@

F
.

Domain Testing and Linear Fault Detection
Steven J. Zeil
COINS Technical Report 86-38

August 1986

Software Development Laboratory
Computer and Information Science Department
University of Massachusetts
Ambherst, Massachusetts 01003

This work was supported by grants DCR-8404217 and DCR-8318776 from the

National Science Foundation,
84M103 from Control Data Corporation, and RADC grant F30602-86-C-0001.

Abstract

Domain testing is an approach to software testing that attempts to find errors in the flow of
control through a program. Three forms of domain testing have been proposed, all dealing with
the detection of linear errors in linear functions. This paper examines the competing forms of
domain testing using perturbation analysis, a technique for measuring the error detection capacity
of a set of test data. The different forms of domain testing are shown to be closer in error detection
ability than had been supposed and may all be considered effective for finding linear errors in linear
predicate functions. A simple extension is proposed which allows them to detect linear errors in
non-linear predicate functions, at little additional cost. A new algorithm is proposed that shifts the
emphasis from linear errors to linear faults, thereby allowing domain testing to take into account
the interactions among tests for different paths.

-
0

@

®

1. Introduction

Because computer softwar2 can be applied to such a wide range of applications, the penalties
for failing to detect software faults range across a broad spectrum from negligible to disastrous.
Consequently, the degree of confidence required from testing procedures will vary widely. While
some projects may justifiably proceed with informal, ad hoc testing procedures, others will require
far more rigorous testing with the eventual goal of making strong statements about confidence
gained in the the program code. Of course, nothing short of exhaustive testing of all possible
inputs can provide completely reliable testin;; for all programs. Consequently, techniques that can
be shown to capture useful classes of errors in common classes of programs would be quite valuable.

This paper is concerned with a set of test ng strategies, the domain testing strategies, intended
to catch faults affecting the flow of control through a program - faults that cause the “wrong
branch” to be taken during execution. This paper examines the arguments that have been used to
justify these strategies and shows why those arguments were invalid. The domain testing strategies
are then examined using the perturbation testing criteria (21,22,23] and are shown to satisfy the
original claims made regarding their effectiveness. The perturbational analysis also permits the
extension of the domain techniques to a wider range of software and permits the construction of
an integrated testing strategy capable of detecting most errors in program computations as well as
errors in control flow.

Section II provides definitions for the terminology that will be employed throughout this paper.
Section III reviews the domain testing methods and Section IV examines the arguments that have
been advanced in favor of these methods’ use and shows why those arguments may be invalid.
Section V presents an error-b:used model with which the use of domain testing can be justified and
from which extensions of domain testing to non-linear computations can be obtained. Finally, Sec-
tion VI shifts the emphasis from errors to faults, introducing a new algorithm that takes advantage

of tests across multiple paths .0 reduce the total number of tests while achieving comparable levels
of error detection.

2. Definitions

2.1 Program Concepts

In most programs, there are many possible sequences of statements that may be traversed from
the start of the program to its end. Each such sequence is called a path through the program. A
subsequence of a path will be called a subpath. When a subpath begins at the start of the program,
it will be called an initial subpath. (A path may be considered to be a special case of an initial
subpath.)

We can associate with each initial subpath a set of inputs that cause execution of the program to
follow that subpath. This set of inputs will be called the subpath domain. We can also associate with
each subpath (not necessarily initial) a transformation representing the effect upon the program
variables of executing that subpath. This transformation, a mapping from the set of inputs and
the old set of values for the program variables to a new set of values for the program variables, will

input X, Y;
if X >= 0. then

Z:=Y-X;

D :=0.;

while Z > D loop
D:=D+1,;

end loop;

if X <= D then
if Y <= 1.001%D then

Figure 1: Sample Program

1 2 T

Figure 2: Subpath Domain

be called the subpath computation. The path computation corresponding to a complete execution
of the program is somewhat more limited, consisting of the mapping from the program’s inputs to
the program’s outputs.

As an example of the determination of subpath domains and computations, consider the pro-
gram fragment in Figure 1. If we consider the subpath that enters the “then” portion of the
outermost if statement, exits the while loop after one pass, and enters the “then” portion of the
final if, then the subpath domain would be the shaded area shown in Figure 2, defined by the con-
junction of the conditionsz > 0, y—~z > 0,y~z < 1, and z < 1. where z and y denote the first two
numbers in the program’s input stream. The subpath computation, which maps zxyxXxY xZx D
onto X X Y x Z x D, would be represented by the function f(z,y,X,Y, Z,D) = (z,y,y — z,1.).
Subpath domains and computations can often be determined automatically by symbolic execution
of the subpath [4,6]. We will return to this path domain as an example several times during this

paper.

L4

K]

Figure 3: Input Space Partition

Because, in the absence of concurrency, there is a unique path traversed by any executions
using the same input values, the intersection of the domains of any two distinct paths is empty.
Similarly, the intersection of the subpath domains for any two initial subpaths, neither of which
is a subsequence of the other, is also empty. Thus the set of subpath domains for the paths in
a program form a partition of the program’s input space. Figure 3 shows the structure of this
partition for the sample program. Each of the diagonal lines represents a constraint imposed by
the while statement, each of the vertical lines except the one at z = O represents a constraint
imposed by the if X <= D statement, and the horizontal lines represent constraints imposed by
the final if statement. Additional conditional statements appearing later in the source code may
impose further divisions of the input space. Additional input statements would add new coordinate
axes.

2.2 Faults and Errors

It is useful to separate the ideas of defects in the source code from the resulting defects in the
program function. Defects in the source code will be called faults. An error is a defect in the
function computed by the program. Faults may cause errors, but are not themselves considered
to be errors. In fact, it may be said that the goal of testing is to choose data so that any faults
present in the program result in errors.

A classification of errors with strong intuitive appeal is the division into domain and computation
errors first proposed by Howden in [12|. A program is said to exhibit a domain error when incorrect
output is generated due to executing the wrong path through a program. A computation error
occurs when the correct path through the program is taken, but the output is incorrect because
of faults in the computations along that path. This definition differs from the original formal
definition in [12] only in that the computation performed during a domain error is not here required
to correspond to a correct computation for any other inputs, a relaxation that is consistent with
the ways in which domain errors have been treated in [6,17,18] and that also appears to be more
realistic for practical programming languages.

Identifying a particular error as belonging one of these two error classes depends upon the
ability to determine whether or not the “correct path” was executed. This in turn implies the
existence of a correct version of the program against which a comparison can be made. There are,
of course, an infinite number of correct programs for any computable function. If a correct program
is chosen that bears little resemblance to the one being tested, then the definitions of domain and
computation errors become essentially meaningless. If we assume, however, that the program being
tested bears a reasonable resemblance to some correct version, then it is likely that we will have
little trouble with the domain error/computation error classification. If an error can be associated
with the execution of the wrong path through some correct program lying within a neighborhood
of programs similar to the one being tested, then it is a domain error.! If it can be associated with
the proper path through such a correct program, then it is a computation error. The two classes of
errors may not be disjoint, but that simply means that some errors may be detectable using either
computation- or domain-oriented testing methods.

A domain error may arise from a predicate fault, where the fault exists in a conditional statement,
or from an assignment fault, where the fault exists in a computation that affects a later conditional
statement.

Domain errors can be further broken down into two classes, path selection errors and missing
path errors. These are distinguished by whether a path through the program exists that, had it
been taken, would have produced correct output. Where such a path exists, the error is considered
to be a path selection error. Where the conditional statement and computations associated with
part of the input data domain are missing entirely, it is called a missing path error [12,18]. It is,
in general, undecidable whether a program is missing a path. In practice, this appears to be most
difficult when the missing conditional statement is an equality.? Test data which captures path
selection errors should catch most missing path errors where the missing condition is an inequality,
since these may be viewed as limiting cases of path selection errors in the model presented in the
succeeding sections. This paper is therefore primarily concerned with path selection errors.

'The idea that testing can be viewed in terms of neighborhoods of similar programs was introduced by Budd and
Angluin [2]. The “competent programmer hypothesis® of mutation testing [1,3,8] is one example of this approach.
A formal basis for this “neighborhood paradigm” was established by Gourlay in [10], and its relation to Howden’s
definitions in [12] is noted there.

“w__n

2In this paper, the operators and “#" are both referred to as equalities in order to distinguish them from the
* inequalities “<”, “<* “>” and “>”".

-

3. Domain Testing

Proposed testing procedures for catching path selection errors have ranged from simple, intu-
itively motivated strategies as in [9,13] to strategies that offer provably high reliability but whose
application is limited to special classes of programs. Chief among the latter are the domain testing
strategies, which are characterized by the selection of test points according to geometric character-
istics of a path domain. This section will review the domain testing method as proposed by Cohen
and White (7,18] and as modified by Clarke, Hassell, and Richardson 5]

Domain testing is intended to choose numerical data that will reliably test a previously selected
path for path selection errors. The domain testing method does not specify how the test paths will
be chosen, but a number of path selection strategies have appeared in the literature [11,14,15,16].
Attempting to test every path through the program would usually be impractical, since even very
simple programs can have a prohibitively large number of paths.

Domain testing has been largely limited to programs in which the borders of the path domains
are linear functions of the program inputs, which may be integers or real numbers. Cohen and
White do speculate on possible extensions to test polynomial borders (7,18], but the possibility is
not examined in much detail, nor is a satisfactory procedure ever derived.

3.1 The Nx1 Strategy

As noted earlier, each path from the start of a program may be associated with a (possibly
empty) path domain. Each conditional branch encountered during execution imposes some restric-
tion on the path domain. The conjunction of all these restrictions is called the path condition. The
path domain is therefore the set of all inputs for which the path condition is true.

In programs where all branching and looping depends solely on numerical variables, the path
condition takes the form of a system of simultaneous inequalities (and equalities) representing
the necessary and sufficient condition for following that path. If, as we shall henceforth assume
without loss of generality, the predicates encountered in the conditional statements are simple
relational expressions (no AND’s, OR’s or other boolean operators), the path domain will be a
convex polyhedron in N-space, where N is the number of inputs to the program.® Referring
back to Figures 1 and 2, for example, because the input space has only two variables, the “N-
dimensional polyhedron” representing this path domain becomes a planar polygon and the “faces”
of the polyhedron become line segments. Each border segment (face) of the polyhedron is generated
by the execution of some conditional statement. If that conditional statement occurs within a loop,
it may be responsible for several border segments, each corresponding to a different execution of
the same statement.

Domain testing is concerned with the possibility that one or more border segments of the path
domain may have shifted away from the correct position, due to an error in the program predicate

3Cohen and White assume that an implicit bound exists on all inputs, by virtue of their being represented in a
finite number of bite. They include this restriction on the input values as an explicit part of the path condition, thus
guaranteeing that all path domains will be closed. Clarke et al., however, allow the inputs to range over +o0.

off

ont Ty < 1.001,/ °™

z2>0 y—-z>0

Figure 4: Nx1 Domain Test

or in the computations affecting that predicate. Domain testing focuses, one at a time, upon each
of the border segments for a path being tested. That border segment is referred to as the given
border, to distinguish it from the correct border whose position is initially unknown and which may
or may not be identical to the given border, depending on whether or not a fault exists. Thus
there is a critical region of inputs that satisfy one, but not both, of the constraints represented by
the given and the correct borders. Because taking the wrong path is presumed to be a sufficient
condition for detection of the error,® each point in that region represents an input for which a
domain error occurs. Intuitively then, a strategy for detecting domain errors must choose points
close to the borders so that even a small shift in a border’s position would cause at least one test
point to fall within the critical region.

For a given test path requiring N inputs per execution and therefore having N numeric inputs
per input point, White and Cohen propose choosing N points on each border segment at or near
the vertices and one point just slightly off that segment, on the open side of the border. These
two sets of points are referred to as the on and off points, respectively. By choosing the off point
very close to the border, they argue that all but the smallest shifts in the predicate function will
be detected.

As an example of this strategy, henceforth referred to as the N x 1 strategy, let us assume that
we wish to perform domain testing on the border formed by the final statement in Figure 1 using a
path reaching this statement after a single iteration of the loop and passing on to the “then” portion
of this statement. If there are no subsequent conditional statements reached along this path, then
the path domain is as shown in Figure 4. The Figure shows the on points, in this case located at
(0,1.001) and (1,1.001), and the off point at (0.5,1.001 + ¢) where ¢ is some small positive number.

Successful execution of these tests clearly places severe restrictions on the possible positions
in which the correct border could occur, if it is not actually identical to the given border. The
correct border cannot drop below the given border at any point within the subpath domain without
crossing one of the on points, causing execution of that test to proceed along an incorrect path. If

“White and Cohen argue that chances of a given input producing identical output when adjacent domains compute
different functions is quite small [18]. Clarke et al. make the additional argument that symbolic execution of the
correct and incorrect paths can often be used to detect such occurrences |5].

-

Figure 5: Border Shift Region for Nx1

the correct border lies entirely above the given one, the distance between the two must be small
enough that the correct border does not cross the off point, or else execution of that point would
follow an incorrect path. Hence there is a relatively small region of the input space in which the
correct border could lie, if the given one is indeed incorrect.

This region is quantified in [5,19] as follows: Consider the set of constraints adjacent to the
given border segment — i.e., those constraints that intersect the given border segment at one or
more of its vertices. Define the border shift region as the intersection of the set of points satisfying
all these adjacent constraints with the set of points through which the given border could be shifted
without crossing any of the on or off points. Define the Border Shift Error (BSE) as the volume
of this border shift region. In Figu-e 4, the constraints adjacent to the given border are y — z < 1
and z < 1; they are not visible in the Figure because the border segments they contribute are
extremely short. The border shift region for this choice of test points is shown as the shaded region

in Figure 5. The dotted lines indicate the adjacent constraints that are not border segments for
the path domain.

3.2 The NxN and VxV Strategies

Clarke et al. show that the N x 1 strategy allows the BSE to be infinite [5]. To make this less
likely, they recommend that the N test points chosen on the border enclose the centroid of the
border segment. They also define two new domain testing strategies — the N x N strategy in which
N points each are chosen on and off the border, each point at or near a vertex, and the V x V
strategy in which a test point is chosen exactly on and just off each of the vertices of the border
segment. These strategies and their border shift region are illustrated in Figure 6.° Note that the

*For N = 2 the N x N and V x V strategies are identical. For N > 2, the number of vertices formed by the
intersection of the border segments may be greater than N and hence the V x V strategy could require more test
points than would the N x N strategy. In a three-dimensional input space, for example, the border segments would
be planar polygons with arbitrary numbers of vertices.

Figure 6: NxN Domain Test

same on points are used by the N x 1 and N x N strategies. It is only in the choice of off points
that they differ.

4. The Border Shift Error

Although the BSE has been the major focus of previous authors’ arguments for the power of
domain testing, the choice of the BSE itself has been largely unmotivated. The desirability of
minimizing the BSE is taken as intuitively obvious. One can conceiviibly advance two arguments
in favor of using the BSE. The first argument is that removing one or more points from the border
shift region implies detecting any errors that would cause the correct horder to pass through those
points. Hence reducing the BSE nieans reducing the number of possible errors and so the increasing
the confidence in the correctness of the given border. By this argument the BSE is a measure of
correctness for the given border. The second argument says that each point in the border shift
region represents an input for which an incorrect path through the program will be taken, probably
resulting in an error. Reducing the number of such points reduces the probability that an arbitrary
input will result in such an error. By this argument the BSE is a measure of program reliability.

This section will investigate each of these possible claims further. It will be shown that, in fact,
neither argument is correct. The BSE fails as a measure of correctness because it does not really
correlate with the number of possible errors in the given border. It fails as a measure of reliability
because it fails to consider all relevant constraints on the path domai1 and because it fails to take
into account the interactions that occur when more than one path i tested passing through the
same sets of statements (and hence passing through the same faults in the program code).

4.1 The BSE as a measure of correctness

Clearly the BSE does have some bearing on the number of possible errors in the given border. If
we begin with a given set of test points, determine the BSE for those points and then, by addition of

L3

om YUTT001, On

20 y—-z>0

Figure 7: BSE versus Possible Errors

one more test point, reduce that BSE, it is clear that we have eliminated some errors from possible
existence. In this situation, ho'vever, the border shift region after adding the final test is a subset
of the border shift region prior to adding that test. When comparing more diverse collections of
test points, such as the N x 1 and N x N test sets, such subset relations may not always hold.

When comparing two sets of test points whose border shift regions are not related by subsetting,
it is possible for the border shift region with the ‘arger volume (BSE) to permit the existence of
fewer possible errors. This can occur because th-re may be, on average, fewer possible correct
borders passing through any given point in the laiger border shift region than through any given
point in the smaller one. To illustrate this possibility, consider Figure 7. The border shift region
for the choice of test points in this Figure is the entire region enclosed by the given border and
the adjacent constraints, exceft for the points on the y — =z < 1 border itself. The BSE for this
choice of test points is therefor: clearly larger than the BSE for Figure 5. Furthermore, note that
sliding the off point in Figure 7 closer to ony leaves the border shift region, and hence the BSE,
unchanged.

Consider now the probability that an arbitrary error, and hence an arbitrary position for the
correct border, would go undet:cted by the two sets of test points in Figures 5 and 7. In Figure 7,
a correct border position different from the given one will go undetected only if it intersects the
y — = < 1 border between thc: on; and off points. By sliding the off point closer to ony, this
probability can be made arbitrerily small. In particular, it can be made smaller than the probability
of an arbitrary error going undetected in Figure 5. Since the BSE for Figure 7 is larger than that
in Figure 5, it is clear that the BSE does not correlate with the number (or fraction) of possible
errors detected by a set of tests. Section 5. will develop this idea more fully by directly utilizing
the number of possible errors that go undetected as a measure of test quality.

Oﬂ-l ;. ey e ~~M-.. 'Oﬁz
ony y < 0.99 al on2
z>0 y—-z>0

Figure 8: New NxIN Test

4.2 The BSE as a measure of reliability

The argument that the BSE can be viewed as a measure of reliability turns upon the idea that
the points in the border shift region represent the set of inputs for which an incorrect path will
be taken. This idea is, in fact, incorrect. Suppose that the final if statement in the program
in Figure 1 were replaced by “if Y <= 0.99+D then ...”. The change between this predicate
and the predicate “Y <= 1.001%D” employed in the earlier examples is too small to be visible in
Figures 4 through 7. What is changed is that the constraints adjacent to the given border in those
Figures will now be z > 0 and y — z > O rather than z < 1 and y — z < 1. Figure 8 shows the
N x N test points and their border shift region for this new case. (As before, the dotted lines show
part of the adjacent constraints that are used to compute the off point positions and the border
shift region, although not part of the actual border segment for this path subdomain.)

The rather small border shift region shown in this Figure is deceptive. Since the given border is
only reached by tests that satisfy the conditionsy -z < land z < 1aswellasz > 0 andy—z >0,
it is clear that some of the points shown in the border shift region will never cause this border to
be tested. They may reach the same conditional statement, but they will do so only along another
path, on which the predicate will have a completely different interpretation and thus will form a
different border segment.

Of particular interest is the fact that neither of the off points reach the given border. It follows
that any position of the correct border that satisfies the two on points will be accepted by this set of
tests. The true set of inputs through which the given border might be shifted without detection by
this test set, a region which we shall call call the untested input region, is therefore the shaded area
shown in Figure 9. Clearly the BSE based upon the border shift region drastically underestimates
the size of the untested input region in this example.

The difference between the border shift region and the untested input region is important, not
only because it illustrates problems with the BSE, but also because it illustrates a problem with the
domain testing strategies in [5,18]. The off points in the above example were useless as detectors
of border shifts. The requirement that these points satisfy the constraints adjacent to the given
border is simply not strong enough. Other constraints must also be satisfied, even though they are
not adjacent to the given border and might not contribute border segments to the domain of the

10

P

y—-z<1 <1

offi o/ i |e ol

on; - y S 099 ony

z20 y—-z>0

Figure 9: Untested Input Region

path being tested.

The basic problem is the formulation of domain testing as a means for testing paths rather
than as a means for testing initial subpaths. Returning to Figure 3, for example, try selecting an
arbitrary path domain and then selecting any one of the border segments for that domain to serve
as a given border for domain testing. Now, which of the constraints denoted by the other line
segments in that Figure must be satisfied by any test points for your chosen border?

In fact, the question can no longer be answered once our view of these borders has been reduced
to individual path domains. The key to the answer is to consider the the subpath domain for the
initial subpath leading up to, but not yet including, the given border to be tested. The given border
is then not so much a border of a path domain (Figures 7 and 8) as it is a division of the current
subpath domain (Figure 9). The set of constraints that must be satisfied by any and all tests of
the given border is then simply the set of constraints defining the domain of the initial subpath
just prior to imposing the given border. Any constraints that occur after the imposition of the
given border clearly cannot affect the position of that border. If the given border is erroneous, an
input point either does or does no take an incorrect path due to that border shift — any later
constraints simply determine whicl correct or which incorrect path is taken, but not whether the
path taken is correct or incorrect.

This can lead to a significant savings in the number of test points used by domain testing over a
number of paths. In Figure 3, for example, the constraint z > 0 is split into many small segments by
the other borders. Domain testing as defined in [5,18] would test each of these segments separately,
choosing 3 or 4 tests per segment. In the initial subpath view, however, since this is the first
division of the entire input domain, the entire border would be tested as a single unit at no loss in
the ability to detect shifts of this border.

If domain testing is redefined using this initial subpath view, and if the BSE is redefined to
be the volume of the untested input region rather than of the border shift region, would the
BSE then be a reasonable measure of the program’s reliability? The answer is still no, because
the BSE would still fail to take into account the interactions among different paths through the
same statements. A given border corresponds to some conditional statement in the code and to
some series of computations that affected the evaluation of that condition on the chosen initial
subpath. Since most statements in a typical program can be reached along more than one path,

11

P AR)

r

Figure 10: Interactions Among Paths

tests conducted within one subpath domain affect our confidence in the borders appearing in other
path domains. Thus the BSE could only be regarded as a valid measure of the program’s reliability
if we could somehow integrate it across all domains. For example, suppose that we are interested
only in possible predicate faults in the statement “if Y <= 0.99 then” and have carried out the
tests shown in Figure 5. Then we might expect a global view of the uatested input regions for this
program similar to that shown in Figure 10, where the horizontal bor jer segments are all imposed
by executions of that statement on different paths and the shaded regions indicate untested input
regions after the tests in Figure 5. It should be clear from this global picture that any subsequent
domain tests of the horizontal borders in other path domains would be of questionable worth,
although the BSE evaluated separately for each domain would argue for using the same pattern of
test points in each path domain. In more complicated cases where the untested input regions for
the different paths were less closely related, we would have the additional problem that a set of
test points that produced a small untested input region on the path being tested might leave large
untested regions in other paths, while a set of tests that did not do as well on the path being tested
might yield smaller untested input regions in the other paths. The BSE is simply not designed to
take such interactions among paths into account.

In this section we have seen three problems with the BSE measure as a means of justifying
domain testing. Although the BSE is not the only measure that has been used to evaluate domain
testing, the others, the Domain Error Magnitude [18] and the Maximum Angular Displacement [19]

12

"

may be viewed as approximations to the BSE and are subject to the same problems. In the next
Section we will address the first problem, the lack of correlation between the BSE and the number
of possible errors left untested by developing a new measure of test effectiveness based directly
upon the idea that one set of t:sts is better than another if it detects a larger number of possible
errors. A solution to second problem, the failure to consider all relevant constraints, has already
been provided by switching doinain testing to an initial subpath view. The third problem, failure
to consider interactions among paths, will be addressed in Section 6. by changing the emphasis
from the elimination of possible errors to the elimination of possible faults.

5. Domain Testing and Error Detection

This Section examines the a»ility of the domain testing strategies to detect errors. The criterion
for test data selection to be uscd here can be summed up by the idea that one set of test data is
better than another if it detect:: more possible errors. A model will be developed that permits one
to “count” the possible errors t 1at would have been detected or left undetected by an arbitrary set
of test data. This model is based upon the perturbation analysis described in [21,23].

Initially, the set of errors to be considered will be all those errors that cause a correct border
that is linear in the program ir puts to be transformed into an incorrect given border that is also
linear in the program inputs. There are two forms of such errors. The first is the border shift
as discussed in the previous Se::tion. The second is the substitution of one relational operator for
another. Of course, combinations of these two forms are also possible.

Domain testing has been cor cerned with both of these forms of error, even though the discussion
in the previous sections of this paper and most of the discussion in [5,18] has focused entirely on
border shifts. For example, whcn the given border is an equality, all forms of domain testing require
an extra set of off points so tha. off points are chosen on both sides of the border, effectively giving
us N x (1+1), N x (N+ N),and V x (V + V) strategies. These extra off points would not be
required to detect border shifts. for the N on points uniquely define the hyperplane containing the
border segment and so would suffice to detect any border shifts not accompanied by a change of
relational operator.

When the given border is an inequality, most changes of relational operator can be represented
as border shifts. For example, a substitution of “<” for “<” can be considered to be a shift of
the border by a very small distance. The one change of relational operator that cannot be treated
as a border shift would be the replacement of an inequality by an equality. Interestingly enough,
this substitution is not detected by any of the domain testing strategies. For example, if the given
border is imposed by the constraint ezp, < exp;, the various domain testing strategies will choose
on points for which exp; = ezp; and off points for which ezp; > ezp;, but will not choose points
for which ezp; < exp,. The resulting set of tests will thus not be able to tell if the correct border
should have been ezp; = ezpa.

This problem is easily remedied by requiring at least one of the on points to be moved slightly
off of the border to the accepted side (i.e. opposite the side of the border on which the off points are
chosen). We will assume in the remainder of this paper that this requirement is imposed, although

13

we shall not usually mention it explicitly.® Thus the remainder of the analysis will concentrate
upon border shifts.

5.1 An Error-Space Model For Domain Errors

Consider now an initial subpath leading up to a predicate. Let the set of inputs for that
path be denoted by Z with the individual elements of # denoted by z;. Let T(Z) relop O be the
constraint imposed by the correct border expected from that predicate and let T'(Z) relop O be the
constraint imposed by the given border actually formed by that predicate, where relop is one of
{<,<,>,2,=,#}. Since we are assuming that both T and T' are linear, the border shift can be
represented by the linear function formed by their difference:

e=T -T. (l)

Because e is linear in the program inputs, it can be written as

N
e(Z) = ap + Z ;T (2)

The vector & can then be regarded as the coordinates of a point in an error space whose coordinate
axes are the functions 1 and z;,{ = 1...N. Each point in this space denotes a distinct error that
could be added to some correct border to yield the given border. The origin of this space represents
the special case where the given and correct borders are identical, so that no actual error exists.

It is often convenient to think of e as a vector in the error space, having both a size and a
direction:

e(z) = aé(z) (3)
where ¢ is a unit-length vector in the error space and is considered to be the direction of ¢, and «
is then the size of e. The reason for dividing e in this manner is that the reasons why a border shift
does or does not result in a domain error for a given test can be divided into size-independent and
size-dependent cases.

For the size-independent case, if the direction of the border shift is such that é(Zo) = 0 for some
test Zo, then that border shift will not result in a domain error, since T'(z) = T'(Z). If é(Z) = 0 for
all Z in the subpath domain, then the path is said to be blind to the error direction é [21]. This can
occur only because the subpath domain has previously been restricted by one or more conditional
statements containing linear equality predicates f;(Z) = 0 such that é can be formed from a linear
combination of the f;. Since such error directions can never result in a domain error, they can be
safely ignored.

The size-dependent case is more interesting. Suppose, for example, that the given border
constraint is z; — z2 > 0, but that the correct border is z; > 0. The border shift, then, is of the

®The justification for ignoring this requirement in the analysis that follows will actually be provided in Section 5.3.

14

re

form az; with @ = —1. If we test the given border with (z1,z2) = (1.0,0.5), no domain error
results because the border shift simply wasn’t big enough on that test. Had the magnitude of «
been larger, a domain error could have occurred. Thus a test can be said to constrain the size of
possible errors, such that errors of sufficient size get detected while smaller errors go undetected.

The constraint imposed by a test is sensitive to the sign of a. In the example above, any errors
of the form az, would be detected if a < —2; positive values of o remain unconstrained. For any
error direction ¢, we will say that ¢ is unbounded after a set of tests if all errors of the form aé
would be undetected by those tests; we will say that € is doubly bounded if there exist constants
¢1 £ 0,¢c2 > 0 such that errors of the form aé are undetected only when ¢; < a < cz2; we will say
that é is singly bounded if ¢ is not doubly bounded and there exists a constant ¢1 2 0 such that
errors of the form aé are undetected only when & < ¢, or only when a > —¢;.

We are now in a position to specify a criterion for test data selection that will favor those test
sets that leave the smallest number of possible errors undetected. Since tests can be viewed as
constraining the set of errors that go undetected, we can anticipate computing the portion of the
error space consisting of errors that would have escaped detection with a given set if tests. Call this
set of errors the untested error region. Since each point in the error space corresponds to a different
error, the simplest measure of the “number of possible errors” that go undetected would be the
volume of the untested error region. This measure is too crude, however, for two reasons. First, if
any error directions are not doubly bounded, then the volume is infinite. In fact, we shall see that,
for any path, there is always at least one direction that cannot be doubly bounded, so some means
of distinguishing among these various infinite volumes is necessary. Second, if that problem did not
exist, then if any error direction é were doubly bounded such that aé went undetected only when
0 < & <0, or simply o = 0, then all volumes would be zero no matter how well or how poorly the
other error directions were bounded.

To resolve the problem of infinite volumes, we shall say that one set of test points is considered
better than another if there ezists an ry such that for all ¥ > ry, the portion of the untested error
region for the first test set lying within a radius r of the origin has a smaller volume than the portion
of the untested error region for the other test set lying within that radius of the origin. To resolve
the problem of zero volumes, we shall stipulate that, for the purpose of comparing two test sets,
any error directions that are doubly bounded with a = 0 will be treated as if they were bounded
only by —¢ < a < ¢, where ¢ is an arbitrarily small positive number.

The following theorem, a special case of the one presented in [22,24], forms the basis for relating
this criterion for comparing test sets to the earlier discussion of how a set of tests can be viewed
as imposing constraints upon the untested error region.

Theorem 1 Given a border T'(z) op) O that has been tested with inputs °, an error & in T' fails
to cause a domain error iff

&z =0 (4)
(& é) opy (T'(2°)/&20(2°)) (5)

15

| opy | T'(2°) op1 0 | aps
L] e [<
false
true
false
true
false
true
false
true
false
frue
false

HINIAA AIVIV VS

I AIVIAV VIAIV A

HH

Table 1: Operators for Theorem 1

where opy and ops are given in Table I and where éy is the unigue unit-length vector such that
é;0(2%) > 0 and, for all & orthogonal to égn, é(z%) =o.

Proof: If equation 4 is true, then clearly no domain error can result from this error in the
border because no border shift occurs at that test point. If, however, the error in the border
does result in some border shift, then a domain error results iff the shift is large enough that
the given and correct borders take on different truth values on this test.

Since the given border is T'(Z) opy 0, a domain error results iff T'(z°) opy O and
T(z°) opy O are different. We may therefore state that a domain error fails to occur exactly
when

(T'(z°) op1 0) & (T(z°) op1 0).

The correct border T is unknown, but from the definition of & in equation 1 we have that a
domain error occurs when

(T'(z°) opy 0) & (T'(2°) — &(2°) ops 0).
or, equivalently, when
&(z°) opz T'(2") (6)

where opy is given by Table 1 (depending upon the value of T'(z°) opy 0). It is worth
noting that, even if & and T" are not linear functions of Z, equation 6 is nonetheless a linear
constraint on the error space containing & as long as & can be written as a linear combination
of linearly independent functions (as, for example, in equation 2).

16

]

(L]

Now consider the error direction é,+, whose existence is guaranteed by the fact that
&(z°) # 0 and which can be shown to be given by

N - afr=0Va 7=
ép(2) =) &(2°)é(2)/c (7)
i
where the é; are the linearly independent functions chosen as the coordinate axes ot the
error space and where the normalization constant ¢ is given by

= 52(=0
c= Z é;(z0).
i
The error € can be written as a linear combination of €, and some direction é orthogonal
t«O é’l):
€= (§° ézu)é,u + (é' é)é

Since ¢é is orthogonal to é,1, we have that é(Z°) = 0 and therefore
&(z°) = (8- &g0)ém (2°).
Substituting into equation 6, we have that
(2 &gn)épn(2°) opy T'(2°)

and, since é,0(2°%) > 0, we get

(& &g0) op (T'(2°)/220(2%)),

proving the theorem.

The first point of interest provided by Theorem 1 is that the constraint on the error space
imposed by any single test is a simple linear constraint. An error lies in the untested error region
if and only if it satisfies these constraints for all tests performed so far. The system of linear
constraints imposed by repeated use of equation 5 for each test can therefore be used to determine
the geometry of the untested error region.

Another point of interest in this theorem is that equation 5 can be interpreted as stating that
& goes undetected when its component along the direction é0 is no larger than |T'(z%) /& (z°)).
The sign of é,0 depends upon the relational operators involved. Another way of stating this is to say
that a test Z° imposes a linear constraint upon the untested error region consisting of a hyperplane
orthogonal to +é;0 and at a distance |T"(z%)/é,0(2°)| from the origin. Note that the direction é,o
can be viewed as the error direction to which the test #° is most sensitive. This interpretation of
equation 5 will be particularly important to the analysis that follows.

Finally, note that the linearity of the constraints means that any linear combination of two
or more unbounded directions is unbounded, and any linear combination of two or more singly
bounded directions is at best singly bounded and may be unbounded. The number of linearly

17

independent error directions that have been left unbounded or only singly bounded is therefore
crucial to the error detection capabilities of a set of test data. Define the unbounded dimension of
the untested error region for a set of tests as the minimum number of additional constraints needed
to make the untested error region a completely closed region. For a completely unconstrained error
region of dimension n, the unbounded dimension is n + 1. For example, in 2-space, the simplest
closed figure is the three-sided triangle, in 3-space it is the 4-sided tetrahedron, etc. It then follows
from the earlier criterion for comparing test sets that:

Corollary 1 Given two sets of tests whose untested error regions have different unbounded dimen-
sions, the set with the smaller unbounded dimension is better.

By this corollary, we can divide the goal of choosing tests to leave the smallest possible untested
error region into two subgoals:

» Bound as many mutually orthogonal error directions as possible.
¢ Make the constraints on the bounded directions as tight as possible.

In most instances an incremental improvement in progress toward the first subgoal may be regarded
as far more important than an incremental improvement in progress toward the second goal, since
the corresponding effect on the number of errors that could escape detection would be far more
larger in the first case.

5.2 Error Detection By the Three Strategies

We now examine the degree to which each of the three domain testing strategies satisfy each of
these two subgoals for reducing the untested error regions. The domain testing strategies choose
the test points on the basis of their geometric properties in the input space. Our two subgoals,

however, depend upon geometric properties in the error space. The next Theorem shows how these
two spaces are related.

Theorem 2 When testing for linear errors in domain borders with an error space of dimension n,
any set of k test points, k < n, chosen in general position” leaves an untested error region with
unbounded dimension n — k + 1.

Proof: Consider a set of test points {#'}, { = 1...k, in general position. The Theorem
holds for k = 1 since, by Theorem 1, the first test imposes a constraint on the direction ép1
and on all directions having a non-zero component along é,:.

Now suppose that the Theorem holds for {#}, ¢ =1...k — 1, and that a new test point
z* is added that maintains the general positioning of the entire test set. Consider the error

TA set {2:} containing n points is in general position if the n— 1 vectors 2; —2,,1 = 2...n are linearly independent.
Intuitively, this means that the points cannot be contained in a space of dimension less than n — 1.

18

directions &, associated with these points. Since the error space is of the form given in
equation 2, the error directions &, given in equation 7 simplify to

éi(Z) = (1+ Zz“;-zj)/c. (8)

Because the various #' ar¢ in general position, the corresponding error directions &, are
linearly independent.

Now, since &, is linearly independent of the remaining &, there is some error direction
orthogonal to the remaining &, but having a non-zero component along &,:.. By Theorem 1,
that direction would be left unbounded by the previous #,i=1...k—1, but would be singly
bounded by z*. Thus the addition of z* reduces the unbounded dimension by 1, satisfying
the Theorem for ¢ = 1...k. The Theorem therefore holds by induction for k= 1...n. (For

k > n, it is no longer possible to obtain a linearly independent &,:, or for the kth test point
to still be in general position.)

The importance of this Theorem lies in the fact that the various domain testing strategies, by
choosing their on points at the vertices of borders that are guaranteed to form convex polyhedra
in N-space, are thereby guaranteed to choose the on points in general position. Furthermore, since
all of the on points lie in the hyperplane of the given border, and none of the off points lie in that
hyperplane, the set of on points plus any one off point are in general position. These N + 1 test
points must therefore reduce the unbounded dimension by N + 1. Since the dimension of the error
space for domain testing, given in equation 2, is N + 1, the various domain testing strategies all
leave an untested error region with an unbounded dimension of 1 — that is, they leave one error
direction only singly bounded but all directions orthogonal to that one are doubly bounded.

This is, in fact, the best possible unbounded dimension when testing for linear errors in linear
borders, because there exists one error direction that can never be doubly bounded. This direction
is the one parallel to the given border, denoted by & where T' = aépr. Suppose, for example,
that the given border is z; + z; > 0. Then we can add errors of the form a(z) + 22), @ > 0 to
this border without detecting the change since such changes can never really result in a domain
error. Hence the error direction a(z; + z3) cannot be doubly bounded. It can be singly bounded,
however, because subtracting z; + z; from the given border does result in a detectable border shift.

Since the N x 1, N x N, and the V x V strategies all reduce the unbounded dimension to its
minimum possible value, we have the following corollary:

Corollary 2 The N x1, N x N, and V x V strategies all satisfy the first subgoal for reducing the
untested error region.

If there is to be any difference in error detection ability among these three strategies, it must lie
in the degree to which they satisfy the second subgoal, although this is probably not as important as
the fact that they do all satisfy the first subgoal and may all therefore be considered effective means
for detecting linear errors in linear borders. The next Theorem establishes that, with appropriate
modification, the N x N strategy may be considered better than the N » 1 strategy because it
imposes tighter bounds on errors nearly parallel to the direction ég.

19

L.éqr or -
origin ON constraint
of

error
space

Figure 11: Two-Dimensional Slice of the Error Space for Nx1

Theorem 3 The N x N strategy chooses better tests for detecting linear errors in linear borders
than does the N x 1 strategy, if the N off points are chosen near the N on points.

Proof: The key to this Theorem is the fact that, since the error direction ér is only singly
bounded by the domain testing strategies, there must be various error directions nearly
parallel to é7 that are also only singly bounded. As we increase the radius r from the
origin, the volume of undetected errors associated with these directions that lie within r of

the origin will eventually dominate any other contributions to the volume of the untested
error region.

Now consider the shape of the untested error region after only the on points have been
tested. Since T'(Z) = O for the on points, equation 5 reduces to (&: ;) opz 0. Thus each of
the error space constraints imposed by the on points intersect the origin of the error space.
In fact, since none of the on points can bound ér, which by definition passes through the
origin, the line along which each of the error space constraints intersect is Léqm.

Now consider the addition of a single off point to satisfy the N x 1 strategy. This point
imposes a constraint intersecting é+ at a distance of 1 from the origin, since subtracting
T' from the given border T' results in a domain error detectable by any off point. It can
be shown that, if we are only going to have one off point, that the best choice is to choose
it near the centroid of the on points, as recommended in [19]. Then, if we were to view a
two-dimensional slice of the error space containing the direction T', we would see something
like Figure 11.

20

13

input X, Y, Z;
if X**2 + Y#%2 =< 1.0 then
if Z > 6. then

Figure 12: Non-Linear Adjacent Borders

Clearly, the more narrov/ angle between the on and off constraints, the slower the increase
in the size of the untested -:rror region as we move away from the origin. The cosine of the
angle between the on and off point constraints is given by éop - éoﬂ" so the more nearly
parallel the directions éon and é g, the narrower the angle in Figure 11 would be. To make
this angle as narrow as possible, therefore, we would like éopn and é off to be nearly identical

(except possibly for a change of sign). By equation 8, this means that the on and off points
must be nearly identical. The N x N strategy can approaches this goal when the N off
points are chosen near the same vertices as are the on points. (In [5] the off points were
required merely to be near vertices of the given border but not necessarily near the same
vertices as the on points.) Then, for any two-dimensional slice of the error space chosen
orthogonal to an on point onstraint and containing the origin and the direction éz, there
will be an off point constra nt forming a more acute angle with the given on point constraint
than would be obtained with the off point from the N x 1 strategy. Consequently, the size
of the untested error region should increase with distance from the origin more slowly for
the N x N strategy than for the V x 1 strategy and the Theorem is proven.

Thus we see that the N x N strategy does offer a slight edge over the N x 1 strategy when
testing for linear errors in linear borders, provided that the N off points are chosen near the N on
points. It should be clear from the proof of Theorem 3, however, that the V x V strategy is not
guaranteed to detect more errors than is N x N although it cannot do worse than N x N since
by definition the test points chosen by the V' x V strategy are a superset of those chosen by the
N x Nstrategy.

5.3 Non-Linear Domains

Little attention has been paid to the problem of applying domain testing where the program’s
borders are non-linear. This Section will examine this problem and will demonstrate that domain
testing can be extended to non-linear domains with only a small increase in the number of test
points, although the calculations involved in deriving those test points become more complex.

We begin with the simple step of allowing the borders of the path domain intersecting the given
border to be non-linear. The main conceptual problem this creates is that we must abandon the
previous emphasis upon the use of vertices of the path domain. For example, if we were testing
the border imposed by the second IF statement in Figure 12, we would be faced with the problem
that the given border consists of a circle and so has no vertices. The key to dealing with such
borders is provided by Theorem 2, where it is established that the most important property of the

21

on points is that they be in general position, not that they occur at vertices. (This observation also
allows us to drop the various assumptions made in [5,18] to ensure convex domains in the linear
case.) For numerical reasons, and to help reduce the size of the factor T*(£°)/é,0(Z°) in Theorem 1,
it is desirable that the points be scattered as far away from one another as possible, but this is
secondary to having them in general position. Note also that, for torders such as this one, the
V x V strategy loses all practical meaning, so that we will henceforth be concerned only with the
N x 1 and N x N strategies and their non-linear analogues.

Now consider the problem of formulating domain tests when th: given border is non-linear.
Theorem 1 can still serve to guide the selection of tests, since it does not depend upon linearity.
Instead, Theorem 1 requires that the set of possible errors be a finitely dimensioned vector space,
closed under the operations of addition and of multiplication by scaliars. Examples of such spaces
include not only linear functions but also polynomial and multinomial functions of fixed maximum
degree. Other functions can often be treated by using a multinom-al error space of sufficiently
high degree to contain reasonable approximations of the true functions. It is therefore possible to
formulate testing strategies simply by directly attempting to reduce the volume of the untested
error region defined by the constraints of equation 5. Such strategies are discussed in [22,24], but
they are extremely expensive, both in terms of the number of tests required and in terms of the
complexity of the calculations required to derive cach test.

In this Section, we will consider a less ambitious goal that is also more in keeping with the
spirit of previous domain testing strategies. We will consider the problem of detecting linear errors
in non-linear borders. Not only should this suffice to detect most domain errors in non-linear
borders, but it is a prerequisite for detecting more general border shifts such as polynomial errors
in polynomial borders. We can then show that, with the addition of a single test point each, the
N x 1 and N x N strategies can be made to satisfy the first goal for reducing the untested error
region.

Theorem 4 When testing for linear errors in non-linear borders, the N x 1 and N X N strategies
result in an untested error region with unbounded dimension zero provided that

o The on potnts are chosen in general position.

o Each off point 1s in general position with respect to the on points (although not necessarily
with respect to any other off points).

e An additional test point is chosen that, compared to any off point, lies on the opposite side of

the given border or on the opposite side of the hyperplane containing the on points, but not
both.

Proof: As explained earlier, the natural extension of the domnain testing procedure for

choosing on points involves selecting them in general position. Theorem 2 depended only
upon the linearity of the errors, not upon the linearity of the borders, so after executing the
on points we should have an unbounded error dimension of 2.

The point of divergence from the linear border analysis of Corollary 2 occurs when
we attempt to determine the direction left unbounded. In the case of linear borders, this

22

unbounded direction was ér» = oT". In this case, however, T" is non-linear and so does not
lie within the error space. Since, however, there are exactly .V on points, there must exist

a hyperplane in the N-dimensional input space containing those points. Let the equation of
this plane be denoted by

N
Bo+) Piz; =0 9)
=1

subject to
N
2 B=1
i=0

Note that the §; can be obtained by the solution of the linear system of equations ﬁ ‘=0
for all on points #,1i =1...N. It follows by Theorem 1 that the error direction B -Eis
unbounded by the on points.® If T is non-linear, it is possible for B to be doubly bounded,
resulting in a completely closed untested error region, an impossibility in the purely linear
case of Section 5.2.

By Theorem 2, the remaining error direction can be singly bounded by any test point
that is in general position with respect to the on points. Consider the choice of any off point
2°F, chosen not only off of the border but also off of the hyperplane defined by equation 9.
By Theorem 2, %7 singly bounds the remaining unbounded error direction. If we consider
the error € = a,@, then by Theorem 1 the resulting constraint would be:

(B - &,0p) op2 (T'(20)/&,05(27)). (10)

To obtain the final constraint necessary to reduce the unbounded dimension to zero, we
must doubly bound the direction 3 Z. Consider now the choice of an additional test point,
z"*, chosen off of the given border (to either the accepted or unaccepted side) and off of
the hyperplane containing the on points. By Theorem 1 Z"“ imposes the constraint:

(aﬁ . é,new) op2 (T'(imw)/é,mw(imw)). (11)

Both z°7 and ™ constrain the direction § - Z. By equation 8, the expressions é,05(Z°7))
and éznew(Z™")) are both positive. If, therefore, 7'(2°7) and T'(z™“) have opposite signs
but ,é * €50 and B - éznew have the same sign (i.e. z°0 and ™" lie on opposite sides of the
given border but on the same side of the on-point plane), then the two constraints are of
the form cogo opz =+ aof and cpewax 0p; F ey for some positive constants aog, ctpew, Coffs
and cpew. The direction § - % is therefore doubly bounded. If, on the other hand, T"(z°f)

8Note that the effect in the purely linear case of Section 5.2 of moving one of the on points slightly off of the
border and to the accepted side of the border constraint, as recommended at the start of Section 5., is simply to
change the direction left unbounded by the on points from éqv to this 3 - Z, which is nearly parallel to ép. After the
selection of any off point, both B -z and e will be singly bounded, thue preserving the correctness of the analysis
in Section 5.2.

23

and T'(z™") have the same sign but 8- épop 11 d B - égnew have opposite signs (i.e. z°f and
Z"* Jie on the same side of the given border but on opposite sides of the on-point plane),
then the two constraints are of the form ey ga 0pz g and Fenewt 0Pz Anew- Again, the
direction é Z is doubly bounded.

Finally we note that the choice of the point £ is required to reduce the unbounded
dimension to zero for both strategies. The N x 1 strategy simply does not choose enough
test points to completely close an N + 1-dimensioned error space. The N X N strategy
chooses enough test points, but if we continue to assume that the off points are chosen near
the on points, then all the off points will occur on the same side of both the given border
and the hyperplane containing the on points, since by definition that hyperplane intersects
the given border at the on points. If the off points are not chosen near the on points, then
the principal advantage of the N x N strategy, the narrowness of the angle between its
constraints, is lost.

Thus we again see that the N x 1 and N x N strategies are both successful at guaranteeing
that some bound is imposed on the size of any error directions for which such bounds are possible.
Unlike the purely linear case, however, here the resulting untested error region is completely closed.
This fact is crucial to the interpretation of these strategies’ performance with respect to the second
goal. The key to the proof of Theorem 3 was the narrowness of the angle between constraints for
the NxN strategy. This was decisive, however, only because the untested error region was open. In
a closed region, it is entirely possible for the N x 1 strategy to yield a smaller volume than would
the N x N strategy and so it is not possible to categorically state that either strategy is always
more effective than the other.

Should we then prefer the N x 1 strategy simply because it requires little more than half the test
points of the N x N strategy? The answer is not so simple. Not only is it possible for the N x N
strategy to sometimes yield a smaller volume in a closed undetected error region, but there may
be frequent situations where, even when testing non-linear borders, the untested error region will
remain open because it is not possible to choose N on points in general position. This occurs when
the subpath domain is contained within a hyperplane of the N-dimensional input space. Normally
this results from execution of a prior equality predicate (e.g. if A=B then ...), but it can also be
due to the conjunction of two or more inequalities (e.g. if A >= B then...if A =< B then...).
In such situations, the on points will be limited to the hyperplane containing the subpath domain.
As a result, there will be some error direction left unbounded.

The appropriate action to be taken by a testing strategy in the presence of such equality
constraints is unclear. The unbounded error direction cannot result in a domain error (e.g. in the
above examples, the addition of terms of the form a(A — B) to the given border cannot cause an
error since such terms evaluate to zero everywhere within the subpath domain). One reaction is
to therefore simply ignore such error directions and to consider the error space to be the linear
subspace orthogonal to those directions. Alternatively, we can note that errors can be composed
of linear combinations of these undetectable directions with other directions that can result in
domain errors. The N x N strategy, by the arguments given in the proof of Theorem 3, would do

24

a better job of constraining those combinations and so might be considered preferable. The choice
is a matter of judgment, and the author’s opinion is that the second argument is not a sufficiently

compelling reason to require the choice of nearly twice as many test points as would be needed for
the N x 1 strategy.

6. Domain Testing and Fault Detection

It would be reasonable to summarize the analysis of Section 5. by stating that domain testing
represents an effective means of testing for linear border shifts on the first path employed during
testing. As pointed out in Section 4.2, however, domain testing can be wasteful when testing more
than one path since it fails to consider the possibility that paths may share one or more statements
and that tests on one path therefore provide information about possible errors on the others.

In this Section, such interactions among paths will be dealt with by moving domain testing’s
past emphasis on errors to a new, fault-oriented, approach. Instead of considering linear errors
in domain borders, this new approach will test for linear faults in the program predicates and
assignments. First, a fault-space model is presented, similar to the error-space model of Section 5..
Next, this model will be used to develop fauit-oriented versions of Theorem 1 to describe the set
of possible faults that would be left undetected by a set of tests. Finally, an algorithm based
upon these Theorems will be presented for choosing test points to detect linear faults in program
predicates and assignment statements.

6.1 A Fault-Space Model For Domain Errors

Consider an initial subpath for the given program. Let the set of inputs for that subpath be
denoted by #. Let V be the set of variables in the given program. Then, arranging the members
of V into some standard order, let & be a vector of values for those variables. Associated with the
initial subpath P; is a subpath computation C; : # — &. If P; were the concatenation of subpaths P,
and P,, with P, initial, then we could associate subpath computationsC; :Z > v and C2: 9 —» &
with the two subpaths such that C; = C3 0 Cj.

If P, is an initial subpath ending at some conditional statement, then the predicate of that
conditional statement can be viewed as a function of the values #* of the program variables as
computed by that path. Thus a predicate of the form T'(¥) relop 0 would result in a border segment
T(Ci(z)) relop 0.

In Section 5. we were concerned with possible shifts in the function denoted here by T o C;. In
this Section, we will instead be concerned with possible shifts in the functions T’ and C; separately.

Considering first the possibility of predicate errors, let T' be a predicate actually appearing in
the program and let T' be the correct form of that predicate. Then the fault in T’ can be represented
as

e=T'-T,

25

and, as before, we will be concerned with the linear case where

N
(t) = ap + Za,-u,-. (12)

=1

¢ is now a vector in a fault space, and, as before, can be considered to have both a size and a
direction.

Testing for linear faults is not the same 1s testing for linear errors. Consider a program having
n inputs and m variables. If m > n and if for any path leading to a predicate T' there are n
variables whose values can be obtained from the inputs by an invertible linear transformation, then
testing for linear faults in that predicate is at least as strong as testing for linear errors in all
paths passing through that predicate. The simplest example of a program satisfying this criterion
is any program in which n of the variables are used as placeholders for the inputs (e.g. a program
beginning with INPUT A, B, C; and no subsequent rec efinitions of A, B, and C). On the other hand,
if m < n, then the inputs cannot usually be reconstrucied from the variable values and hence there
are certain linear errors that would go undetected by tests for linear faults. For example, a program
that begins by looping n times through the statement INPUT X, collecting the sum of the input
values but not saving the individual input values, would fall into this class. One can conceive of
linear errors of forms such as a(z; — z12) that, because the individuai z; are not available from the
program variables, would not be detected by a fault-oriented scheme. Of course, for such an error
to be present in the program, the given version of the program would have to be so significantly
different from any correct version that the chances of it performing correctly on any set of data,
much less the extensive set that will be required to test for linear fau'ts, would likely be negligible.

A similar construction can be given for faults in the right-hand side of an assignment statement.
Suppose that an assignment statement whose transformation of the program variables is given by
C" should have instead used the transformation C, with both transformations altering only the
variable v; (although the computation of the new value for vj could depend on any number of other
variables). Then we can define the fault in the assignment as

é-—-u_,-oC'—vJ-oC' (13)

and again let & be a vector in the linear fault space described by equation 12.
For both predicate and assignment faults, our goal in choosing test points is now to reduce the
size of the untested fault region analogous to the untested error region of the earlier discussion. It

should not be surprising that tests can be shown to impose constraints on the untested fault region
similar to those described in Theorem 1 for error regions.

8.2 Constraining the Untested Fault Region

We now turn to the problem of describing the sets of faults whose presence in the code would
not result in a domain error on a given test. Theorem 5 shows the effect of a test upon the untested
fault region for a predicate.

26

Theorem 5 Given a predicate T'(¥) op; O that has been tested with variable values 7°, a fault € in
T' fails to cause a domain error iff '

&%) =0
(- &g0) opz (T"(9°)/é0(3°)) (14)

where op; and op; are given in Table 1 and where éy is the unique unit-length vector such that
éon(7°) > 0 and, for all é ortkogonal to ég, &(2°) = 0.

Proof: The proof is identical to that of Theorem 1 with the program variables # substituted
for the program inputs z. In effect, Theorem | may be regarded as the special case of this
Theorem where the only program variables arc placeholders for the inputs.

The next Theorem establishes a similar result for assignment faults for test points chosen near to
a domain border.

Theorem 6 Given an assignment statement v; : = C'(¥) that has been tested with variable values
9° for which ezecution subsequently proceeded along the subpath P to some predicate T(¥) op O
with T'(0) close to 0, a fault ¢ in C' fails to cause a domain error iff

é(ﬁo) =0 (15)
or
(T oy)
dv;
or
. 3(T o Ci
(& é) op (el

where opy and opy are given in Table 2 and where égu is the unique unit-length vector such that
ége(9°) > 0 and, for all & orthogonal to ég, é(7°) = 0.

gon

Proof: If equation 15 is true, then clearly no domain error can result from this error in
the border because no border shift occurs at that test point. If, however, the error in the
border does result in some border shift, then a domain error results iff the shift is large
enough that the given and correct borders take on different truth values on this test.
Since the given border is ToCpoC;(?) opy 0, a domain error results iff ToCpoC(#°) op; 0

and T o Cp o C;(#°) op; O are different. We may therefore state that a domain error fails to
occur exactly when

(ToCpo C;(iio) op; 0) & (ToCp o C;(%) opy 0).

27

op2

opy | To (J"!_’ o (_-;("0) op 0 i f-(v?) ::()—I—?(E’U) <0
> true < >
> false > <
> true < >
> false > <
< true > <
< false < >
< true > <
< false < >
= true = =
= false # #
true #
false = =

f(vj) - 3(ToCp)

av,'

gon

Table 2: Operators for Theorem 6

The correct border T o Cp o C; is unknown, but from the definition of € in equation 13 we
have that a domain error fails to occur iff

(T oCpoCj(°) op1 0) & (T oCpo(C}— &)(3°) op, 0). (17)

Let #)(z) be the vector formed by replacing the jth component of #° by « and let I;

denote the jth column of an n x n identity matrix where n is the diinension of #°. Then we
can rewrite equation 17 as

(ToCpoCi(i°) 0p10) ¢ (ToCpo @] o I; o (Cj — €)(3°) opy 0). (18)
This last step allows us to focus on the single-argument function T o Cp o @?, which describes

the sensitivity of the subpath P to errors in the value of v;. Since we will be choosing on
and off points for which T o Cp(#) is close to zero, we can approximate T o Cp o &? by

d(T oCp o @)

ToCpoil(z)=ToCpc#(z) + e

,(z-m')

3

provided that =z — z' is small. If =’ is an on point, however, T o Cp o ﬁ?(z') =0, so

ITolCpo ﬁ?)

ToCpo ﬂ;»'(x) = Ox

(z - =). (19)

z'm

28

Inserting this approximation into equation 18 and defining §°" = t‘t?(m"") yields

(TOCPOC;(t')'O) op 0) & (a(_-_

(45 - 93" o Iy - (€ - 2)(6°) op1 0) (20)

Now if T o Cp does not depend upon the variable v; (i.e., '2(-7(;:?") gon = 0), then clearly an

assignment fault affecting only vj cannot result in a domain error for the border imposed
by T on this path. If T o Cp does, however, depend upon v; then equation 20 simplifies to

AToC
(ToCpoC;j(°) op1 0) (% (£ - C}(8°) - v") opy -6(7;_2??) I; - &(°))
J pon J pon
and then to
&5°) opz (I - C}(8°)) - v2" (21)

where op; is taken from Table 2.

By equation 19, however,

o = ((T o Cp)

-1
= =0
r= (2|) o -recrecie.

Replacing v°" in equation 21 yields

(T o Cp)

-1
&(7°) op2 (o) 1 o Cp o C}(e°). (22)
J on

The remainder of the proof of this Theorem follows from equation 22 in the same fashion
as Theorem 1 followed from equation 6.

The purpose served by the partial derivative iin Theorem 6 is to determine whether or not the
border generated on this subpath is sensitive to thanges in the variable v;, and, if so, whether
the predicate function increases or decreases as v, increases. It should be possible to obtain this
information by approximating the derivative, sanipling the values of T'o Cp at ¥ and #°", even
in circumstances (e.g. integer-valued predicates) ‘where the derivative does not formally exist. If
this does not yield a reasonable approximation, then the test point @ is of dubious utility with this
border since its effect on the border cannot be determined.

The similarity of these Theorems to Theoren: 1 suggests that many of the other results of
Section 5. for error spaces should also hold for fa ilt spaces. For example, the choice of test sets
in general position will still be important, though it is the sets of variable values that must lie in
general position, not the sets of input values.

With these two Theorems, we are now in a po:ition to describe a test data selection algorithm
to detect linear faults in program predicates and assignment statements. The key idea behind

29

this algorithm is the use of Theorems 5 and 6 to maintain at each statement a description of the
possible linear faults in that statement that would have escaped detection with all previous tests.
The process of choosing a single test then consists of first choosing a fault direction to be bounded,
setting up a mathematical programming problem describing the conditions for bounding that fault
direction, attempting to solve the problem to obtain a test set, and checking the solution to see if
it imposes an acceptable bound.

8.3 Test Data Selection for Predicate Faults

Let P be a given initial subpath ending at a predicate T' and with path computation Cp. Let
PC : £ — {true,false} be the path condition associated with P such that P is executed on input
% iff PC(%) = true.

Let Singles: be the set of constraints of the form in equation 14 describing the results of any
previous executions of 7" that have resulted in a direction’s being singly bounded. Let Doubles be
the set of constraints of the form in equation 14 describing the results of any previous executions
of T' that have resulted in a direction’s being doubly bounded. If T' has never previously been
executed, then Singless and Doublerr would be empty.

Given T', P, Singles, and Doubler: a procedure for selecting test data that will result in the
minimum possible unbounded dimension is:

1. Define a set of constraints Unsuccessful to describe the error directions that cannot be
bounded by tests on P. Initially, let Unsuccessful be empty.

2. Choose test data for T':

(a) Choose a target fault & as the fault maximizing |&| subject to the constraints in Singleq
Double7: and Unsuccessful. The fault & is therefore the largest fault in the untested
region of the fault space. Let é = &/|é&|.

(b) If |&] < &, for some small positive §, then no further tests will be chosen for 7" along
this path.

(c) Attempt to select an on point that bounds é;: If ¥ is the set of variable values at the end
of P when executed on input Z, then the fault direction é; to which Z is most sensitive
is the normalization of (1, vy, v;,...,vy). From Table 1, determine op; for on points. If
opz is “<” or “<”, attempt to find a set of input values # maximizing &y - &;, otherwise
find a set of input values minimizing ¢y - &. In either case, the optimization is subject
to the constraints PC(z), and T' o Cp(z) = 0.° The constraint PC(%) guarantees that
% does cause execution of the subpath P. The constraint T' o Cp(Z) = 0 forces % to lie
on the border.1°

°A rough approximation to the maximum should suffice here - there would seem to be little to be gained by
expending a great deal of effort to find the exact maximum once an Z has been found that is in the right neighborhood.

'"On the first path through T, this constraint should be replaced by T' o Cp(2) = e with the sign of ¢ chosen to
force Z to lie slightly off of the border toward the closed side.

30

"

(d) Determine if imposes an acceptable n:w bound on the fault space: The acceptability
of Z is determined by determining whe-her the direction ¢, is reasonably close to the
target direction . If é;- é, < 0, then the bound imposed by Z is in the wrong direction
and so Z is rejected. (In this case, it is likely that an off point can be found for this path
that will bound é.) If0< ép-6 < 7, for some small positive v, then a bound is imposed
on & but the bound is very loose (&, is nearly orthogonal to the target direction) and so
Z is rejected.

(e) If the on point z is rejected, then attempt to choose an off point that bounds é&: From
Table 1, determine op; for off points. If op, is “<” or “<”, actempt to find a set of input
values # maximizing é; - é,, otherwise find a set of input values minimizing é; - &. In
either case, the optimization is subject to the constraints PC(z), and T' o Cp(%) = =e.
The sign of € is chosen to force Z to lie on the open side of the border.

(f) Determine if the off point Z imposes an acceptable new bound on the fault space: If
€g - & > — for some small positive v, then % is rejected.

(8) If an acceptable on or off point is not found, then then the constraint &- & = 0 is added
to Unsuccessful so that subsequent target directions will be chosen orthogonal to this
és.

(h) If £ is not rejected, it becomes part of the test set for this program. The constraint
€: & opz T'(0)/ép(7) is added either to Singleq if op; is not “=" or to Doubleq if it
is. This represents the effect on the fault space for T' of executing z.

(1) Go back to step 2a to choose another on point.

3. Clean up the Singles, and Doubley sets of constraints:

(This step is optional and might best be performed only when the number of constraints in
Singleq. grows large.)

(a) Let DoublyBounded be a largest possible set of directicns orthogonal to all directions &
having constraints &-é; ‘= 0 in Unsuccessful.

(b) Redefine Doubler- to the set of all constraints &-& = 0 such that & is in DoublyBounded.
The point is to reduce the number of constraints to be considered on subsequent paths.
Furthermore, the set Doublers can be used to help guide the choice of additional test
paths, as the solution set to the system of linear equations in Doubler is a superset of
the blindness ezpressions described in [20,21].

(c) Remove from Singles, any constraint - &' op a such that & is contained within the
span of the vectors comprising DoublyBounded. Such constraints are now subsumed by
Doubley:.

6.4 Test Data Selection for A:signment Faults

Let P be formed from the concatenation of three subpaths, Py, P;, and P;, where P; is an
initial subpath, P; consists of a single assignment to the variable v;, and P; is a subpath from that

31

assignment to some predicate T. Let the computations for hese subpaths be denoted by Ci, C;,
and C3, respectively. Let PC : & » {true, false} lie the path condition associated with P such that
P is executed on input # iff PC(%) = true.

As in the algorithm for predicate faults, we will make use of the sets of constraints Single, and
Double,, where s denotes the assignment statem ent being tested. The major complication added
to this algorithm is the need to verify that T o Cy depends upon v;, and to determine the direction
in which T o C; changes as v; is increased.

Given T, P, Single, and Double, a procedure for selecting test data that will result in the
minimum possible unbounded dimension is:

1. If T o C, contains no reference to vj, then no test data will be selected.

2. Define a set of constraints Unsuccessful to describe the error directions that cannot be
bounded by tests on P. Initially, let Unsuc :essful be empty.

3. Choose test data for s:

(a) Choose a target fault & as the fault maximizing |&] subject to the constraints in Single,
Double, and Unsuccessful. Let & = &/|&].

(b) If |&| < &, for some small positive &, then no further tests will be chosen for s along this
path.

(c) Attempt to select an on point that bounds &: Let ¥ be the variables at the end of P;
when P is executed on input . From Table 2, determine opy for on points. If op. is
“<” or “<”, attempt to find a set of input values Z maximizing ép - é;, otherwise find a
set of input values minimizing é; - &. In either case, the optimization is subject to the
constraints PC(z) and T o Cp(z) = 0.

(d) Let &' be a set of variables obtained from ¥ by adding a small increment Av; to vj.

Estimate 2Z2Ce)| by TeCa(0))=ToCa(0)

dv; |gon Dvuj

(e) Determine if Z imposes an acceptable new bound on the fault space:
If a—(“";—‘:‘ﬂlnon is nearly zero, reject Z.
Reject Z if & - & < v, for some small positive 7.

(F) If the on point Z is rejected, then att :mpt to choose an off point that bounds &: From
Table 2, determine op; for off points. If op; is “<” or “<”, attempt to find a set of input
values # maximizing &y - &, otherwis: find a set of input values minimizing ép - é. In
either case, the optimization is subject to the constraints PC(Z), and T' o Cp(Z) = te.
The sign of ¢ is chosen to force Z to lie on the open side of the border.

(g) Let 9°" be a set of variables obtained from ¥ by adding a small increment Av; to vj such
that T o Cp(9°") = 0.

Estimate a(gff"") by ToCa(0)-ToCa(0?")
J

gon Av;

-."

"

(h) Reject z if 'Z(g:’ff) pon = 0 orif & - é > ~~ for some small positive 4.

(i) If an acceptable on or off point is not fcund, then the constraint & - € = 0 is added to
Unsuccessful so that subsequent target directions will be chosen orthogonal to, or with
negative components along, this é.

(3) If is not rejected, it becomes part of the test set for this program. The constraint
described in equation 16 is added either to Single, if op; is not “=" or to Double, if it
is.

(k) Go back to step 3a to choose another on point.
4. Clean up the Single, and Double, sets of constraints:

(a) Let DoublyBounded be a largest possible set of directions orthogonal to all directions ¢,
having constraints & - é; op 0 in Unsuccessful.

(b) Redefine Double, to be the set of all constraints &-&' = 0 such that & is in DoublyBounded.

(c) Remove from Single, any constraint & - & op a such that & is contained within the
span of the vectors comprising DoublyBounded. Such constraints are now subsumed by
Double,.

Although this paper has focused entirely upon domain errors, the above algorithm can also be
used to detect computation errors. Suppose that T were an expression to be printed by an output
statement instead of a predicate. We could treat this output as if it were a predicate of the form
T(9) = f(2) where f is the correct function to be computed by this program. An incorrect output
value would correspond to a shift in this predicate, so the on point selection rules are applicable to
the detection of computation errors caused by linear faults (We would not be able to generate any
off points. In fact, if the program were correct then there would be no off points for this predicate).

6.5 Sharing Test Points

The above algorithms assume that we are testing a single predicate or assignment statement on
a given path. Through the use of the sets of constraints Single, and Double,, the algorithms allow
for the interactions among test points chosen for those same statements along different paths. In
practice, however, the test points that are chosen for a given statement will also cause the execution
of other statements as well. The final step in the formulation of a strategy for linear fault detection
is to take these interactions into account as well when applying the predicate and assignment fault
algorithms.

The following procedure describes how to apply the above algorithms to a given path P to take
interactions among tests for different statements into account:

1. Initially, set Single, and Double, to the empty set for all statements s. If s is a conditional
statement with a linear predicate T(9) relop 0, then add the constraint - T > O to Single,.

2. Choose a test path P from Lhe start to the end of the module being tested.

33

3. For each occurrence of a statement s in P do the following:

(a) fsisa conditional statement, then apply the algorithm of Section 6.3 until done or
until a single new test is generated.

(b) If s is an assignment statement, then find a subsequent predicate or output statement
in P and apply the algorithm of Section 6.4 until done or until a new test is generated.
If no test is obtained, try another predicate or ou' put statement in P until all such have
been exhausted.

(c) If a test has been generated, execute that test and record its effect on Singley, and
Double, for all occurrences of statement s' along P:

i. If ¢' is a conditional statement then let #° be the variable values when ¢ is reached.
If 40 satisfies the equalities in Double, then this test has a negligible effect on the
untested fault region for s'. Otherwise, add the constraint given be equation 14 to
Single, if aps is not “=", to Doubley if it is.

ii. If ¢' is an assignment statement, tten let 7° be the variable values when &' is reached.
If é,v satisfies the equalities in Double, then this test has a negligible effect on the
untested fault region for s'. Othrwise, set ¢y = ¢z = M for some large M and
perform the following steps for each output statement or predicate appearing in P
after s' until ¢; < 4 and ¢ < 7 for some small positive ~ or until no further output
statements or predicates remain in P.

A. Construct the constraint of the form given in equation 16 for s' and the chosen
output or conditional statement.

B. If the resulting constraint cai be written as € - épn < aor&-ép S a with o
non-negative and if a < cz, then set ¢z = a.

C. If the resulting constraint cai be written as € égo > @ OF E-Epu 2 with o
non-positive and if —a < ¢1, then set ¢; = —a.

iii. If ¢; < v and ¢z < 7 for some small positive 7, then add the constraint & ég =0
to Doubley. Otherwise, if c; < M add &- &z 2 —cy to Single, and if ca < M add
g+ ép < c2 to Singley.

(d) If not finished generating tests for s on P, return to step 2a.

6.6 An Example Of Linear Fault Detcction

To illustrate the algorithms presented in the previous sections, we now return to the sample
program fragment that has been employed throug hout this paper and show the test data that would
be selected for a single test path through that p-ogram. The program fragment is shown again in
Figure 13, with line numbers added to facilitate the discussion that follows. We will choose as the
test path to be examined the path through statements (1,2,3,4,5,6,5,7, 8), the path that reaches
statement 8 after exactly one iteration of the loop.

i

w

1 input X, Y;

2 if X >= 0. then

3 Z:=Y-X;

4 D :=0.;

6 while Z > D loop
6

D :=D + 1.;
end loop;
7 if X <= D then

8 it Y <= 1.001*D then

Figure 13: Saniple Program

The first statement for which test data is generated is statement 2. The linear fault space for
this statement is the set of faults of the form ap + a;X + a2Y. lnitially, there are no constraints
upon this fault space, because no tests have yet been run.

The first choice for the target direction & might therefore be (1, 1, 1) or, alternatively, 1+ X+1Y.
Normalizing yields é = (0.57735,0.57735,0.57735), and so we begin by trying to find a point Z
maximizing é; - é;, where é; = \/1225{'2 ool subject. to the constraint X = 0.001. The constraint in
this case reflects the desire to have the first test point for this statcment lie slightly off of, but on the
accepted side of the border. The subpath condition is empty (tru:) since this is the first conditional
statement reached. In practice, we need to add implied bounds for X and Y describing the minimum
and maximum values they can take on. In this example, we will use —10000 < X,Y < 10000.

The maximum value of & - & is found approximately at X = 0.001,Y = 0.96647. At this
point, & - é; = 0.816793, an acceptably large value. & = 0.71806 + 0.0071906X + 0.69495Y, and
T'(9) = 0.001, so by Theorem 5, the use of this test point imposes the constraint

€ (0.71906,0.0071906, (.69495) < 0.00713006

upon the untested fault region. The input point (0.001, 0.96647) becomes the first test for this
program.

The next step is to determine the effect of this test on the other staternents in the program. For
example, statement 3 is reached by this test, and so certain possible assignment faults may be elim-
inated by this test. To determine which faults are eliminated, we .pply Theorem 6 to statement 3.
This requires finding a predicate or output statement reached after executing statement 3 that
depends upon the value of Z. Statement 5 is executed twice on this test path, and each occurrence
can be used. Since there are no new assignments between statements 2 and 3, & and éy(7) are the
same for statement 3 as for statement 2. The function T'oCp for the first occurrence of statement 5
is Y — X and for the second is Y — X — 1.0. Consequently, the constraints

é-(0.71906,0.0071906,0.69495) < 0.¢9423

35

Stmt, Test, Point

2 | (0.001, 0.96647)
(0.0, -10000.)
(0.0, 10000.)
(-0.001, 0.091766)
3 | (10000., 10000.)
(9990., 10000.)
(0.0, 0.001)

4 | (0.0,0.0)

7 | (1.001, 2.001)
(1.0000, 1.0060)
8 | (0.30148, 1.0020)
(1.00¢10, 1.0010)

Table 3: Test Data

and
e- (0.71906,0.007 1906,0.69495) > —0.024829

are added to Single, for statement 3. The effects of this test on the remaining statements are
found in a similar fashion.

Returning to the problem of choosing tests for statement 2, the next target direction could be
& = (—1,—1,—1). The maximum value of & - €y for this target, subject to the constraint X = 0.0,
is obtained at X = 0,Y = —10000. For this point, é; &, = 0.577293. This point is added to the test
set, and its effects on the other statements determined.

Next, the target direction & = (-1, -1, 1) yields a maximum & - é; = 0.577293 at X = 0.0,Y =
10000. After adding this point to the test set, the next target direction & = (-1, -1,-0.0001)
yields 2 maximum value of & - é; = 0.0000 for any on point. An off point can be found, however,
that yields a minimal value of & - é, = —0.70345 at X = —0.001,Y = 0.091766. After this point
is added, the largest target ¢ is (0, -1, 0), which is already singly bounded and cannot be doubly
bounded. Hence neither an acceptable on nor off point is found, and &- (0,-1,0) = 0 is added
to Unsuccessful. There are then no remaining target directions other than (0,0,0), and we can
move on to the choice of test points for statement 3, subject to the constraints imposed on the
untested fault region by the previous tests and subject to the path condition X > 0 imposed by our
designated test path.

The remaining tests chosen for this test. path are shown in Table 3. These tests are also shown
in Figure 14, although the points at £10000. are not shown to proper scale. Note that no tests were
chosen explicitly for statements 5 and 6, because the tests chosen lor the earlier statements proved
sufficient. If additional test paths are chosen, only statements 7 and 8 will require additional test
points, and no more than two points each will be -equired. This is because the fault direction 1 —D
has yet to be bounded for those two statcinents, since they have only been executed on paths for

36

"

Y e s TR

Figure 14: Distribution of Test Points

37

which D = 1. All other linear fault directions that can be bounded have been given reasonably tight
bounds.

7. Conclusions

The domain testing strategies have been proposed as a means of detecting errors in the control
flow through programs consisting primarily of numerical calculations. This paper has shown that
the arguments that have been used to establish the power of domain testing have been flawed, but
that their conclusion was nonetheless correct, in that all of the variants of domain testing can be
shown to establish an upper bound on the size of any linear error in a domain border.

On the basis of this analysis, extensions to domain testing can be proposed. This paper has
shown how domain testing can be employed on linear borders in programs containing non-linear
calculations. Furthermore, with the addition of only one more test point, domain testing can be
employed to detect linear errors in non-linear borders.

Conventional domain testing does not take into account the fact that different paths through
the program usually share many statements, so that tests along one path provide information about
the possible errors along other paths. By shifting the focus of attention from errors along paths
to faults in individual statements, an algorithm is obtained that detects linear faults in arithmetic
expressions that could result in either domain errors or computation errors. The resulting testing
method is similar to domain testing in the kinds of faults and errors detected, but requires many
fewer test points, at the cost of additional computations to determine cach point.

38

REFERENCES

(1] T. A. Budd, “Mutation Analysis: Ideas, Exaniples, Problems and Prospects,” Computer Pro-

gram Testing, B, Chandrasekaran and S. Radic chj (eds.), North-Holland Publishing Co., 1981,
Pp. 129-148

[2] T. A. Budd and D. Angluin, “Two Notions of Correctness and Their Relation to Testing,”
Acte Informatica, vol. 18, (1982), pp. 31-45

[3] T. A. Budd, The Portabie Mutation Testing Suite, University of Arizona technical report
TR 83-8, March 1983

[4] T.E. Cheatham Jr.,G. H. Holloway, and J. A, Townley, “Symbolic Evaluation and the Analysis
of Programs”, [EEE Transactions on Software Engineering, vol. SE-5, 4, July 1979, 402-417

[5] L. A. Clarke, J. Hassell, and D. J. Richardson, “A Close Look at Domain Testing,” JEEE
Transactions on Software Engineering, vol. SE-8, no. 4, 380-390, July 1982

(6] L. A. Clarke and D. J. Richardson, “Symbolic Evaluation — an Aid to Testing and Verifica-

tion,” Proceedings of the Symposium on Software Validation, North-Holland Publishing Co.,
H.-L. Hausen (ed.), 1983

[7] E. L. Cohen, A Finite Domain-Testing Strategy for Computer Program Testing, Ph.D. disser-
tation, 1978, Ohio State University

[8] R. A. DeMillo, F. G. Sayward, and R. J. Lipton, “Program Mutation: A New Approach to
Program Testing,” State of the Art Report on Program Testing, 1979, Infotech International

[9] K. A. Foster, “Error Sensitive Test Cases Analysis (ESTCA)”, IEEE Transactions on Software
Engineering, vol. SE-6, no. 3, 258-264, May 1980

[10] J. 8. Gourlay, “A Mathematical Framework for the Investigation of Testing,” IEEE Transac-
tions on Software Engineering, vol. SE-9, no. 6, pp. 686-709, November 1983

(11] W. E. Howden, “Methodology for the Generation of Program Test Data”, IEEE Transactions
on Computers, vol. C-24, no. 5, 554-560, May 1975

[12] W, E. Howden, “Reliability of the Path Analysis Testing Strategy”, IEEE Transactions on
Software Engineering, vol. SE-2, no. 3, 280-215, September 1976

]13] W. E. Howden, “Functional Program Testing” ,JEEE Transactions on Software Engineering,
vol. SE-6, no. 2, March 1980, 162-169

14) J. W. Laski and B. Korel, “A Data Flow Oriented Program oy Rt KA ot
| a;:tio;ts on Softuare Engineering, vol. SE-9, no. 3, 347-354, May 198

39

l15] S. J. Ntafos, “On Required Elements Testing,” [EEE Transactions on Software Engineering,
vol. SE-10, no. 6, 795 803, November 1084

[16] S. Rapps and E. J. Weyuker, “Data Flow Analysis Techniques for Test Data Selection”, Pro-
ceedings of the Sizth International Conference on Software Engineering, 1982, IEEE Computer
Society, 272-278

[17] D. J. Richardson and L. A. Clarke, “A Partition Analysis Method to Increase Program Relia-
bility,” Fifth International Conference on Software Engineering, March 1981, pp- 244-253

(18] L.J. White and E. L. Cohen,“A Domain Strategy for Computer Program Testing” ,IEEE Trans-
actions on Software Engineering, vol. SE-6, no. 3, 247-257, May 1980

(19) L. J. White and L. A. Perrera, « An Brror Analysis of the Domain Testing Strategy”, Workshop
on Software Testing, July 1986, IEEE

(20] S.J. Zeil, Selecting Sufficient Sets of Test Paths for Program Testing, Ph.D. dissertation, 1981,
Ohio State University, also technical report OSU-CISRC*TR—SI—IO

[21] S. J. Zeil, “Testing for Perturbations of Program Statements” , [EEE Transactions on Software
Engineering, SE-9, No. 3, May 1983, pp. 335-346

[22] S. J. Zeil, Perturbation Testing for Domain Errors, COINS Technical Report 83-38, University
of Massachusetts, December 1983

(23] S. J. Zeil, «perturbation Testing for Computation Errors”, Seventh International Conference

on Software Engineering, March 1984, IEEE, also University of Massachusetts Technical Re-
port 83-23, July 1983

[24] 8. J. Zeil, Perturbation Testing for Domain Errors, subinitted to IEEE Transactions on Soft-
ware Engineering

10

