quantities (an error circle and error cone,
respectively). Interpretation of tactile data consists in finding an assignment of
each datum to a model face.

The interpretation occurs in two phases: the first is finding a set of feasible
interpretations, which is done by applying local geometric constraints to the known
relationships of the data; and the second is verification of these interpretations, which
ensures that the assignments of data to faces are globally consistent. The output of
this procedure is a set of valid rotations and orientations - the poses — of the object
models such that the data lie on or near their assigned faces, and the sensed local

normals are close to the normals of their assigned faces.
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Our approach extends this methodology by showing how to acquire new data when
multiple valid interpretations exist. Interpretation of these new data is rapid, because
the path along which the sensor is moved has been calculated from the known valid
interpretations; there are very few assignments of a newly acquired datum, and most
of the possible assignments can be rapidly predicted from the geometric relationships
between the path and the models.

1.2 Related Work

There is relatively little work, old or recent, on ways of intelligently and auto-
matically acquiring tactile data for the purposes of object identification. One class
of related work is exemplified by the efforts of Allen and Bajcsy, [1], and Luo et al.
[6]. The former work used vision to reduce the number of possible models, and used
surface-following to verify the model instance; this approach, while effective in the
experiments they describe, is very time-consuming. The latter work also used vision
initially, and then simple tactile features, to search through a decision tree; the sens-
ing strategy is very simple, consisting of repeated rotation of the sensor about the
object. Although it is effective in simple cases, the authors point out its shortcomings

in dealing with smooth or highly symmetric objects.

There is also some very recent work that is closely related to ours. This other
class of related work is within the same research paradigm as the present work, and
is represented by efforts of Grimson [3] and Schneiter [7]. Both authors attack the

same problem presented here, but in different ways.

Grimson’s approach is very similar to the present one, in that he uses projections
of faces onto starting lines (or in three dimensions, starting planes), and examines
overlaps to determine how many could be pierced by a given path; however, he does
not attempt to optimize simultaneously over the direction and positional parame-
ters. Schneiter uses a very different approach, in which one seeks regions in which a

face from each interpretation is represented; this can be implemented in a very fast
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scheme, but occasionally fails to find paths which can identify the object (where the

present scheme can find such paths).

1.3 Nomenclature

Table 1.1 summarizes the nomenclature used in this paper, and gives the standard
usage of the symbols which will be described below.

Table 1.1: Notation

P; : Position vector; point

7; : A unit normal vector, in model coordinates

F; : A model face

D; : Distance, difference, or direction vector

L;(A) : Parametric form of a line in space

Qp, QL : Projection of a point or line into a Euclidean space

0 : An angle as measured from the Y axis

a : Tangent, or slope; a = tan 8

€oeneor : The minimum spatial distance resolvable by a sensor

Osensor : The minimum angle resolvable by a sensor

0 : The maximum permissible angle between a sensor
and a surface
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2. Piercing a Set of Line Segments

The principal conceptual problem in finding a path along which to move a tactile
sensor is that of finding a line that pierces a number of line segments (or faces -
the terms will be used interchangeably below). The line is the sensing path, and the
segments are unassigned faces from the various interpretations of the data. There
are a number of other non-trivial considerations, e.g., how to evaluate the path and
how to find it efficiently, but the core problem is that of finding the parameters of a

line that passes through a set of segments.

We will solve this problem by inverting it, asking instead what set of lines pass
through a given face; the intersection of such sets derived from several faces is the

set of lines passing through all of the faces.

The sheaf of lines passing through a two-dimensional line segment can be rep-
resented as a convex polygon in a new space, which we will refer to as projection
space. This representation of the set of lines passing through a faces is powerful,
and greatly facilitates the development of algorithms for finding sensing paths to

distinguish planar objects.

2.1 Finding the Path Parameters

In the plane, a line has two degrees of freedom, one of position and one of direction.
It is possible to restrict the starting position of the sensing path to lie on some locus,
e.g., a line or circle (which must satisfy such physical requirements as not intersecting
the object to be identified); the two parameters are then the position on this start

locus, and the direction of the path.
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Without loss of generality, let us suppose that the starting locus is the X axis.!
The endpoints of each face can be expressed as a pair of points, and the face is a line
segment between these points. Thus, we seek the parameters of a line that intersects

the X axis, and pierces each of a given set of line segments.

The path parameters can be expressed as the starting position of the path on
the X axis, and the direction of the path. In order to make it clear that some later
formulae have important linear forms, the path direction will be expressed as the
slope a of the line, taken with respect to the Y axis. That is, if the angle between
the path and the Y axis is 6, we will deal only with the slope of the line which is
a = tan@. The line will thus be parallel to the vector (a, 1) = (tan 8, 1), where a is

positive if the line is inclined towards the positive half of the X axis.

From these preliminaries the procedure for finding a sensing path can be devel-
oped. Beginning with the simplest possible case, suppose that we wish to find a path
that intersects a particular point P. The bounds on the slopes of the lines passing
through P will be referred to as aui, and amg,.

The crucial observation is that the problem can be inverted from finding a path
that pierces the point, to finding the sheaf of lines going through the point that
satisfy the constraints. For any given slope a, the line passing through the point P
intersects the X axis at a single, determinable point that we will denote as Q. Let us
call the intersection of this line with the X axis the projection of P. The projection
function, which varies with the slope of the line, is

Q) =Px - a-Py

This function yields the point on the X axis that pierces the point P with a path
whose slope is a. Figure 2.1 shows the geometry of the projection of a point P onto
the X axis for a given value of a.

!We may rotate and translate an arbitrary starting line so that it coincides with the X axis, and

transform the faces accordingly.
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Figure 2.1: Projection of a point onto the X axis.

Now, we can represent this projection function as a ltne in a new Euclidean space,
which we will call projection space. One axis of this space is the original X axis,
and the other is the angular A axis. In this new space, the projection function may
be represented as

Qr(a) = (Px —a-Py, a) (2-1)
This function may be interpreted as giving the position of a point @p in projection
space, derived by projecting the original point P (in X-Y space) onto the X axis in
the direction . Figure 2.2 shows the representation of a point P in projection space.
By virtue of the definition of this line, it has a very useful property: the coordi-
nates of any point on this line directly encode the parameters of a path starting on
the X axis that pierces the original point P. The line @p in projection space thus
completely describes the sheaf of paths that pierce P, under the constraints we have
set out above.

From this basis, we can derive more useful results. In two dimensions, we wish
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Figure 2.2: Representation of a point in projection space.

to pierce not points but line segments. This more complex problem can be solved by
employing the parametric representation of a line, and using Formula 2.1 to determine

how each point on the line segment would project.

A line L(}) can be represented parametrically as a point, and a displacement

from this point along some direction D, that is, as L(A\) = P + A-D. Choosing some

‘particular value of A gives some point that lies on the line. For line segments, it

is customary to let P be one of the éndpoints (say, P,), and the direction vector

D = P, — Py, which in general is not a unit vector. The points on the segment are
given by values of A bounded by 0 < A < 1.

The projection formula for a point on a line is derived by substituting the line
point into the projection Formula 2.1. The new formula, which is a function of the
path slope a and the line parameter ), is

Qr(d,a) = (Lx(A) —a-Ly(}), a) (2.2)
= (Px+A-Dx—a-Py —Xa-Dy, a)
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where the subscripts indicate components of the line, point, and direction. This
formula is non-linear in a and A. However, for fixed J, it is linear in a; in particular,
the endpoints of a segment become lines in projection space. If Dy is nonzero, i.e.,
if the line segment is not parallel to the X axis, then by Formula 2.2 the projected
lines of the endpoints will have different slopes. Figure 2.3 shows the representation
of an edge in projection space; the boundary is not a parallelogram because the edge
was originally tilted with respect to the X axis.

A
\
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Figure 2.3: Representation of an edge in projection space.

Note that the locus of points in projection space that is described by this pro-
jection, when a and A are bounded independently, is a trapezoid. In particular, the
parallel segments of the trapezoid are parallel to the X axis, and the other segments

have the slopes described above.

The points in the interior of this trapezoid have the property that their coordinates
represent the parameters of a sensing path that pierces the desired line segment. If
we take two distinct line segments, and represent each in projection space, the result
is two trapezoids. The intersection of these two trapezoids is a convex set of points,

whose coordinates describe the parameters of the set of paths that intersect both of

10
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the original line segments.? Figure 2.4 shows the representation of two distinct edges
in projection space; the area of intersection is the set of points that specifies the sheaf
of paths that pierce both original edges.

Qmin — -/ > -j » X

Figure 2.4: Two edges in projection space, and their intersection.

The general two-degree-of-freedom problem can thus be expressed, in these new
terms, as finding a point that is in the interior of the intersection of a number of
trapezoids in projection space. In either approach, all that is sought is a single
point inside the polygon which is the intersection of the projection trapezoids. The
coordinates of this point represent the position on the X axis and the direction o
of a line that passes through the faces whose projection is part of this intersection.
Once these parameter values have been found, the rotation and translation can be

reversed, and the start point and path direction expressed in the natural coordinates
of the X-Y plane.

21f the sets do not intersect, then there is no line that obeys the constraints and passes through

both faces.

11
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3. Computing a Sensing Path

We have described the theory of finding a sensing path in two dimensions. Im-
plementation of this theory requires attending to the two difficulties of efficient com-
putation of a path, and of ensuring that the path could actually be used by a robot
system. These issues are closely related, because some of the constraints of realistic
sensing can be used to reduce the complexity of finding the path parameters.

Our approach to calculating a sensing path involves examining each unassigned
face F; in turn, and trying to find a path through it and as many other faces as

possible. Assuming that the sensor can contact a face at very oblique angles, we can

form the setq of faces {Fj--- Fi} such that the angle between the normal Z; of F;
and the normal Zj of any face Fj in the set is greater than 0. The set {F;, Fj,--- Fi}
will be referred to as the candidate set of F;, which will be called the generating
face (or generator, for short). Note that the candidates in this set must include the
faces already sensed; it is possible that a path through the generator also contacts an
assigned face, though the contact will likely be at some distance from the previously

sensed point if the path is a good one.

In outline, our algorithm for finding a sensing path Is:

1. Calculate the candidate set of each unassigned face.

2. Sort the generators according to how many interpretations are present in the

candidate set.

3. Find and test a feasible path through the generator and its candidates:

(a) Find the projection parameter o' which creates the maximum overlap of

candidate faces with the generating face.

12
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(b) Find an X value, in this projection, that is in the intersection of the

projections.

(c) Determine the ability of the path to distinguish amongst the current in-
terpretations.

The two parts of this algorithm requiring the most explication are finding the value of
the projection parameter that produces the best overlap, and evaluating the quality
of the path.

3.1 Computing the Path Parameters

In projection space, the representation of a given face is a convex polygon, and the
coordinates of points in its interior and boundary represent parameters of the sheaf of
lines passing through the face. Thus, the parameters of the sheaf passing through a
set of faces is represented by the intersection of the sheaves of each face, which is also
a convex polygon; let us call this the sheaf polygon. The problem we must solve,
then, is finding a single point in the interior of the sheaf polygon that is produced
by intersecting the projections of as many faces, from different interpretations, as is
possible.

The two closely related subproblems of determining what is the largest number
of projections that intersect, and of finding a point in this intersection, can be solved
efficiently by taking advantage of a simple geometric observation. Suppose that a
given set of faces {F;--- F;} can be pierced by some line; the intersections of the
projections, then, forms a convex sheaf polygon. Our minimal problem is solved
if we can find any point in this polygon. Let us concentrate our attention on the
vertices.

A vertex of a sheaf polygon is produced when the representation of two or more
face endpoints intersect in projection space. For brevity, let us call the intersection

of the projections of any two endpoints a critical point in projection space. Fig-

13
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ure 3.1 shows the projections of three edges and the critical points that lie within
the [@min, Cmaz] bounds; some of the critical points in this example have the same a
value. The region labelled S (which is bounded above by the line @ = amq.) is the
sheaf polygon for all three edges.

A
)

amaz T \

Qmin

Figure 3.1: Three edges in projection space. The a value of their critical points are

marked on the A axis.

Observe that a critical point ¢ = (X', @') is on the boundary of a sheaf polygon if
and only if the projections of all of the faces overlap on the X axis when projected by
the value o’. Equivalently, the face representations in projection space must overlap
at the value @ = o if ¢ is a critical point; in particular, all of the face projections
must overlap x', which is a very simple and efficient test.

This means that in order to find a point in the intersection region of the largest
number of faces, we need only project the faces at the values given by the critical

points and examine the overlaps, rather than searching through all of the values in

14
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[@miny tmaz] to find both the region of best overlap and some point in this region. The
critical points of face boundaries encode exactly those regions of projection space

where qualitative changes of face overlaps occur.

Checking for intersection at a critical point is quite straightforward. For a pair of
face endpoints P and R, the critical point occurs when the projections are equal,which

is when ¢ = Qp = Qg. Solving for o, the critical point occurs at

r_ Px—Rx
Py — Ry

which is undefined when Py = Ry, i.e., when the points in X-Y space are the same
height from the X axis there is no line that connects both of the points and also
intersects the X axis. This value o is used in the projection formula of each face in
turn; the critical point bounds a sheaf polygon including the face if and only if the X
value of the critical point lies between the X value of the face endpoint projections
at o'. Thus, we need only count the number of faces whose projections bracket the
critical point to determine how many faces can be pierced by a sensing path that has

a slope of o'.

The X value of the critical point can be used as the starting point of the sensing
path, but it has properties which may render it undesirable. In particular, it repre-
sents the starting point of a path which just barely contacts two or more faces. This
can be remedied, if necessary, by re-examining the faces under the projection at o',
finding the extent of the overlap of the face projections, and taking some other X
value, e.g., the middle of the overlap. Because the maximum width of a convex poly-
gon (in any given direction) occurs at a vertex, the critical points can be searched
to find not only the largest number of overlapping faces from different interpreta-
tions, but also the largest eztent of overlap. This second pass would occur only on a
small subset of critical points, and would use projection values that were calculated

previously and thus would be available.

The present system sorts the critical values from the middle of [amin, Qmaz] oOut-

15
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wards, and determines how many distinct interpretations have a face whose projection
contains the critical point; this is the overlap count for the critical point. The largest
overlap count is determined, and one of the points with the largest overlap count is
selected for processing (this is currently done arbitrarily). The o' of the critical point
represents the path direction, and the midpoint of the intersection region represents
the starting point of the path. Once found, however, this path must be evaluated to

determine how well it distinguishes amongst the various possible interpretations.

3.2 Evaluating a Sensing Path

That a path intersects several unassigned faces does not imply that a tactile
sensor can determine which face has been contacted. There are limits to the ability
of sensors to discriminate depth and orientation, and regardless, it is possible for
several unassigned faces to coincide exactly. These conditions must be examined to

determine how good a path is at reducing the number of interpretations.

Three properties of tactile sensors are that they have a finite ability to discriminate
depth and contact normals, and that if the contact angle is too oblique then the sensed

normal value may be unreliable. These practical constraints can be summarized as:

e The face normals must be distinguishable by the tactile sensor, i.e.,

— for any pair of normals Z; and Z;, £(Z:Z;) > 2 - b:ensor, OF

— The positions of the faces must be distinguishable by the tactile sensor,
i.e., for any pair of faces F; and F}, the points of contact P; and P; must

be such that ||P; — P;|| > €sensor; and

e The angle between the sensing path direction D and the normal of any face F;

must not exceed the maximum permissible contact angle 2, i.e., L(DZ;) <.

Once a path has been found, all pierced faces must be examined to determine how

these constraints apply. It often happens that unassigned faces appear in similar

16
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configurations, and so they could not be distinguished by a tactile sensor.

In order to actually identify objects with sensor-based manipulators, then, we
must address the issue of how to proceed when either there is no single path that can
provide sufficient information, or when such a path can be expected (on the basis
of the above combinatorics) to take an unreasonably long time to compute. For a
given set of initial tactile data, a set of known object model models, and a particular
path-finding algorithm, it is possible to derive a structure which completely describes

the possible performance of our tactile recognition strategy.

3.3 The Ambiguity Tree

Our recognition strategy provides a method for gathering new tactile data in
order to reduce the ambiguity of interpretation of the current data. A path is not
always perfect, i.e., does not invariably reduce the number of possible interpretations
to a unique one. When it is not perfect, though, the path can be viewed as reducing
the ambiguity; as tactile data are (or are not) gathered, the amount and kind of
information changes. We can express the effectiveness of the algorithm, in a given
case, by the way in which the ambiguity is reduced if particular data are detected
along the paths it finds. The reduction in ambiguity can be expressed as a tree,

which we will call the ambiguity tree for the experiment.

Initially, there is a set of possible interpretations of the given tactile data. As
a path is traversed by the sensor, a new tactile datum may be gathered. If there
is only one possible face that this datum could be assigned to, the datum uniquely
identifies the interpretation and thus can be considered to be a terminal node in a
tree. Sometimes, however, the datum might possibly be assigned to faces from more
than one interpretation; in such a case the datum has reduced the ambiguity, but
not eliminated it. We can say that such a datum constitutes a non-terminal node in
a tree, and that if this datum was detected by the sensor then at least one additional

path will be needed to uniquely determine the correct interpretation of the object. An

17
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important kind of non-terminal node is formed by the equivalence class of unezpected
data. These unexpected data can arise when the object is unknown to the system,
when the path-finding algorithm has been prematurely stopped before it found the
optimal path - the path that distinguishes the largest number of ambiguity classes -
or when a face is struck at too oblique an angle for the sensor to detect reliably
the local surface normal or position. (The path-finding process can be prematurely
stopped according to various criteria, e.g., by it reaching a limit on computation time,

or by it having found a path that identifies some given number of interpretations.)

The path-finding algorithm, then, can be viewed as producing a tree of successive
refinements of the description of the tactile data. At any level in the tree, the width
represents how many equivalence classes of interpretations are formed by the path;
the depth below a node in the tree represents the worst-case number of paths that

must be traversed before the object is identified.

An example ambiguity tree is given in Figure 3.2. Suppose that there were five
interpretations of the original data that were valid. In this instance, the first level
gives the number of interpretations distinguishable by each sensing incident. For
sense datum S, of level 1, there were two faces from distinct interpretations that were
indistinguishable; hence, if the sensor contacted that face we would know that none
of the other three interpretations were possible, but could not distinguish between
I and I,. An additional path would be required in the worst case, for a total of two
movements. A more complex tree, derived from a simulation experiment, is given in

Figure 4.4 and described more fully below.

An ambiguity tree can be used theoretically, when the path-finding process is
stopped prematurely, to evaluate the algorithm’s performance when the design pa-
rameters (computation time or identification thresholds) are varied. Practically, as

each level of the tree is computed, it can be used to guide the computation of new
paths, e.g., non-terminal nodes which have the greatest ambiguity may be expanded

next, while the current path is executed by the robot manipulator.

18
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Figure 3.2: Ambiguity tree for a set of interpretations.

3.4 Combinatorics of Parameter Determination

There are several stages to the algorithm as described, each with different com-
putational cost. The important stages are formation of candidate sets, finding the

critical points, finding the regions of overlap, and resolving the sensing conflicts for
the path.

Formation of the candidate sets is relatively simple: it entails determining which
faces could conceivably have a path pass through both the generating face F; and the

candidate face F;. This means that we need to determine whether the normal Z; of

F; is not antiparallel to the generator normal Z;; so we can simply check to ensure
that

Zi-2;> -1
This must be done for all pairs of faces, so if there are M unsensed faces from all

possible interpretations, and K sensed faces, there are M - (K + M — 1)/2 inner

products to be computed.

Once the candidate sets are formed, the largest is selected and path parameters
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are found. We will denote the size of each candidate set by N. Because the size
is determined by how many face normals are not antiparallel to the generator, in

general N will be only slightly smaller than M.

The number of critical points is a linear function of the size of the candidate set.
Each candidate endpoint must be tested against the generator endpoints, and to this
we add the values a,in, @maz, and 0. Thus, there are 4N 43 to be examined; of these,

we discard those critical values that are outside the bounds and remove redundancies.
The critical values are then sorted by absolute value, which is typically an operation

of complexity O(N log(N)). The entire process of finding and preparing critical
points is thus O(N log(N)) in complexity, as the complexity of sorting the points
dominates the complexity of finding and testing them. This stage usually proceeds
quickly because of the low cost of the operations.

The next stage is finding the overlap regions of the face projections. Each endpoint
in the candidate set must be projected under each o' found, and then tested against
the x' component of the critical point. Because there are 2N endpoints and, at
worst, 4N + 3 critical points, the complexity of this stage is O(N2). Once a path
has been proposed, the pierce test is repeated on the faces, in case there are faces
that overlap the generator at this a projection without overlapping the generator
endpoints. The contact points are then found, and sorted according to their position
along the path; since the test dominates, this stage has a net complexity of O(N?).
There is a significant amount of work to be done for each a, so this stage tends to

dominate the computation.

Once the set of faces pierced by the path has been found, we determine the first
contact on each interpretation by linearly searching; there can only be as many of
these as there are interpretations, so the number is quite small. Supposing that there
are [ interpretations, and all of them are contacted, we must then resolve the sensing
conflicts. This entails determining the contact angle and contact distances for each

pair of points, which requires I? tests. Forming the equivalence classes of contacts is
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a linear operation, so resolution is of complexity O(I?).

In summary, finding and evaluating a sensing path through a given candidate set
is of complexity O(N?). At worst, we must search through every candidate set to
find the path, which would require O(N3) calculations. However, practice has shown
that most good sensing paths can be found be examination of just the most populous
candidate sets, so finding a sensing path is a quadratic function of the number of

unsensed faces. The dominant part of the calculation is determining and testing

overlaps of candidates with the generator.
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4. Experimental Results

An extensive series of simulations have been performed using this algorithm and
the six polygonal test objects shown in Figure 4.1. The experiments involved using
only two tactile data, which are shown in the midst of the objects; the dots are
the positional information, and the spikes the direction of the local surface normal.
These data were chosen because of the considerable ambiguity with which they can
be interpreted. There was a very small amount of positional error associated with
each datum, and a normal direction error of about 4 degrees. Table 4.1 gives the
number of faces of each object, and the number of valid interpretations of the initial

data for each object.

Table 4.1: Interpretations of 2 points.

Object Number of Number of
Name Faces Interpretations
robot-hand 12 4
human-hand 18 3
telephone 12 2

boot 13 3

camera 12 6
beer-bottle 8 3

The simplest experiments attempted to distinguish among the four poses of the
robot-hand object. A number of paths will uniquely identify these four interpreta-
tions. Figure 4.2 shows the four interpretations; circles indicate where the identifying
path contacts the object, and the dots and spikes indicate the position and sensed
normal of the given tactile data. (The four interpretations of these data, superposed,

are presented in Figure 1.1.) In this experiment we assumed that the sensor could
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determine local surface normal and depth very well and had a sensor skid angle of
89 degrees, i.e., any slight touch of the surface would be sufficient to gather data. The
path actually contacts each face parallel to its surface normal, so the latter design

parameter could be tightened considerably without affecting the result.

This simple experiment showed that even where there are a number of coincident
faces, the algorithm can select paths that distinguish all of the interpretations. A
more extreme test of the system’s capability is when there are a large number of
interpretations, with many faces either overlapping or very close together. When
all of the models are included as possible objects, there are a total of 21 distinct

interpretations of the data within the error bounds given above.

Using the large skid angle value, and supposing that the sensor has the stated
error in determining position and local surface normal values, it turns out that there
exists a single path that contacts 20 of the 21 interpretations. Of these 20 contacted,
17 are terminal nodes of the ambiguity tree; the remaining non-terminal nodes can
be distinguished with a second path. Figure 4.3 shows the objects, with the faces
that would be pierced by a path marked with a circle.

A large number of other runs were made. Table 4.2 summarizes the results of
some of these runs, indicating the models used, the number of possible interpretations,
and the number of interpretations that had at least one face pierced. Because of the
design parameters of these tests, they approximate the performance of the best tactile
sensors currently available.

The final series of experiments were designed to explore some of the computational
issues of the approach, especially in multi-path instances. For these tests, we reduced
the skid angle to 45 degrees (which is available with cheap but accurate sensors), and
stopped the path-finding when 7 distinct interpretations had been contacted. This
arrest occurred before the path assessment stage, so it was not always the case that
a path could uniquely distinguish amongst the 7 contacted by the path.

Table 4.3 summarizes the results of the most interesting run, in which all 21
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Table 4.2: Distinguishing Multiple Objects.

Objects Interpretations | Interpretations
Found Distinguished

robot-hand 4 7

human-hand 3

robot-hand 4

human-hand 3 12

telephone 2

boot 3

camera 6 o

beer-bottle 3

interpretations of the 6 models were included; Figure 4.4 gives the ambiguity tree for
the results, with {} representing the class of unexpected data or no contact with any
surface. The first path found can identify 6 classes of interpretations, 5 of these being
terminal; if none of these are correct, the next path can identify 7 interpretations.

The third path, which is the optimal path, has some curious characteristics that
are made evident by the ambiguity tree. There are 6 equivalence classes, 4 of which
are terminal and one of which contains a pair of interpretations; the {} node occurs
because Interpretation 8 was not contacted at all by the path. If the object was
guaranteed to be one of those modelled, no further paths would be necessary if

contact didn’t occur when the sensor was moved along the third path.

This run shows that when we limit the amount of computation permitted in the
planning phase, no more than 4 probes are needed to uniquely determine which of
the 21 original interpretations of the data is correct. Table 4.3 also includes relative
computation times for the interpretation phase, each path-finding phase, and the time
needed to find the best single path indicate the efficacy of a multi-path approach to
object recognition. In these units, a manipulator could be expected to take about 60
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timesteps to execute a path, so after the first one is found the time to compute the

next path is comparable to physical transit time.

Recognizing Planar Objects

Table 4.3: Multiple-Path Identification.

Interpretations
Pass before after pierced Cost
Verification - 21 - 42
Candidate Formation 21 21 - 151
Path 1 (limited search) 21 14 7 137
Path 2 (limited search) 14 7 7 54
Path 3 (exhaustive search) 7 1 6 87
Path 4 (trivial search) 1 0 1 1
TOTAL TIME 472
Optimal Path 21 2 19 1389

The ambiguity tree for this large run is shown in Figure 4.4. Each level shows the
interpretations identified by some distinct datum along the sensing path. The entry

{} indicates that the next level should be explored if the datum found is not one of

those expected.
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T
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Figure 4.1: Object models and initial tactile data used in the experiments. (The
reader can find interpretations of these objects by copying the tactile data onto a
transparent sheet, and moving the sheet about to find places on the models where
the position and local-surface-normal constraints given by the dots and attached
vectors are simultaneously satisfied.)

f
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Figure 4.2: Four interpretations, and where the path contacts each.
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Figure 4.3: Where a path contacts 20 distinct interpretations of the objects.
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Figure 4.4: Ambiguity tree for 21 interpretations, limited path search.
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5. Extensions

There are three obvious extensions to the current system. One is to include
error in the location and orientation of the interpretations; another is to reduce the
restrictiveness of some of the underlying assumptions; and the third extension is to

attempt to identify three-dimensional polyhedral objects.

5.1 Error in the Interpretations

Because there is error in the initial tactile data, there is error in the estimated
pose of the model that interprets the data. The present system, for simplicity, used
the given position and local surface normal values; since the true values could deviate
from these sensed values, a given model instantiation could actually have a range of
translations and rotations that would fit the data.

There are two ways to extend the present system to handle this error. One is to
find the range of poses for an interpretation, find the face locations at these ranges,
and form candidate sets only of faces that do not overlap. The other way is to find
a worst-case estimate of the positional and orientational deviation of each face, and

just add these in to the sensor error in the path-evaluation stage of the algorithm.

Which extension is preferred depends upon how the system is likely to be used.
The former method is costly at candidate-formation time, because sorting through
candidates for the best combination of non-overlapping faces is not trivial. The
second method is costly because it can result in the rejection of paths which met
the optimality criteria of the previous stage; what is optimal in one stage can be

sub-optimal in another, resulting in excessive computation.

The second method, however, would be preferable when optimal paths are not

of concern, e.g., where computational resources are limited or multiple paths are so
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likely that several paths will have to be found anyway. In such cases, the number of
interpretations that are lost to error in the initial data can be expected to be small
compared to the number that just can’t be distinguished by the path found; when
such a situation obtains, inserting interpretation-pose error into the path evaluation
stage can be justified. When optimal path performance is critical the first, systematic
method is preferable.

5.2 Changing the Assumptions

A number of restrictive assumptions are made in the present work. Two that are
especially open to challenge are that there is a single object in the workspace, and
that the sensor is of effectively infinite length (the present methodology has placed
no a priors restriction on the length of a path, and thus no restriction on the length

of the sensor).

Path planning in a crowded workspace is non-trivial, but possible. The present
methodology would require first that a recognition engine work on data from a
crowded workspace, and then that a method be developed for piercing only those

faces that are of interest, avoiding the extraneous objects when possible.

Regarding the first issue, we note that the recognition scheme used can be ex-
tended to handle the case of multiple objects in two and three dimensions [5]. In
such cases, the rccognition engine would return all possible interpretations of the
data. Secondly, the present method could be modified to attempt to identify objects
when there are restrictions on such parameters as starting position and location; such
a modification would permit, if not identification, at least a considerable reduction
in the ambiguity. Clearly, this is an issue that requires much further work.

Changing the second assumption does not require such significant modifications
to the present system. If the sensor configuration is changed to suppose that it is
a projection of finite length from some body — mimicking a finger sticking out from

a hand - we can observe that for a given path we can find the position along this
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path where the hand might contact one of the interpretations. This would represent
the point on the path where the manipulator would have to stop if no sensors were
on the hand, or where it might stop if the hand was equipped with simple bump-
contact sensors. Either way, the maximum path length can be incorporated into
either the path-planning stage or the path-evaluation stage, with the trade-offs being
similar to those examined when we considered incorporating interpretation error into
the system. Changing this assumption would also introduce the possibility that the
object could not be uniquely identified with the sensor at hand, a possibility present

with errorful sensors anyway but which is increased when obstructions are added.

5.3 Three-Dimensional Objects

The most intriguing extension of the present method is to attempt to use the
same framework to identify three-dimensional objects. Conceptually, the extension
is possible; computationally, there are significant difficulties to be overcome when
attempting to find the optimal path.

In three dimensions, a face of a polyhedral object is a polygon, which in turn
has line segments as boundaries. In the projection formula for lines, even in two
dimensions, a non-linearity is present; but in two dimensions, because the boundaries
are points, we were able to sidestep the issue. In the polyhedral case, the projection
of an arbitrary line segment in even one angular degree of freedom becomes a ruled
hyperbolic paraboloid; a polygon (even a convex polygon) will in general project
to a non-convex volume bounded by a set of these curved surfaces. In finding the
optimal path, we seek a point in the interior of the intersection of a number of these
structures. (Since there are actually two angular degrees of freedom, the problem is
four-dimensional, and consequently much worse.)

This extension is currently under active investigation. Because of the considerable
cost of analytically finding the optimal path, we prefer to linearize the projection

equations and reduce it to a simpler problem. Linearization entails missing some
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paths, finding some that are unacceptable, or both; we are currently examining
the issues in approximation, linearization, and computation time, and believe that
reasonable results can be achieved even when attempting to optimize over all four of

the path parameters simultaneously.
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6. Conclusions

We have defined a methodology for acquiring new tactile data in a model-based
recognition scheme when the available data are not sufficient to uniquely identify the
object in question. A method was proposed for finding a path along which to move
a tactile sensor so that the maximum amount of information can be gained from
the sensor motion. Simulations show that this method is practical and effective in

gathering tactile data to recognize polygonal objects which lie on a planar surface.

A number of extensions of this method can be performed, including elaboration
of the way in which sensor error is managed, loosening of some of the restrictive
assumptions, and extension of the method to finding paths for three-dimensional
objects. These extensions vary in conceptual and practical difficulty, but are all

possible with some effort.

A possible future direction arising from this work is that it may permit us to
address the question of when to stop performing recognition, which is essentially
data-driven, and begin performing verification, which is essentially model-driven. It
is possible to estimate the complexity of computation of recognition, and how many
interpretations we can expect from an initial set of tactile data; we can also place
bounds on the amount of computation needed to plan verifying paths and execute
them with a sensor. Combining these parts into a computational framework may per-
mit us to develop a hybrid control strategy for identifying objects in minimum time.

These, and other directions, are currently under investigation in our Laboratory.
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