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ABSTRACT

A method to derive local, piecewise-circular descriptors of image curves is presented.
Edge extraction is used to localize processing; and edge contours are partitioned by con-
stancy of quantized local grey-level curvature, rather than by extrema of curvature of the
contours themselves. The use of a special segmentation technique, “overlapping parti-
tions,” overcomes many problems associated with quantization. Circular arcs are fitted
independently to each of the extracted curved-edge segments. The parameters of these
arcs, together with other measured attributes, provide a rich description of each curved-
edge segment. The method is intended to provide reliable, local descriptive tokens for use

by later grouping and interpretation processes.

1. INTRODUCTION

The task of early computer vision frequently involves the extraction and organization
of image features into primitives better suited than the raw image to the requirements
of subsequent symbolic processes. In this regard, much attention has been given to the

problem of deriving descriptors for image curves [1,2,3].

The term smage curves, is usually taken to mean linear/curvilinear events in the im-
age plane, frequently associated with boundaries of objects and made manifest by some
appropriate extraction process, such as edge detection. In this paper, image curves are in

fact associated with pixels whose gradient magnitude (with respect to the intensity data)



is locally maximum. Extraction normally results in the identification of sets of significant
pixels, corresponding to the locations of such events. Description is a process of summa-
rizing the planar distributions of the pixels comprising these sets. With respect to image
curves, description entails two subproblems [4]: partitioning the underlying pixel sets into

integral units for description, and fitting an appropriate curve to each such unit.

Description strategies may be broadly classed into two categories, according to their
method of partitioning the underlying pixel sets. The more usual approach {1,2,3] involves
chain-coding of pixels into contours and locating the extrema of curvature of these contours.
These extrema determine breakpoints of the partition; and typically, description is a set
of splines whose knots are these breakpoints. Such a method is largely viewpoint invariant
[2], and normally results in continuous description of contours. However, it suffers at least
one serious drawback: the location of breakpoints is based primarily on measurements at
vertices—i.e., points of locally maximum or minimum curvature. But it is precisely these

points for which the extraction process itself is least well defined.

Further, if one is concerned with interpretation of natural scenes (a problem with which
any truly general vision system must contend), then one is faced with a profusion of ob-
jects in highly complex, often occluding, spatial arrangements. In this context, the essential
problem cannot be reduced simply to a matter of tracking and describing the bounding
contour of an object as would suffice with single-object laboratory imnages. Rather one
must seek to develop systems that can deal with the inevitable fragmentation of contours
with which they will be faced. That is, the requirement is for systems that can adequately
describe the local geometric character of such fragments; and ideally, ones that can sub-
sequently reintegrate those fragments which belong together into coherent wholes. The

concern of the present work is this local description task.

A second, more recent approach to partitioning the underlying pixel sets of edge regions
is the method of overlapping sectors, which was developed by Burns, Hanson, and Riseman

[5] in the context of straight lines. The system described herein exploits a variant of this



overlapping sectors approach but with respect to second order curves. Using this method,
partitioning is determined by uniformity, rather than maxima/minima, of curvature; and
in this sense it constitutes the dual of extrema methods. Moreover, the location of break-
points is largely determined by measurements away from vertices—i.e.,in areas where the

extraction process can be said to be well defined.

2. OVERLAPPING PARTITIONS SEGMENTATION

This novel approach to the problem of extracting straight lines was recently reported
in Burns, et al. [5]. It involves simple local computation (not involving any histogram
methods) and the computation of connected components. In this section we review the
algorithm, and describe a simple generalization which makes it applicable to extracting
curved lines. In the next section we will describe the details of the algorithm for deriving

circular arc descriptors.

The central module of our algorithm we term the “Overlapping Partitions Algorithm,”
and in the context of extracting straight lines it may be summarized as follows. Processing
begins by applying a gradient orientation measure to the image. Any number of methods
are applicable; however, normally the row and column derivatives are computed and orien-
tation is taken to be the direction of this gradient vector. The space of possible orientations
is partitioned into a set of 8 non-overlapping sectors, each of 45 degrees arc. A second
such partition is formed but rotated 22.5 degrees from the first. Thus, the sectors of one
partition overlap the sectors of the other—hence the name overlapping sectors. For each
partition, the image is labeled according to the sector into which the gradient orientation
falls. Thus each pixel gets two labels. A connected components algorithm is then applied
to the labeling derived from each partition. Finally, a selection procedure is employed to
determine locally which partition is preferred (the components of this partition are termed

edge support regions). Straight line descriptors are now obtained by fitting a straight line



to each of the edge support regions.

By replacing gradient orientation with a curvature measure and by substituting an
appropriate quantization of the measured curvature, the method can be adapted to deriving
piecewise circular descriptors. Specifically we find curve support regions which are uniform
with respect to quantized curvature and as such can be abstracted from the image data as

parts of circles.

The curvature measure we employ is slight modification of the Kitchen-Rosenfeld [6]
corner detector—i.e., the scaling by the gradient magnitude is dropped. However, this
measure only makes sense when applied to areas of locally maximum gradient magnitude.
Thus, in 2 manner similar to that suggested by Nagel [7], we use zero crossings of a second
derivative operator to restrict the curvature operator to such areas. In this case, it provides
an approximation to the local curvature of the underlying edge event; and this is precisely
what we wish to describe. Thus, the general algorithm as it applies to image curves is as

follows:

The processing begins by applying an operator to the image which extracts “significant
edge” pixels. In our current implementation, we have been experimenting with zero cross-
ings of both directional and non-directional second derivative operators. Both approximate
areas of locally maximum gradient magnitude. In these areas of “significant” edge activity,
apply the curvature operator described above. The range of this curvature operator is par-
titioned into two non-overlapping groups of intervals, with one partition shifted one half
an interval length from the other. For each partitioning, the image is labeled according to
the sector into which the curvature value falls. Thus, each pixel gets two labels. Finally,
a connected components algorithm is applied to the labelings derived from each of the
partitionings, and a selection procedure is applied to determine locally which partition is
preferred (the components of this partition we term curve support regions). Curved line

descriptors are now obtained by fitting a circular arc to each of the curve support regions.

Associated with each curve is a set of curve attributes which includes: center-location,



radius, arc-limits, strength, average-curvature, aggregate-error, mean-fit-error, and rho-
kappa-correspondence. These attributes will be described in greater detail in a later
section. Descriptors are intended to provide input to subsequent, higher level grouping

operations. Thus, filtering may be performed with respect to any of these attributes.

3. GENERATING CIRCULAR DESCRIPTORS

As currently implemented, the system for deriving descriptors of image curves consists
essentially of five components. The first entails the detection and localization of intensity
edges in the image. The resultant set of edge pixels is used to restrict subsequent processing
to edge neighborhoods. The second component analyzes these edge neighborhoods, specifi-
cally in terms of curvature in the underlying intensity data. The result is a segmentation of
the edge regions based upon a quantization of this curvature. The third component entails
a pre-filtering of these edge regions based upon their size and their support, resulting in
so-called curve support regions. The fourth component derives a description of these sup-
port regions in terms of best-fit circular arcs. The final component pcrforms post-filtering

of the arc descriptors. In this section we describe each of these components in more detail.

3.1 Edge Detection

The edge detection component is decoupled from the remainder of the system. Thus,
any edge operator may be used; it need only deliver a logical edge image (a bitmap) marking
the locations of edge pixels. Most examples contained herein were produced using a version

of the edge operator suggested by Haralick [8], which first applies the operator
VI-V(|VI|]?)

to the image. In order to reduce spurious effects of high frequency noise, the image is
normally pre-smoothed with a Gaussian; thus, / may be considered a smoothed version of

the image.



Note that I is a two-dimensional function in z and y; so too is [|VI||2. As such,
one may visualize their respective graphs, as surfaces in 3D space above the image plane
itself. Considered from this point of view, the Haralick operator amounts to computing the
directional derivative of the gradient magnitude surface in the direction of the gradient—
i.e., across the idealized edge. A logical edge image is then derived by locating the zero-

crossings of this “second derivative” surface.

3.2 Curve Segmentation

Once edges have been located, curvature is calculated at each edge pixel directly from
the image itself. The idea is to obtain a set of segmentations of the edge contour based
upon local curvatures of its projection in the image plane. The operator devised by Kitchen
and Rosenfeld [6] provides a means of determining just such curvature; moreover, it does
so locally and directly in two dimensions using convolution. This is in contrast to other
systems dealing with curvature [1,2,3], which usually require reduction of the contour to
a one-dimensional function, by chain-coding or some similar scheme. Moreover, it is our
contention that these alternative methods, while attempting to describe the entire contour
of an object, do not significantly abstract or summarize the curvilinear image event in a

form which is suitable for subsequent grouping operations.

3.2.1 Curvature Operator

Kitchen and Rosenfeld [6] describe their operator in terms of the turning rate of the

gradient, at each pixel, projected along the idealized edge. The form we use is defined by:

g o BB+ Iyl - 20y L1,
(I2 + I2)*?

where I is the smoothed image intensity data and I,, I, I., I, and I, are the partial

derivatives in the row and column directions. In fact, the curvature measured by this



operator is identical to the curvature of the iso-intensity contour line passing through the
pixel. See Figure 1. By restating this contour line as some function of z, the equation of

the curvature operator becomes the familiar equation for the curvature of a plane curve:

_ (d*y/ d:r:z) _
(1 + (dy/dzy?)"

In other words, where the set of pixels belongs to an edge (as is the case here), the
operator measures the curvature of the respective iso-intensity contour at each edge pixel.
This amounts to a pixel-wise sampling of the curvature (in z and y) of the edge ramp itself.
Where the zero-crossing contour follows a single iso-intensity contour, their respective
curvatures will be identical. Where the edge contour wanders up or down the gradient,
its curvature will be pointwise equivalent to curvatures of a succession of coincident iso-
intensity contours. This has the effect of stabilizing the curvature measure, so that it

better conforms to the behavior of the edge event itself. See Figure 2.

3.2.2 Quantization

Quantization is a mapping from ranges of input values to discrete representational
values. In the present case, the mapping is from local grey-level curvatures measured at
the edge contours to corresponding curvature labels—the particular label, in each case,
depending clearly on the rules of the mapping. With respect to curvature, the optimal
form of such a quantization rule is still very much an open question. In our experiments,
we have generally employed a uniform linear quantization. This entailed multipying the
measured curvature by a scaling factor and using evenly spaced buckets centered at the
integers (Figure 3); but one can easily imagine other rules. For example, we are currently

looking at quantizing by the log of the curvature, in order to better ensure scale-invariance.



3.2.3 Overlapping Partitions Segmentation

Regardless of the specific rule, quantization effects a partitioning of the input data,
thereby introducing unintended artifacts at the partition boundaries. Where the measured
curvature of adjacent points along the edge varies sufficiently to cross such a partition
boundary, a break-point results. This sort of fragmentation has little to do with the

inherent structure of the underlying contour itself and is therefore undesirable.

Performing a second quantization, with data shifted one half interval, induces a new
and distinct set of breakpoints (Figure 3). Running a connected-components algorithm
on the results of both quantizations produces two overlapping segmentations of the edge
contours of the image. To overcome the cumulative fragmentation effects, what is needed

is some strategy for integrating information across the two segmentations.

3.2.4 Voting Scheme

Adopting here the terminology and method of Burns et al.[5], the two segmentations
are each comprised of support regions — collections of contiguous pixels with the same
region label. The constituent pixels share an underlying, unifying property: for Burns it
was gradient orientation; in the present case, it is quantized curvature. More to the point,
each pixel belongs to two distinct support regions, one for each segmentation. It is thus
possible, as Burns did, to devise a scheme whereby each pixel votes to belong to, that is

to support, one region or the other.

The decision criteria applied will vary according to the property upon which the seg-
mentations are constructed. The current implementation utilizes a crude approximation to
arc-length, size, as determined by the cardinality of the support regions (since the regions
are themselves comprised solely of pixels which follow the edge contour). A pixel thus votes
to support that region which has longer arc-length by voting for the one with the greater

number of pixels. See Figure 4. Votes are tallied for each region and its respective support



is determined as the ratio of votes received to size. Regions are then usually pre-filtered

for simple majority support of 0.5.

Since circle fitting is costly and requires a minimum number of points, it was thought
that such a decision criterion would provide reasonably stable regions to which to fit the
circular arcs. However, this tends to filter out possibly significant small regions which
overlap larger regions. An alternative and possibly more useful choice might be to first
fit arcs to all regions of at least some minimum size, and then to decide support based
upon the mean fit error. In fact, this approach is currently under investigation. (With the
current implementation, similar results are obtainable by setting the support-filter at 0.0

and post-filtering on the mean fit error.)

3.3 Region Filtering

Edge regions possess two important attributes which form the basis for pre-filtering—
i.e., filtering done prior to the actual fit process. These are size and support. Filtering on
simple majority support (support > 0.5) serves to select those regions preferred according
to the decision criterion of the voting scheme. This ensures that computational effort is
expended on deriving only the preferred descriptor for each edge segment. In a similar
manner, filtering on size ensures that only those regions with a sufficient number of data
points (usually 4-5) to adequately support the fitting process are actually selected. The

regions passed by these filters are termed curve support regions. See Figure 5.

3.4 Circular Arc Fit

Associated with each support-region is an implicit curve, which best fits the constituent
data points of the region; and which, since regions are based upon constancy of curvature,
we take to be circular. The fit algorithm itself is adapted from Agin (8] In his paper, Agin

outlines a generalized eigenvalue method for fitting ellipses to data points. The parameters



of the curve are given by:
f(z,y) = Az + Bzy+ Cy* + Dz + Ey+ F =0

It is a simple matter to tailor this algorithm to the case of the circle, as a degenerate
form of ellipse. The rotation term disappears and the distinct parameters of the squared

terms are constrained to be identical, yielding:
[(z,y) = A(z*+¢y*)+ Bz+Cy+ D=0

Agin points out that f(z,y) may provide its own error function, in that point-to-curve
distances for points along the curve are zero. As distance from the curve increases so does
the magnitude of this error function. For a point within a small neighborhood of the curve,
the function is proportional to its perpendicular distance to the curv;a; and the gonst'a,hf of
proportionality is reciprocal to the magnitude of the gradient of the function. Moreover,
it is possible to choose constraints on the coefficients of the function such that the average
gradient is unity. The resulting error function is then directly related to the perpendicular

distance form point to curve. Thus, pointwise error for each (z;, y;) is given by:
&= Azl +9}) + Bz; + Cy; + D
while the aggregate error is:
E=3 & =Y [Alz} +9}) + Bri + Cyi + D)

Adopting the generalized eigenvalue solution method described by Agin results in cir-
cles, each of whose sum of squared perpendicular distances to its respective data points is
essentially minimal. Subsequent ordering of each set of data points by radial angle defines

the arc-limits of its respective circular arc descriptor.

Note, the resultant circular arc descriptors are completely independent of each other.

Each is treated as a satisfactory description of its local underlying support region alone.

10



In contrast to other approaches [1,2,3], no attempt is made to align (or smoothly join) a
descriptor with its neighbors across breakpoints. This is both for simplicity of computation
and because we view the current system more as the front-end to a comprehensive grouping

system than as a stand-alone system.

3.5 Descriptor Filtering

As mentioned above, each descriptor has computed for it a set of attributes which
includes: center-location, radius, arc-limits, strength, average-curvature, aggregate-error,
mean-fit-error, and rho-kappa-correspondence. The definitions of these attributes along

with plausible filterings are given as follows:

1. center-location (z.,y.)—center of fitted circular arc, may be used to select possibly

concentric descriptors;
2. radius (p)—radius of fitted circular arc, provides selection of arcs of similar curvature;

3. arc-limits (0, 0;)—counterclockwise ordering of the beginning and end respectively
of the fitted arc descriptor in terms of radial angle, may be used to select arcs based
upon that portion of the complete circle they represent, or in concert with radsus to

select based upon arc-length;

4. strength (I ||[VI||/n)—the average gradient magnitude of the underlying support

region, may be used to filter out descriptors of weaker edges;

5. average-curvature (L x/n)—average measured curvature in the underlying support
region, may be used to select descriptors whose measured region curvature is centered

about some value;

6. aggregate-error ():(\/ (zi — z.)? + (¥; — ¥.)? — p)?)—the unnormalized variance of the

data from the descriptor fit (this is equivalent to the function E that was minimized),

11



reflects the overall unsigned goodness of fit, and thus may be used to filter descriptors

accordingly;

7. mean-fit-error (Z/n)—the sum of squared errors normalized to the size of the region,

another filter for goodness of fit;

8. rho-kappa-correspondence (3 (1 — px)/n)—the correspondence of the curvature of the
descriptor fit to the average measured curvature in the underlying region, a signed
goodness of fit, which goes to 0 as the distribution of measured curvatures centers
on 1/p, an indication of the reliability of the curvature measure over the particular

region, and may be used to filter accordingly.

We have noted in a previous section that filtering on size is normally done prior to
fitting to ensure 2 minimum number of data points. Pre-filtering on support is also done,
usually in order that computational effort be expended only on the preferred descriptor
of each edge segment. Post-filtering, on the other hand, is available for all descriptor
attributes and in any combination. In this way it is possible to select only descriptors
satisfying a specified set of criteria. Since we view our system as a possible front-end to a

symbolic/token based grouping system, such descriptor filtering should prove useful.

4. EXAMPLES

We now present examples to illustrate the performance of the system in three dis-
tinct image domains: low-relief, high contrast imagery (Example 1); aerial photography
(Example 2); and natural scenes (Example 3).

4.1 Clock

The original 64 x 64 intensity image, shown in Figure 6(a), exhibits a number of distinct

smoothly curving features associated with the numerals and the edge of the clock. It also



contains some strictly linear features such as the flanges on which the numerals lie, as well
as the ends of the numerals themselves. It is thus provides a demonstration of system
performance with respect to both feature types. In addition, we will use our discussion of

this image to trace the progression of processing steps that the system employs.

The first step is edge extraction; Figure 6(b) is the result. What is sliown is the outline
of the edge regions, those pixels through which the zero-crossing contour passes. The edges
of the numeral three and its flange are quite good. The edges of the other flange and the
clock itself seem acceptable. The regions in the lower left area of the image, correspond
to edges of a clear circular face cover. Although it is difficult to see from the photograph,
their general shape and location are also acceptable. There are problems however with the
numeral two. The first of these has to do with the confounding of the upper part of the
numeral with the top edge of the image. This is simply a function of its proximity to the
image edge, and would disappear were the numeral positioned away from the edge. The
second problem occurs on the diagonal stroke, near the base of the two. Here we see that
the edge operator has smeared the right and left diagonal edges into one another. This
results as a combination of the size of the edge masks (we used 3 x 3 Prewitt masks), and
undersampling of the image (the diagonal stroke is barely four pixels wide at this point).
Obviously, this second problem could avoided by using a smaller edge mask and/or higher

sampling rate.

Figures 6(c) and 6(d) show two partitions of the edge regions based upon quantized
curvature, measured in the intensity image by the Kitchen/Rosenfeld operator. They
represent the unshifted and shifted versions, respectively, of a uniform quantization. Note
the differences between the two figures, particularly at the corners of the flanges. As stated,
the motivation behind overlapping partitions is to alleviate breakpoint artifacts induced
by the partitioning process itself. We see that while the partition associated with 6(c) has
placed breakpoints at what we might consider the intuitively correct positions—i.e., at the

corners, the partition of 6(d) has also correctly performed its task, smoothing over these
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breakpoints in its version. In Figures 6(e) and 6(f), we see these same partitions, with the
edge gradients overlaid. This gives a rough notion of the correspondence of the partition
boundaries to the grey-level curvature, in so much as one may consider such curvature

equivalent to the rate of change of the gradient direction.

After the determination of support, the partitions form the basis for the description
process. Figures 6(g) and 6(h) show these same partitions again respectively, but with their
corresponding arc descriptors fit to the curve support regions. In Figure 6(g), note that the
descriptors for the flanges, for the inner curve at the bottom right of the numeral three, and
for the edge of the clock all correspond quite well to the geometry of the underlying support
regions, as well as to our intuitive notions about the shapes of the objects themselves. The
same can be said for all descriptors associated with the numeral three in Figure 6(h). By
contrast, the descriptor for the outer curve of the three in Figure 6(g) may in fact conform
adequately to the geometry of the underlying region, given that our descriptor vocabulary
is limited to circular arcs; but, in terms of our ideas regarding the shape of a three, the
geometry of that region forces a description that can only be considered overly generalized.
On the other hand, the problems with description of numeral two are associated with the

edge extraction process and are discussed above in that connection.

Finally, in Figure 6(i) we see all arcs overlaid on the original edge regions, while Figure

6(j) shows these same arcs on the edge gradients.

4.2 Aerial Image

Figure 7(a) is 2 127x 127 intensity image that was reduced by averaging from a 256 x 256
section of a b/w aerial photograph. Figure 7(b) is the the outline of the corresponding
edge image—i.e., the edge regions extracted. Figure 7(c) shows these same edge regions
with all arc descriptors, having majority support and curve support regions with size > 5
pixels, overlaid. Results are definitely mixed and difficult to summarize, except to say that

the descriptive process fares only as well as the edge extraction process. Where the image
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structure is sufficiently well defined and at a scale which persists at the sampling rate, then
edge regions are well placed and the descriptors tend to correspond well to the shapes of
the actual underlying structures. This is the case in the upper regions of the image with
both the triangular and circular approach ramps, and especially the upper boundaries of
the road which runs vertically through the image. On the other hand, an area like the
lower boundary of the horizontal road is confounded with the nearby median, because of
their respective alignments with the sampling grid. This causes their edge regions to fuse
at points; because of this the corresponding descriptor can only represent a compromise

between the two structures.

Figures 7(d) and 7(e) represent the unshifted and shifted curvature partitions respec-
tively, with their corresponding arc descriptors overlaid. Figure 7(f) is the result of pre-
filtering for regions whose size > 15 pixels, and we see that it alleviates many of the
problems. This makes sense when we consider that for a structure to persist over a large
spatial extent with respect to our overlapping partitions means both that it is relatively
stable in terms of its curvature and that the underlying structure must be reasonably well
defined for the edge extraction process to have produced a coherent unit.

In Figure 7(g), we have overlaid the original set of arc descriptors on the edge gradients.
This provides a clearer sense of the relative consistency of the description process with the

underlying edge events, than does the overlay on the edge regions.

4.3 Road Scene

The order of figures for this example parallels closely that of the previous example.
Figure 8(a) is a 127 x 127 subimage of the green spectrum of an original 256 x 256 color
image a local road scene. Figure 8(b) is the corresponding edge image. Figure 8(c) is the
entire set of arc descriptors, with majority support and curve support regions with size > 5§

pixels, overlaid on the edge image.

The unshifted and shifted curvature partitions are represented in Figures 8(d) and 8(e)



respectively. It appears that most of the macro-structure of the image is captured in the
unshifted partition, Figure 8(d). Worth noting are the descriptor along the right edge
of the road and the long horizontal arc in the middle of the image just at the tree/road
boundary. The latter fits its region extremely well; equally important is the fact that they
both satisfy our notions about the character of the underlying structure. Also of interest
is the large circular arc at the upper-right tree/sky boundary. While there is not a tight
correspondence between this descriptor and the geometry of its support region, there is
arguably a real sense in which it captures the overall tendency/shape of the underlying
image structure. The shifted version 8(e), on the other hand, consist primarily of foliage
detail in the interior regions of the trees. There are notable exceptions however in the
upper-left and middle portions of the foliage/sky boundary, where medium sized arcs
of this shifted partition serve to terminate long diagonal and quasi-vertical lines of the

boundary.
Figure 8(f), like its counterpart Figure 7(f), demonstrates the effect of pre-filtering for

larger regions, this time ones whose size > 10 pixels. We see many of the interior foliage
descriptors disappear, but the most of the important tree/sky and tree/road boundary
descriptors remain. Finally, Figure 8(g) establishes the same descriptor/edge-gradient

correspondence as Figure 7(g).

8. CONCLUSIONS

We have presented a method to derive circular arc descriptors for discrete segments of
edge contours. Each descriptor is local and independent—summarizing the planar distri-
bution only of that region which supports it. Descriptors possess attributes, and filtering
mechanisms may be employed in order to facilitate their use as primitives by subsequent
grouping processes. The advantages of the algorithm include its simple local character and

the fact that it is robust in the face of moderate amounts of noise. This latter is due in
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part to the coarse partitioning of the output curvature measure .
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Figure 1 Kitchen/Rosenfeld Curvature Operator. Gives the turning rate of the
gradient, about a particular pixel, projected along the idealized edge. This can

be shown to be equivalent to the curvature of the iso-intensity contour passing
through the pixel.
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Figure 3 Example of default uniform linear quantization of grey-level curvature.
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Figure 4 Voting scheme. Each pixel votes to support whichever region is longer
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Figure 5 Region filtering.
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Figure 6(a) Clock image: original intensity data.
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Figure 6(b) Clock image: edge regions.
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Figure 6(c) Clock image: unshifted support regions.
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Figure 6(d) Clock image: support regions, shifted 0.5.
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Figure 6(e) Clock image: edge gradients on unshifted regions.

29



[ T
-.hb——p-——-—-PF——-—\
A ]
77 Emn
-
/7—~_~____________J_b_p__________ﬁ—_y_rgr\
_NW—U AJEJE JH 00 200 TN N A A T A A AN A VR O A A AR A R AR AR R A O 3
=
4
51
N YT
3
e md
- )
=, B
4 L1 0T
-+
B )
- E
™ Wﬁt
N
O
E .—” U\\—m“
-v—v_u'_.-.\\
m AN Y v
_;--.._ )4——_-.~“H.._.—.._4

Figure 6(f) Clock image: edge gradients on shifted regions.
30




1

1 1

Figure 6(g) Clock image: arc descriptors on unshifted support regions.
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Figure 6(h) Clock image: arc descriptors on shifted support regions.
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Figure 6(i) Clock image: all arcs on edge pixels.
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Figure 6(j) Clock image: all arcs on edge gradients.
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Figure 7(a) Aerial image: original intensity data.
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Figure 7(c) Aerial image: arc descriptors whose support regions have more
than 5 pixels, overlaid on edge pixels.

37



Figure 7(d) Aerial image: arcs on unshifted support regions.
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Figure 7(e) Aerial image: arcs on shifted support regions (shifted by 0.5).
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Figure 7(f) Aerial image: arcs whose support regions have more than 15 pixels,

overlaid on edge pixels.
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Figure 7(g) Aerial image: arcs on edge gradients.
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Figure 8(a) Road scene: original intensity data.
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e 8(b) Road scene: edge regions.
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Figure 8(c) Road scene: arcs on edge pixels.
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Figure 8(d) Road scene: arcs on unshifted support regions.
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Figure 8(e) Road scene: arcs on shifted support regions (shifted by 0.5).
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Figure 8(f) Road scene: arcs whose support regions have more than 10 pixels,
overlaid on edge pixels.
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