W

Finer Grained Concurrency
for the Database Cache

J. Eliot B. Moss
Bruce Leban
Panos K. Chrysanthis

COINS Technical Report 86-42
September 1986

Submitted to the Third International Conference on Data Engineering

The database cache transaction recovery technique as proposed in [Elhard and Bayer
84] offers significant performance advantages for reliable database systems. However, the
smallest granularity of locks it provides is the page. Here we present two schemes sup-
porting smaller granularity. The first scheme allows maximal concurrency consistent with
physical two-phase locking, with the same per-transaction I/O cost as the original database
cache scheme. The second scheme offers the same concurrency as the first, but features
reduced I/O on commit, at the cost of some increase in recovery time. We also discuss
data structures for maintaining the fine grained lock information.



Introduction

Recently a new database recovery technique, called the database cache, was proposed in
[Elhard and Bayer 84]. The database cache both simplifies database recovery management
and boosts performance — strong advantages that make it attractive for use in practical
database systems. However, its concurrency control scheme is two-phase locking on pages,
where the page size is determined by the I/O devices. Elhard and Bayer said in their paper
that a smaller lock granularity would “complicate the algorithms considerably”. Here we
show the opposite: that smaller lock granularity can be achieved simply and easily.

After a brief summary of the original database cache algorithm, which we call EB for
short, we present two new schemes. Both offer maximal transaction concurrency under
restriction to algorithms using two-phase locking at a physical level. Scheme I retains the
page oriented I/O of EB, and thus increases concurrency (by locking units smaller than
a page) but does not reduce (or increase) the total I/O cost of a transaction. Scheme
II reduces the I/O at commit time, by writing only the modified parts of pages. How-
ever Scheme II can require additional reads when recovering, and additional writes when
propagating changes into the database. In presenting our schemes we will assume that a
mechanism is available for maintaining the fine grained locks held by currently running
transactions. To justify this assumption, in a separate section we describe a possible data
structure for this purpose.

The Database Cache

As can be seen in Figure 1, the database cache algorithm uses three distinct storage areas:

The Database: This is the physical database. It is a collection of pages that can be
accessed randomly, and is reliable.!

The Cache: This is the main memory workspace for running transactions. It is indeed

organized as a page-oriented cache of the database. Cache contents are lost in a
system crash.

The Safe: This is in essence the tail (most recent part) of the commit log. It is a reliable
collection of pages, similar to the physical database. However, it is usually accessed

sequentially for speed, and its size is more the order of the cache than the physical
database.

All activities in the database cache algorithm are in terms of pages. Database pages
always reflect the work only of committed transactions; that is, no “dirty” pages are
ever written to the database. Hence the database never requires undo processing upon
recovery. To guarantee this property, the cache is assumed to be large enough to hold
the pages modified by any transaction. Elhard and Bayer discuss how to eliminate this
restriction for long (large) transactions. We will not consider such transactions here, since
we believe it is no more difficult to deal with them in our schemes than in EB.

The cache contains two kinds of pages: originals and copies. An original page reflects
the effects of all committed transactions and no active ones. A copy is a page being modified
by an active transaction. When a transaction wishes to read a page, it acquires a read lock
on it, and then accesses the (original) page via the cache. The read is easy to satisfy if

!That is, we will not go into the details of archiving and media recovery.



install /::opy

fetch Orig write
DB % il el >| Safe
force @ recover
(Disk) (Disk)
Cache

(Main Memory)

Figure 1: Structure of the Database Cache

the page is in the cache. If the page is not in the cache, a cache slot is freed (as described
below), and the page is fetched from the database. To modify a page, a transaction first
acquires a write lock on it. If the page is in the cache, the transaction makes a copy of it,
and modifies only the copy. If the page is not in the cache, the transaction fetches it from
the database, marking it as a copy rather than an original.

When a transaction commits, it releases its read locks, installs its modified copies as
originals, writes these new originals to the safe (more details below), and releases its write
locks. To abort, a transaction simply releases all its locks and discards its copy pages.

To free a cache slot, we choose some unlocked (original) page in the cache as a replace-
ment victim. If the victim has been modified since being fetched from the database, it
is forced back to the database. So that we can detect such modifications, original pages
are marked changed or unchanged. A page is marked unchanged when fetched from the
database and after being forced, and is set to changed when a transaction that modified
the page commits.

Here are the possible kinds of pages in the cache:

o Unlocked or read locked original, unchanged: contains the same data as its corre-
sponding database page.

o Unlocked or read locked original, changed: has been modified by at least one com-
mitted transaction, but has not yet been written back to the database.

o Write locked original, changed or unchanged: similar to unlocked or read locked
originals, except that some transaction is presently modifying a copy of the page.

e Copy: contains the actual modifications being made by an active transaction.

Let us now consider commit processing and recovery. As noted above, when a transac-
tion commits, it writes to the safe, atomically, the new versions of the pages it modified.
The safe is used as a circular buffer and contains in essence a tail of the commit log. In
recovery we simply scan that tail in the order it was written, putting pages back into the
cache slots from which they came. Having rebuilt the cache, we continue with normal



processing. There is a small catch, though: before we overwrite a page on the safe, we
must be sure it is not needed for crash recovery (restart-free in the terminology of Elhard
and Bayer).

Suppose we overwrite a particular page p at the beginning of the safe. If there is
another copy ¢ of the page on the safe, then ¢ is more recent than p, so we do not need
p. If there are no other safe copies of p, and p is not still in the cache, then when p was
replaced in the cache it was forced to the database; therefore we do not need the safe copy.
The only situation left is a page with no other copies on the safe, but which is still in the
cache. In this case we force the cache original to the database before overwriting the safe
version.

To reduce commit delay a background process could keep track of which pages in
the cache have a safe copy that is likely to be overwritten soon. That process can also
force selected unlocked changed originals to the database, to maintain a pool of cache
entries eligible for replacement. In either case we are trading occasional unnecessary I/O
for improved response time. Clearly, choosing an appropriate replacement algorithm is
important in controlling system overhead.

Here is a summary of the various operations performed on pages:

o Feich from database to cache: performed on a cache miss.

e Force from cache to database: done only to unlocked, changed pages, in order to free
cache slots or to allow overwrites of safe pages.

e Write from cache to safe: newly modified pages are written at commit time.
e Read from safe to cache: to rebuild the cache after a crash.

e Making copy of a cache original: to allow a transaction to modify the page without
requiring undo work on abort.

e Installing copy back as original: part of commit processing.

e Discarding copy: part of transaction abort.

The salient properties of the database cache approach are:

It keeps the database and safe clean, avoiding global undo upon recovery.

It keeps the cache clean, avoiding I/O upon transaction abort.

Commit processing is fast because it involves only sequential writes to the safe.

Recovery is fast because it requires only a sequential read of the safe.

Scheme I: A Technique Using Page-Oriented I/0

We now describe our first scheme for finer grained locking. It retains the page oriented
I/O of EB, but substitutes locking of smaller items, which we will call atoms. An atom is
a part of a page, but does not span multiple pages. We assume that transactions request
atoms in groups, by specifying a range of atoms to be read or modified. An atom might
be a bit, a byte, or a larger unit. Though it is not absolutely necessary, we will assume



that all atoms are the same size, and that they can be numbered sequentially through each
page and the whole database.

. The char}ges to EB are as follows. When a transaction desires to read a range of atoms,
it ﬁr.st acquires a read lock on them, and then accesses the relevant pages in the cache,
loading them from the database as necessary, just as in EB. Note, however, that a read
request can access (the original of) a page being modified by a different transaction, so
long as the atoms that the transactions access are different (which locking insures).

When a transaction desires to modify a range of atoms, it acquires write locks on them,
and fetches any pages not in the cache. It makes copies of those pages for which it does
not already have copies, and works on the copies. Note that unlike EB, there will always
be an original page for each copy. This design is the easiest to explain; we describe some
alternatives at the end of this section. Similar to the read case, we can acquire write locks
on, and modify, some atoms of a page, while another transaction is reading (or modifying)
other atoms of the same page.

When a transaction aborts, we simply release its locks and discard its copies. When a
transaction commits, we first release its read locks. Then we copy its write locked atoms
back to the original pages in cache, being careful not to disturb any other atoms in the
originals. Finally we write the modified originals to the safe, release the write locks, and
discard the copy pages.

The installation of the modified atoms and writing of pages to the safe needs to be done
as a single atomic action, to avoid including parts of another transaction’s modifications
if two transactions commit at about the same time. One way to achieve the required
atomicity is to use a mutual exclusion lock. When a transaction is to commit, it acquires
the lock, performs its commit actions, and the releases the lock. Note that this does
not interfere with active transactions in any way, and that since access to the safe is
sequential, we cannot do any better (provided the processor is fast enough to keep the disk
busy throughout the commit phase). Note that there is no problem with concurrent access
to original pages: transactions reading atoms will not be looking at the parts of the pages
being modified, and ones modifying the pages (i.e., making copies during installation of
the committing transaction’s changes) will not install back the parts of the pages we are
changing.

As in EB, original pages in the cache reflect the updates of all committed transactions
and none of the transactions in progress. The I/O to the safe and the database is exactly
the same. To see this, simply note that a transaction writes to the safe exactly those
pages containing atoms it modified. In EB it would have locked whole pages, but would do
the same safe writes. Recovery is unchanged from EB, as is safe management and cache
replacement (if a page is considered to be locked when any of its atoms are locked).

Even as it stands, this simple extension may be useful for increasing the concurrency
of the database cache. The cost lies in maintaining finer grained locks, a topic we examine
in detail later, and in maintaining n + 1 versions of pages under modification by n active
transactions. However, it is natural to consider reducing the I/O to the safe at commit
time, by writing only the modified parts of pages. As might be expected, this affects the
algorithm in other ways, as we will see in the next section. We note in passing that EB, as
well as our schemes, is easily adapted for use with optimistic concurrency control [Kung
and Robinson 81].

As mentioned above, unlike EB, we will sometimes have an original page that is not
strictly necessary. This happens when a transaction desires to modify a page not currently
in the cache. In fact, if the whole page is locked, we can omit the original page just as
in EB, with no change to our algorithms. Let us now consider what happens if the whole



page is not locked and we do not keep an original copy. Suppose transaction T} made the
original request, and that transaction T; requests some of the unlocked atoms. Further
suppose that in order to avoid fetching the page from the database, we give T; a copy of
T,’s copy. Now, if T} aborts and T; commits, we are in trouble: we cannot reconstruct the
original value of the atoms locked by T}. Similarly, if T; commits first, we cannot formulate
the correct value to write to the safe. Solutions to these problems include:

Maintaining the original version, as first suggested.

Fetching the page from the database for T3’s request, rather than copying the copy.

Fetching the page from the database if T} aborts, or if T2 commits first.

Giving T; a copy of T}’s copy, so that T; can proceed immediately, but starting a
fetch of the page from the database just in case T commits first or Ty aborts.

Some of the above techniques require distinguishing copies from copies of copies. Any
of the approaches might be reasonable, depending on the nature of the application. For
simplicity we will assume that there is sufficient memory to maintain an original whenever
there is a copy.

Scheme II: A Technique Using Atom-Oriented I/O

In Scheme I, when a transaction T' commits, a full copy of every page containing atoms
modified by T is written to the safe. Scheme II takes a different approach: only the
modified atoms are written, not the entire page. This can significantly reduce the commit
1/0. For example, suppose transaction T updates three records that happen to lie on
different pages. Under Scheme I, three pages must be written to the safe when T' commits.
However, if the records are small, they might all fit in one page. Scheme II will write just
one page.

Let us consider commit processing in more detail. In Scheme I, we simply write the
new value of each modified page to the safe. The last page is specially marked so that we
can tell if there is a crash while writing. For Scheme II, we write a sequence of variable size
records. Each record contains a sequential range of modified atoms, and header information
to identify those atoms. We start at a page boundary, and pad out the last page, so that
we write an integral number of pages. As in Scheme I, we mark the last page to make
the whole commit atomic: the pages are ignored on restart unless the last page is present.
We also mark the first page. We call the sequence of pages written to the safe by one
transaction a commit segment.

Restart is different under Scheme II. We read the complete commit segments (those
having both a start and end page), in the order they were written to the safe, and install the
ranges into the cache. As we do so, for each page we keep track of which atoms have been
filled in from the safe, and which are unknown. Once we have processed all the commit
segments, we scan the cache, and for each page that has remaining unknown atoms, we
fetch the page from the database and fill in the unknown atoms. We can schedule the
database reads in any order we like, so we can reduce the I/O latency.

As in EB and Scheme I, we may need to force pages to the database before overwriting
an old commit segment on the safe. Suppose we are about to overwrite the first page of the
commit segment for transaction T. The simplest scheme is to force every cache resident
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page that was modified by T. (Note that pages not in the cache must have been replaced,
so they have already been forced to the database.)

Doing forces is a little more tricky in Scheme II than before, however. The reason is
that the safe may not contain enough information to reconstruct the whole page. Hence,
if we crash while writing the page to the database, we cannot recover the contents of the
missing atoms. Hence, we must write at least the atoms not on the safe, if not the whole
page, somewhere, before writing to the database. We can use an intentions list, separate
from the safe, to hold the values of the pages being forced. First we write all the pages
to the intentions list, and then write them to the database. The restart procedure will
redo any saved intentions. This is a simple approach, and should not add significantly to
restart time because the intentions list will not contain many pages.

On the other hand, rather than using an intentions list, we can just make sure there is

a full copy of page p on the safe before forcing p to the database. There are three ways to
make this guarantee:

e Whenever p is modified and does not have a full copy on the safe, the modifying
transaction writes a full copy to the safe instead of just the modified atoms. This
approach simplifies safe management, as compared with the alternatives presented
below. However, it may increase the commit time of the transaction writing the
full copy. The significance of this increase depends on the capabilities of the disk
hardware and software, etc.

e We can wait until the commit segment containing the first modification to p is about
to be overwritten, and write a full copy to the safe then. This approach requires
keeping track of how much space is left on the safe and insuring that we can always
make the necessary number of full copies in the worst case. Determining the absolute
minimum space required is possible but complex. A simpler method is to keep room
for all cache resident changed pages that do not have a full copy on the safe. Delaying
full copies until the last moment can also hold up committing transactions.

e We can make a full copy sometime between the two extremes of the previous methods.
We can wait until we are getting close to overwriting the first commit segment, but
make the full copy when the I/O channel to the safe is otherwise idle. This method
reduces interference between safe management and committing transactions.

To manage any of these schemes we need to know whether any given cache page has a
full copy on the safe, and if so, where that copy is (so we will know when it is about to
be overwritten). In particular, we associate with each cache page the location fcloc of its
most recent full copy. The fcloc field can be either a location on the safe, or the special
value none. When a page is read into the cache, its fcloc is set to none. To force a page,
we write a full copy to the safe if fcloc is none and set feloc to indicate the new location.
Then we write the page to the database. When we overwrite on the safe the most recent
full copy of a cache resident page, we reset the page’s fcloc to none. As a special case, note
that if a transaction modifies a whole page, it will write the whole page to the safe, and
thus can set feloc appropriately.

It is perhaps interesting to realize that when Scheme II makes a full copy, it is accom-
plishing both a kind of fuzzy checkpoint of the cache contents, and making a write-ahead
log entry for the impending database modification.

This completes our presentation of the the two schemes for fine grained concurrency
control for the database cache. We now suggest how to implement fine grained range
locks.



A Data Structure for Range Locks

The algorithms of earlier sections assumed a data structure for recording and maintaining
locks on arbitrary ranges of atoms in the database. Though the algorithms are formulated
in terms of read and write modes, extension to other modes, such as for intention locking,
is straightforward. The data structure we propose is the binary lock tree, or BLT for short.
It is binary in two senses: we break each range down into blocks whose size is a power of
two; and these blocks are stored in a binary tree. There are some similarities among the
BLT, the binary tree used in the binary buddy system, and quad- and oct-trees.

Suppose a transaction is interesting in acquiring a lock on the range of atoms [a, b},
inclusive. We split that range down into blocks, where each block has a size that is a power
of two and is aligned on its power of two boundary. For example, blocks of size 8 would
be [0,7], [8,15], and so on, but would not include [4,11], which would have to be split into
[4,7] and [8,11]. The range of each block can be expressed as [2*, (5 + 1)2* — 1] for some
7 and k. After splitting, each block is locked separately.?

As shown in Figure , there are two kinds of lock entries. This is because we maintain a
separate tree for each transaction, to record just its locks so that we can release them on
commit, etc., and we maintain one global tree of all the locks, for detecting lock conflicts
quickly. It may be possible to reduce the duplication of information between the individual
and global trees, but we will not pursue such improvements here.

Each lock entry, be it individual or global contains the following information:

o The range of the lock. This can be expressed in a variety of equivalent ways; will be
not explore the alternatives here.

The number of transactions holding this lock in read mode.

The writer (if any) holding this lock in write mode.

The number of read locks held on strict subsets of this lock’s range.

The number of write locks held on strict subsets of this lock’s range.

The sublock counts assist in determining conflicts. The read subcount for a block
is the sum of the read counts for its sub-blocks. The write sublock count performs the
same function for writers. Global tree lock nodes contain an additional field: the queue of
transactions waiting to acquire the lock. The queue entries would identify the requesting
transaction, its desired mode, etc.

We now describe the details of lock tree organization. Consider A, any node in the
tree, and suppose A has the range [52*,(7 + 1)2¥ — 1]. All nodes with range contained
in [72*%,72% + 2¥-! — 1] (the first half of A’s range) will lie in A’s left subtree, and those
with range contained in [2* + 2%~ (5 + 1)2* — 1] are in the right subtree. Note that it is
possible to have nodes in the tree that have no readers and no writer. We call such nodes
unlocked; they occur only if subranges of their range are locked. A sample BLT is shown
in Figure .

Let us see how to maintain the BLT on insertion. Let the root node of the current tree

be A with range a, and the new node B with range b. There are four cases to consider
when requesting a lock:

2Actually, it is possible to split as we go, but it is easier to describe the algorithm as doing the splitting
first.
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[ range (low : high) ] # readers | writer | # read sublocks ] # write sublocks |

Individual Transaction Binary Lock Tree Node Format

[ range (low : high) | # readers l writer | # read sublocks | # write sublocks | waiting queue

Global Binary Lock Tree Node Format

[0:127 [0 [-]6]1]

N\

|8:15]|0[-[3]1] | 64:95 [3 |- [3[0]
[8:11]2]-]1]1] [64:79[1]-[2]0]
189[1]-[0]0] [10:10]0]T1]0f0] [72:79]2[-[0]0]

A Sample Individual Transaction Binary Lock Tree

Figure 2: Binary Lock Tree Data Structure
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Figure 3: Inserting into a Binary Lock Tree
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a = b: Just increment the read count of A, store the id of the writing transaction,
or queue the transaction, as appropriate. This is shown in Figure 3a.

e bC a:) Recursively insert B into the left or right subtree of A as appropriate (not
shown). :

e a C b: Above A, create an unlocked node with range b. Insert B into the resulting
tree. This will look like Figure 3b or its mirror image.

e a and b are disjoint: Create an unlocked node C with range including both a and b,
and insert both A and B into it. Suppose that we use the smallest possible range
for C. We call that range a W b, the cover of a and b. Note that A and B will lie in
opposite subtrees of C. The result will be like Figure 3c or its mirror image.

Suppose a transaction completes and we need to release its locks. Again, each range
is split into blocks, which are released individually. Let us consider the possible cases,
each time starting with the tree shown in Figure 4a. There is nothing interesting to do
unless a node ends up unlocked. If a node having two children becomes unlocked, such
as B, we do nothing: the node is retained so as to preserve the structure of the tree. If
a node having only one child becomes unlocked, we replace it by its child. For example,
if C is unlocked, F replaces it as illustrated in Figure 4b. The remaining cases concern
leaf nodes. Suppose E becomes unlocks. If its parent, B, is locked, then the leaf E is
discarded without affecting the rest of the structure, as shown in Figure 4c. However, if
B is unlocked, then it can be replaced by its other child (D in this case). Figure 4d shows
the result.

Whenever a lock is acquired or released, we must update its ancestors’ sublock counts.
The appropriate bookkeeping is straightforward and will not be discussed further.

What is the performance of this algorithm? If the number of atoms in the database is n,
then a given range may be split into O(log n) blocks in the worst case. Each of these blocks
may take up to O(logn) time to insert, for a worst case time cost of O(log? n). The worst
case space cost is O(log n) per range locked. Since in any practical system n is a constant,
these costs can be bounded. In comparison, the cost for page locks is proportional to the
number of pages locked. Of course we could use a BLT only down to page size, and some
other data structure (perhaps bit maps) for the atoms within a page, or a variety of other
schemes. The desirability of one data structure over another would be determined by the
pattern of use.

Rather than splitting ranges all the way down to their binary blocks, we could split
them only until the pieces become leaves. This might improve the average (but not the
worst case) time and space cost of the algorithm, though insertions might need to split
existing nodes, and deletions would have to recombine them. It is not clear the additional
complexity in the algorithms are justified by reduced costs.

Conclusions and Directions for Further Research

We have presented two schemes that provide finer grained concurrency control for the
database cache and suggested a data structure for keeping track of the locks. The most
obvious direction to take now is to implement these schemes and see how they work. There
are several aspects that can be explored:
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¢ The replacement policy for the cache and the advisability of, and algorithms for, a
background process to free cache slots and force pages to the database.

e Comparison of EB, Scheme I, and Scheme II along the lines of the performance
studies reported by Elhard and Bayer.

¢ Investigation of alternatives regarding the creation of originals in the cache when a
page not in the cache is locked for writing.

o Consideration of the various safe management (forcing) policies possible for Scheme
IL.

e Studies of the Binary Lock Tree and other data structures for maintaining the locks.

e Testing the effects of different atom sizes on the performance and behavior of the
system.

e Comparison of any of the schemes with their corresponding version using optimistic
concurrency control instead of two-phase locking.

While we leave a number of questions unanswered, we have shown with Scheme I that
fine grained concurrency control for the database cache is not difficult to devise, should
not be complicated to implement, and will offer improved concurrency. Whether Scheme
II offers real advantages over Scheme I remains to be seen. While finer grained physical
locking can improve concurrency, greater gains might be made by taking the semantics of
higher level operations into account, as suggested in [Schwarz and Spector 84, Weihl and
Liskov 85].
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