3

RS: A Formal Model of Distributed Computation
For Sensory-Based Robot Control!

Damian Lyons
COINS Technical Report 86-43

September 1st, 1986

Laboratory for Perceptual Robotics
Department of Computer and Information Science

University of Massachusetts
Ambherst, MA 01003

'Preparation of this paper was supported in part by grants ECS-8108818 and DMC-8511959 from NSF

RS: A Formal Model of Distributed Computation For
Sensory-Based Robot Control

A Dissertation Presented
By

Damian Martin Lyons

Submitted to the Graduate School of the

University of Massachusetts in partial fulfillment
of the requirements for the degree of

DOCTOR OF PHILOSOPHY
September 1986

Department of Computer and Information Science

© Copyright by Damian Martin Lyons 1986
All Rights Reserved.

e

This research was supported in part by grant numbers ECS-8108818 and
DMC-8511959 from the National Science Foundation.

ii

-3 _a

—3 =3 ~—3 —3 ~3 —3 —3% —3 —3 —3% ~—3 —3 3 —3 —3 —3 T3 —3 —3

RS: A FORMAL MODEL OF DISTRIBUTED COMPUTATION For
SENSORY-BASED ROBOT CONTROL

A Dissertation Presented
By

DAMIAN MARTIN LYONS

Approved as to style and content by:

oM A A

Prof. Michael A. Arbib, Chairperson of Committee
Jei o Y R,
Prof. Krithivasan Ramamritham, Member

(H_ C__._:;))\((\)-SXK" °t . \\

Prof. Theddoré Djaferis, Outside Member

/;M (e

Prof. Conrad A. Wogrin, lﬁpa.rtment Chair
Computer and Information Science

iii

Acknowledgement

I wish to thank my committee chairman, Michael Arbib, for the freedom and
encouragement he gave me in developing the ideas in this dissertation, and to
acknowledge the debt that this work owes to his theory of schemas. My thanks
are also due to Krithi Ramamritham and Ted Djaferis, the other members of my
dissertation committee, their feedback was essential.

I am especially indebted to Jeanie Shippey Lyons, my wife. Her support and
friendship saw me through all of this, and her help with the final drafts of this
document were invaluable. I also owe a tremendous debt of gratitude to my
parents Patrick and Catherine Lyons, who taught me to work hard at what I
wanted to do, even if it took me far from home.

Finally, thanks are due to the members of the Laboratory for Perceptual
Robotics (LPR) with whom I have spent many hours of fruitful discussion; espe-
cially the members of the ‘Hand Group’, where all this started: Thea Iberall and
Michael Arbib, and also Gerry, Judy, TV, Ruki, Gordon, Randy, and Miles.

iv

1 4 3 3 _3

ABSTRACT
RS: A Formal Model of Distributed Computation

For Sensory-Based Robot Control
September 1986
Damian Martin Lyons, B.A.I,B.A., Trinity College, Dublin
M.Sc., Trinity College, Dublin
Ph.D., University of Massachusetts
Directed by: Professor Michael A. Arbib

Robot systems are becoming more and more complex, both in terms of avail-
able degrees of freedom and in terms of sensors. It is no longer possible to continue
to regard robots as peripheral devices of a computer system, and to program them
by adapting general-purpose programming languages. This dissertation analyzes
the inherent computing characteristics of the robot programming domain, and
formally constructs an appropriate model of computation. The programming of

a dextrous robot hand is the example domain for the development of the model.

This model, called RS, is a model of distributed computation: The basic mode
of computation is the interaction of concurrent computing agents. A schema in
RS describes a class of computing agents. Schemas are instantiated to produce
computing agents, called Sls, which can communicate with each other via input
and output ports. A network of SIs can be grouped atomically together in an
Assemblage, and appears externally identical to a single SI. The sensory and
motor interface to RS is a set of primitive, predefined schemas. These can be
grouped arbitrarily with built-in knowledge in assemblages to form task-specific

object models. A special kind of assemblage called a task-unit is used to structure

the way robot programs are built.

The formal semantics of RS is automata theoretic; the semantics of an Slis
a mathematical object, a Port Automaton. Communication, port connections,
and assemblage formation are among the RS concepts whose semantics can be
expressed formally and precisely. A temporal logic specification and verification
method is constructed using the automata semantics as a model. While the
automata semantics allows the analysis of the model of computation, the temporal

logic method allows the top-down synthesis of programs in the model.

A computer implementation of the RS model has been constructed, and used
in conjunction with a graphic robot simulation, to formulate and test dextrous
hand control programs. In general, RS facilitates the formulation and verification
of versatile robot programs, and is an ideal tool with which to introduce Al

constructs to the robot domain.

vi

.3

—3

1 3

3 13

—.d

g

3

—3 3 3

TABLE OF CONTENTS

LIST OF FIGURES i i i it i i it ettt ittt i et e e
LIST OF TABLES i it e et e et et et e e et e ee e e

- CHAPTER

I. Introduction
§1. Motivation for Developing a Model of Computation for Robots . . .
§2. Strategy for the Development of the Model

§3. Overview of the Dissertation

1. Example Domain: Grasping and Manipulation with a Dextrous Hand
§1. Previous Work inthis Area.
§2. A General Model of Grasping and Manipulation
§2.1 Example Task,
§2.2 A Framework for Grasping
§3. ASimple Set of Grasps

§3.1 Outlineof the SSGGrasps
§3.2 Kinematic Details of the SSG grasps
§3.3 Encompass Grasp: (P, Ae, Me) . - . . - . ..o ool
§3.4 Lateral Grasp: (P;, A;, M{)o o

§3.5 Precision Grasp: (Pp, Ap, Mp)

vii

§4. Selection of Grasps oo 41
§5. Summary and Discussion oL 44
III. Characteristics of the Robot Domain 45
§1. Observation One: Inherent Parallelism 45
§2. Observation Two: Formal Verification 47
§3. Observation Three: Perception and Action 48

§4. Observation Four: Parameterizable Action Plans and Object Models 50

§5. Summary e 51

IV. Structure of the Computational Model o 53
§1. Part I: An Introductionto RS 53

§2. Part II: The RS Model 62

§2.1 Distributed Property 62

§2.2 Instantiation Property 63

§2.3 Primitive Schemas 00, 69

§2.4 Aggregation Property: 72

§2.5 Fanproperty:ttt 76

§2.6 Classification Property: e e e 79

§2.7 The Task-Unit Assemblage 83

V. Formal Semantics 87
81. Introduction i et e e e e e e e, 87

§2. The Port Automaton Model 88

§3. Construction cf the Formal Semantics 101

viii

3

3

—3a 3

4

3 __3

P

3 3

i

3

3

‘
-3
X

e

I IR B

~—3 3

VI. Verification in RS 133
§1. Network and SI Verifieation 134

§2. Temporal Logic 134

§3. The Model 138

§4. Sl Assertions P 144

§4.1 ProofRules ., C e et e 148

§4.2 Example bt e e e e e e e e e e e 149

§5. Reasoning about Schema Behavior 153

§5.1 Extension of Behavior 154

§5.2 Transition Axioms e e e e e e 154

853 Example, 158

§6. Task-Unit Assertions 160

§7. Limitations of the Verification System 161

Vlli'. Representational Issues 162
§1. Recursio and Iteration 162

§2. Some Common Data Structures 165

§3. Al Representadtions0..... 171
VIII.Implementation of the SSG System 174
§1. Example Assembly Program 174

§1.1 The Example Task 175

§1.2 Sequencing of Robot Programs 175

ix

§2. The SSG System

§2.1 Design of the Implementation

§2.2 SSG Schema Specifications

IX. Comparisons

§1. Robot and Al Models

......................

§1.1 Previous Schema Work

§1.2 Robot Computation Models

§1.3 The NBS Robot System

§1.4 The Actor Model of Computation

§2. General Purpose Models . .

......................

§2.1 Communicating Sequential Processes

§2.2 OCCAM

X. Conclusion

§1. Summary
§2. Implementation

83. Future Research

APPENDIX

A. Additional RS Programs

B. Glossary

......................

§1. The Grasping and Manipulation Terminology

§2. The RS model Terminology

199

199

199

202

202

207

208

208

212

214

214

216

216

218

226

226

228

3

.3

S B

e

L3

S

"__,B ‘__.B

A

3

3

—3

§3. The Temporal Logic Terminology

BIBLIOGRAPHY

.....................................

xi

LIST OF FIGURES

1. The Components of the Example Assembly Task. 12
2. The Completed Example Assembly Task. 12
3. Wrist (2) and Object (b) Centered Frames. 15
4. The Kinematicsof the Reach. v 16
5. Hand Models: DOF and Link Numbering. 24
6. Graphs for Finger-tip/Thumb-tip Separation Equations. 26
7. Geometrically-Reasoned Inverse Kinematic Solution. 29
8. The Encompass Grasp. v v v v v v oo oo on oo v oo nnoaoos o 31
9. Encompass Acquisition Strategy. 34
10. The Lateral Grasp.« o vt v ot i it e e it e e teneae o 36

11. Compliance of Lateral Grasp to Shape (a) and Limited Manipulation of the

Grasped Object (b).o ot 38
12. The Precision Grasp. « -+ vt v vt vt v vt e oot v oo v oo nnnn 39
13. Recursive Network of Factorial. oo 68
14. The Counter Assemblage. 75
15. Fan-in (a) and Fan-out (b). 7

xii

—_13

—3 T3 1

3 T3 T3 T3

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

34.

The Center Assemblage. 4... . 79
The 0bj? Precondition. 81
The Port Connection Map. 89
Construction of the Network Automaton. 92
Network Described by Port Connections (a) Versus Network Map (b). 93
The Semantics of the Forall Statement. 124
The Sequential Version of the Forall Operation. 126
The move$joint Assemblage. 150
The sth Level of Recursion of Sumfromzero. et e 164
Internalsof stack. e 166
Internalsof array. R {1
Internal Structure of the grasp Schema. ceesecaassses 184
The Reach, Preshape and Acquisition Sequence. 186
The preshape? Assemblage. e . 189
NBS Hierarchical Robot Controller. 203
A Levelof the NBS System. e e e e 205
RS and CSP Composition Operations: Part I. 211
RS and CSP Composition Operations: Part II. 211
RS and CSP Composition Operations: Part IIL. 212

xiii

LIST OF TABLES

1. Linear Angular Separation Equations for Both Hand Models. 27
2. Object Characteristics for the Example Assembly Task. 42
3. RS-TL1 Assembly Program for the Example Assembly Task. 176

Xiv

—3 T3

~j ~—3 —3 —3 3 3 3

CHAPTER I

INTRODUCTION

There is a strong link between the characteristic called intelligence and the ability to
use tools. It is quite certain that much of man’s success is due to his ability to extend
his mind and body by the tools which he has created. At the dawn of civilization, these
tools were simple and designed to extend human physical powers, e.g., the jawbone of an
ass, a flint knife, etc. The advance of civilization has been matched by the development
of more complex and general-purpose tools. The robot concept could possibly yield the
ultimate general-purpose tool - a ‘machine’ which can be instructed to carry out any task
a human can, and which will accomplish it at least as well as a human. However, the

current state of robot research is quite primitive, in contrast to this ultimate scenario.

One of the most challenging problems today is the attempt to build a robot which
has some measure of the versatility of a human. As generally deﬁneci, a robot system
consists of a manipulator, a set of sensors and a controller. The manipulator is that
part of the system (normally mechanical) which is used to effect changes in the robot’s
external environment. Each sensor ‘measures’ some property of the external world. In
the most ¢ommon class of robot system, the Industrial Robbt, the manipulator is usually
a single “arm”, a series of rigid links connected by controllable joints. The controller
is that element of the robot system which determines the behavior of the manipulator.
Simple controllers just store a sequence of joint position values which they transmit to
the joint actuators in some fixed sequence. More complex controllers use sensory snput
and some snternal task description to make the response of the manipulator appropriate

to the external environment of the robot. This dissertation addresses the structure of
such a controller.

In almost all cases, this controller is a general-purpose computer. The programs which
are executed on this computer are not, however, general-purpose programs — they can

be placed in one of the following classes:

1. Servo-Control: These programs usually implement a control-theoretic approach to
ensuring that parameters of the manipulation structure, such as joint positions,

velocities, torques, stiffnesses, etc., can be reliably maintained [52,70].

2. Sensory Processing: Programs which refine or combine the raw data produced by

the robot’s sensors [7,69,86]. These may include programs for object recognition
— classifying objects in the robot’s (immediate) environment into parameterized

instances of some set of object classes.

3. Tactical Control/Planning: Programs which break down the description of a sin-

gle atomic operation to be carried out on an object (one of a fixed class of such
operations), into a series of commands to the servo-control and sensory processing
programs [48,49]). Operations which are referenced against objects, as opposed to

parts of the manipulator, are called task-level actions.

4. Strategic Planning: Programs which take a high-level, goal-oriented description of

some complex task and determine a sequence of atomic task-level actions which
will result in the robot carrying out the task [25]. A Dynamic Planner [89] is a
strategic planner which can determine from sensory information if some part of its

planned sequence of operations has failed, and how to resolve this failure.

The vast majority of robots today are Industrial Robots; these occupy the lowest rung
of the robot hierarchy. Usually, they have only primitive position sensors, a rudimentary
servo-control system, and not much else. Increasingly, the trend in robot construction is
to build robots with multiple, possibly redundant, degrees of freedom, and which have
many sensor systems. We shall refer to such a robot as a complez robot system. These
robots exist currently in research environments only — not because they are specially
difficult to construct, but because they are difficult to control.

The essence of this control problem is the fact that robots are curreﬁtly being pro-
grammed using general-purpose programming languages, or dialects of such languages,
in which the robot is treated simply as a peripheral device. It is difficult to program
complex robot systems to exhibit their full potential for versatile and adaptable behavior
with the tools developed for general-purpose programming. In this dissertation we argue
that the computation carried out by a robot controller is a spectal class of computation.

In order to be able to program complex robots well, it is necessary to construct a model

3 3 1 _ 3

.3 3 3

t. 3

S I I

3

of computation, a way to describe how computation occurs, which is specifically tuned
to the robot domain. This dissertation will describe the specification, construction and
analysis of just such a model of computation.

§1. Motivation for Developing a Model of Computation for Robots

Our argument is that the computational needs of the robot domain are distinct enough
to be embodied into a formal description of the way in which computation is done. To
be most eﬂective, a model of computation should have a formal semantics by which
expressive (hoiv easy it is to express useful programs) and computational (what algorithms
can be executed) power can be quantified. The goal in constructing such a system is to
simplify the expreséion and examination of robot behavior which might be too complex
to specify and examine in a general-purpose computing scenario. Before the advent of
complex robot systems, it was difficult to justify taking this step, and (therefore) in
the current literature it is programming languages, rather than models of computation,
whiéh are discussed; and, in general, robot programming languages are constructed within
general-purpose programming languages.

The trend in robot languages can be observed clearly; both Grovel et al. [27] and
Noyes [67) provide an overview of current robot languages. Initial robot languages, such
as VAL [82], were essentially collections of motor control statements with little compu-
tational ability. They expressed low-level motor control well but frequently neglected
sensory input. All actions in VAL are specified in terms of the manipulator’s degrees of
freedom (‘DOF). For example, to acquire an object, one can only specify that the gripper
jaws close to a specific position and orientation. Depending on the current state of the
world, this may or may not be equivalent to acquiring the object; the art in programming
these languages is to ensure that the manipulator’s environment is so strongly constrained
that objects are where the program expects them to be. Such languages are called ezplicst
or robot-level languages.

Rather than follow this with an examination the computational needs of the robot
domain, subsequent language improvements focused on greater general-purpose program-

ming power, and grafted appropriate data-types (e.g., vector and frame) and operations

" on to general-purpose programming languages, e.g., ALGOL-like languages such as Pascal

in the case of Stanford’s AL [62] and Karlsrue’s SRL [14].

The next step in robot language development considered the concept of objects against
which actions could be referenced. Their mistake was in attempting to do this via the
control and data structures of a general-purpose programming language. Instead of step-
ping back and attempting to determine what computational charact.enstncs were relevant
to the robot domain, the trend in language development was to provide more and more

intelligent or task-level [49] operations. This resulted in the development of complex
languages such as IBM’s AUTOPASS [48] and Edinburgh’s RAPT [72].

These languages explored the interface between the human task-level specification
and the robot-level specification; yet, they neglected to address how a robot task can be
best represented or executed on a computer system. It is very important to realize that
this is much more than simply an implementation issue. Few complex programs would
be conceived of, let alone written, if all programming was done in machine language.
Similarly, without matrices and vectors, robot kinematics might be impossibly complex.
An appropriate working model can bring the seemingly impossible into the realm of the
possible.

Our approach is as follows: We shall analyze what is known about the robot domain,
and formulate computational characteristics which are uniquely relevant. These char-
acteristics will be the foundations of our model of computation. Note that a model of
computation can be used in several ways: A machine can be built, in VLSI say, which
directly implements the model; a program can be built, in microcode or in a general-
purpose programming language, which emulates the model on a standard computer; or
programs can be written in a general-purpose programming language in such a way that
they obey the structure of the model. These are details of the smplementation of the
model, and we shall not raise them again until Chapter 10, where we describe an exper-

imental implementation.

§2. Strategy for the Development of the Model

Having motivated the development of the model, we now plan how best to develop

the model structure. It is clear that the basic structure of the model must come from
observations about the robot domain. We shall investigate one particular complex robot

domain in detail in order to help generate these observations. This domain will also

serve to provide examples throughout the rest of the dissertation, including a chapter-

L2

.

4

‘3

A

f_3

3

E]

!

3

1 3

[B |

-

[
[
[
g
-
-
-
[
"
-
.
r
-
-
-
T

long implementation example. As we have mentioned, there currently exist a number
of complex robot systems. We choose as our example domain, that of grasping and
manipulation with a deztrous robot hand. We shall argue in the next chapter that the
control of such a hand involves many of the problems central to robotics. In our analysis
we shall not restrict ourselves to this domain, but it will be the main example which is
carried all the way through the dissertation. Our strategy for model development is as

follows:

1. The computational characteristics of the robot domain are formalized in a list of

observations.

2. The model is presented informally, and its structure is related back to the observa-

tions on computational characteristics.

3. An automata-theoretic semantics is developed, and then used to investigate the

structures previously presented informally.

4. A temporal logic system is constructed with the automaton semantics as its model,

for the purpose of specification and verification of program behavior.

5. A number of examples are implemented in the model in order to demonstrate its
representative power and the validity of the assumption that developing a special

model of computation for robots allows the specification of complex robot behavior.

§3. Overview of the Dissertation

This dissertation is organized into 10 Chapters, followed by an Appendix, a Glossary

of Terms, and a Bibliography. In more detail, these are:
Chapter 2: This chapter presents an analysis of a particular example of a complex
robot system, the Deztrous Hand. The goal of this chapter is to provide fuel for the

specifications of the model of computation, and to provide an example domain in which

to use the model.

Chapter 3:
From the analysis in Chapter 2, augmented with references to the literature, a set of
four observations on the nature of robot computation are made. These observations form

the specification for the model of computation.

Chapter 4: The model is presented informally. This chapter starts with a global
overview of the model, relating its structure back to the speciﬁcations of Chapter 3. The
second part of the chapter is a detailed description of the model'n\otation, illustrated with
examples. \ ‘\

Chapter §: In this chapter, the automata-theoretic semantics fd;rxt{e\ model is for-
mulated using the Port Automaton Model of Steenstrup et al. [1983] as'its basis. A
definition of a port automaton is constructed which has special snput and output ports,
as opposed to the general definition in which all ports are bidirectional. The concept of
the snput-output trace of an automaton is developed in order to establish the connection
between automata with unidirectional ports and those with bidirectional ports. This def-
inition is also used to build the semantics of the model notation developed in the previous
chapter. ,

Chapter 6: A temporal logic is constructed to aid in the development of programs in
the model. A method for verifying that programs in the model obey some temporal logic
specification is developed, as well as mechanisms for the top-down development of such
programs from outline specifications. Where Chapter 5 provides us with a tool to analyze
the model of computation, Chapter 6 provides us with a tool to synthesize programs in
the model.

Chapter 7: Some common programming contructs and data structures are translated
into the terms of our model in this chapter: recursive and iterative programs; data struc-
tures such as sets, arrays, stacks, etc; and typical Al representations, such as production
systems, semantic networks and frames.

Chapter 8: This is a chapter-long example of the implementation, in our model, of
the grasping and manipulation material in Chapter 2.

Chapter 9: In this chapter, our model is compared with models which have similar
goals. In particular, the NBS system [2], CSP [32] and OCCAM [59], and Actors [30].

Chapter 10: This chapter presents our conclusions. An implementation of a version
of the model is described, and the directions of future research discussed.

Appendix: More parts of the grasping and manipulation program are presented, for
reference.

Glossary: This summarizes the notation and terminology used in the dissertation. It

has three sections: kinematics of grasping, formal semantics, and temporal logic.

|3

3

L

.3 i3

L3

S B

3 3 1

CHAPTER I

EXAMPLE DOMAIN: GRASPING AND MANIPULATION WITH A DEXTROUS HAND

In this chapter, we examine the control of a complex robot system, a deztrous robot
hand. From this analysis, as well as from the current literature, we shall draw the
computational characteristics of the robot control domain (Chapter 3). Once our model
of computation has been constructed (Chapters 4, 5 and 6), we shall program the grasp
analysis in this chapter as a detailed example (Chapter 8). For those mainly interested in

the robot model of computation, this chapter can be skimmed over and used as reference

material for subsequent chapters.

The control of a dextrous hand involves many of the problems central to robotics:
coordinated, coherent control of multiple and redundant degrees of freedom, the use and
fusion of complex sensory information, and the development of an appropriate task-level
view. Potentially, the dextrous robot hand offers an improvement in the performance of
robot assembly systems since it is more versatile than standard two-fingered, parallel-
jawed robot grippers. Such a hand can grasp a wider range of objects, and manipulate
held objects. However, deriving the principles behind the use of the mechanism involves
understanding both the physical interface between hand and object, and also the task
context constraints on the hand.

In Section 1, we shall overview the current status of the dextrous hand literature,
setting the scene for the development of a framework for grasping and manipulation.
Section 2 introduces the basic concepts of this framework, while Section 3 supplies the
details of the set of simple grasps [54]; a simplified grasping and manipulation system
which will be used as a specific source of examples. Section 4 describes the interface

between the task description and the grasping mechanism, and formalizes grasp selection.

Much of the work in this chapter followed from discussions with Thea Iberall and Michael Arbib, and
was subsequently reformatted in the light of later discussions with Rukmini Vijaykumar and Subramanian

Venkataraman.

Finally, in Section 5, we describe how our grasping work fits in with comparable work
elsewhere, and with our goal of developing a computational model for robot programming.

§1. Previous Work in this Area

The literature to date in the dextrous hand field can be divided into a number of
discrete areas. The field, in general, has a strong bottom-up tendency, for historical
reasons. The initial emphasis was on the construction of appropriate hand mechanisms,
such as that of Crossley and Umboltz [1977], Asada [1979), Salisbury [1982], and Jacobson
et al. [1983]. As well as construction, these experimenters addressed the problem of

controlling their particular hand models at the level of joint movement.

The basic requirement of the object acquisition phase of the grasping movement for
any hand, is that the object be constrained to some controllable degree by contact with
the hand. Salisbury [1982] considered what hand-object contact constraints were neces-
sary to completely constrain a grasped object. The problem of choosing a series of grasp
points such that the net force and torque on the object is zero is frequently called the
static stability problem. Given friction, there will frequently be many choices of grasp
configuration for a specific band and object to impose static stability. If a grasp con-
figuration is such that the object experiences a correcting force from the contact points
whenever it is disturbed a small amount from its nominal position, then the configuration

is said to be dynamically stable.

Hanafusa and Asada [1977) were among the first to consider the stability of a multi-
fingered grasp. For one-DOF elastic fingers, they defined stability as the ability of the
grasp configuration to counter small object displacements with correcting forces. This
work has been extended by Baker et al. [1985] using a modified hand model. They
investigate stability for two classes of grip configuration: Their triangular grip, where a
maximal inscribed circle on a 2-d polyhedral object touches the boundary at three points,
with less than 180 degrees between successive points, and the points then correspond to
finger positions; and their parallel grip, where the maximal inscribed circle touches the
boundary at two points.

Salisbury [1982] analyzes object-finger contact conditions into a number of categories
and uses these to define the mobility and connectivity of a grasped object and hand.

His immediate goal was not to analyze grasp stability but to determine what contact

L2

3

|

(_2

2

{

L2

3

i3

i

A (3

3 13

S

1

f-

conditions can best guarantee complete object restraint when finger joints are locked and
complete object control when the finger joints are active. A grasp configuration through
which arbitrary forces and moments can be exerted on the object through the contact
points is called a force closure grasp. In such a configuration, any motion of the object
will be resisted by the contact points. Nguyen [1986] describes a number of approaches to
the problem of synthesizing force closure grasps. Iberall et al. [1985] discuss the concept
of configuring a human hand to produce specific contact forces at 3 pairs of opposition
sites on the hand; they demand as an input parameter, the object ‘tagged’ with some
number of opposition sites, selected to facilitate future manipulation.

Both definitions of stability relate to the ‘steady-state’; the hand and object as a pair.
A necessary condition for this is that the hand can acquire the object. This means, firstly,
conveying the hand to the object vicinity, and then establishing the finger contact points
in such a manner that the object can eventually be grasped in the correct configuration.
Fearing [1984] divides this phase into two classes: the object priorsty acquisition, where
the object is considered fixed through the course of his snstial touch phase; and the hand
priority acquisition, where both fingers and objects move during the course of the initial
touch phase. The former can be implemented by moving the fingers to their desired object
contact points in such a manner that they exert zero or negligible force on the object when
they initially contact. Once all fingers have contacted, the appropriate contact forces can
be set up. The hand priority grasp actually entails a form of simplified manipulation;
the fingers move the object while closing in on it.

Once the acquisition phase has ended and the object is stably acquired, a subsequent
possible usage of the hand is for object manipulation. If the obje¢t has been gripped in
a force closure grasp then it is possible to control arbitrary small motions of the object
via the contact points. Salisbury [1982] developed the grasp transform matrix for his
hand design; relating motions and forces on the grasped object to motions and forces
at the finger-tips. An object is stably grasped if this matrix has full rank. Kerr [1986]
discussed the role of optimally choosing internal grasp forces (squeezing the gripped
object). Fearing [1984] addresses a simplified form of manipulation, possible without
knowledge of the geometry of an object model. Lyons [1985] suggests a range of grasps is
necessary, with a spectrum of manipulation abilities and object model requirements. He
determines a way to go from a simplified description of the requirements of the task to

an appropriate manipulation model (grasp).

10

One of the few papers to address the requirements of grasping from a task description
is Cutkosky [1985], who develops an explicit list of stability testing criteria to investigate a
particular grasp configuration (characterized by the arrangement of fingers on the object,
and the stifiness and kinematic design of the fingers). His fundamental motivation is that
the robot may choose between a number of grip configurations to determine which are
the most suited in view of expected stability requirements. More recently, Li and Shastry
[1986] have introduced the concept of 2 task-ellipsoid as a way of representing the task
requirements for a grasp. They construct a quality measure which determines how well

a particular grasp will satisfy such task requirements.

This previous work is lacking in a number of areas. Firstly, it provides no clear or
uniform structure in which to see the problems of grasping and object manipulation. To
date, some aspects of the area have been worked on a great deal: hand construction and
stability of grasp, for example. Other areas have been only touched, or not considered
at all: stability at the acquisition phase, simplified manipulation models, integration into
a task-level language, phalange (as opposed to finger-tip) style grips, and the formal
development of reliable joint controllers. One of the first requirements for our example
domain, therefore, is that we construct a framework for the entire grasping and manip-
ulation problem. This framework allows us to classify existing work and to identify the
‘bare’ areas.

Secondly, few, if any, hints are given as to how to relate the requirements of a par-
ticular task to the way in which the hand is used. That is, to go from the knowledge
of some task domain or operation to be performed on some object, to the specification
details for the dextrous hand. Grasp stability is definitely a task requirement, but it is
not the only one. In this chapter, we attempt to rectify both of these problems by for-
mulating a general framework for grasping and manipulation, and by providing explicitly
for task requirement snput in the framework. By doing this, we allow for the integration

of grasping with higher-level processing such as task planning and learning.

§2. A General Model of Grasping and Manipulation

We shall consider the use of a dextrous hand at the level of tactical grasp planner.
By this, we mean a local planning system whose scope covers a single grasp (which we

will take to include subsequent manipulation). The tactical planner must interface at the

~—¥ T3 T3 T3 ¥ Ty I TF T3 T 3 ¥

—3 3

11

topmost level to a strategic planner, whose purpose is to reason about assembly order
and operations. The interface to the tactical planner is task-level; via an instruction to
grasp, an object identifier, and an indication of the operation to be performed. At the
lower level the tactical planner interfaces to an arm and hand control system.

We start our analysis by considering the completion of a simple assembly task with
a dextrous hand. We shall format an instruction list for the assembly. Directly from
this, we can derive directly a level of necessary task-level input to the grasping and
manipulation process. From this example task, we can also place some structure on the
grasping and manipulation process, the start of our framework.

§2.1 Example Task

Figure 1 shows the components of the stripped down servo amplifier assembly which
we shall use as our example assembly task. The completed assembly is shown in Figure

2. The operations necessary to complete this task are as follows:

1. Acquire the Base-Plate and position it at some convenient location in the workspace.

2. Acquire the Large Transformer and place it on the Base-Plate, so that the four affixing legs
are aligned with the four screw holes in the Base-Plate.

3. Screw the Transformer to the Base-Plate with four small screws.

4. Acquire the Capacitor and insert it into the large hole in the Base-Plate, such that the three
affixing legs on the Capacitor are aligned with the three screw holes on the Base-Plate.

5. Secure the Capacitor to the Base-Plate with three small screws.

6. Acquire one of the Side-Plates and position it so that the heat-fins point outwards from
the assembly, and the two large bolt holes are aligned with the two large bolt holes in the
Base-Plate.

7. Acquire and place the other Side-Plate in a similar fashion.

8. Acquire the Top-Plate and position it on top of the two Side-Plates, in such a fashion that
the four large bolt holes in it are aligned with the bolt holes in the Side-Plates.

9. For each of the four bolt holes: Acquire a Large Bolt, and insert it in one of the large bolt
holes in the Top-Plate, through the Side-Plate, into the Base-Plate, and screw it tight.

It is almost a trivial observation that this task consists of a number of object grasps,
followed in each case by some amount of subsequent manipulation, followed eventually
by releasing the object from the hand. We formalize this observation into the basis of

our framework by defining a grasp to consist of the following:

e Configuring the hand to acquire a particular object for a particular task.

. |

Figure 1: The Components of the Example Assembly Task.

Figure 2: The Completed Example Assembly Task.

12

13

e The acquisition of the object in a stable manner.

* Manipulation of the object within the grasp; i.e., exercising some degrees of freedom
associated with the grasp. Until, finally, the object is released.

So, for example, in the case of the Base-Plate: The manipulation objective for acquiring
the Base:Plate is simply to place it at some central location in the workspace, which will
then act as the site for the assembly. The configuration of the hand to suit the object
and task can occur iw parallel with the movement of the hand to a position adjacent to
the target object. This arm movement, during which the grasp is maintained, illustrates
some of the concurrency of arm and hand control. We shall call these the preshape and
reach parts of the grasp respectively. The acquisition process can be diﬂiculé, depending
on the relationship between the current pose of the object and the desired grasp pose; it
may have to undergo some initial manipulation. Once grasped, the Base-Plate must be

moved approximately to some central location in the workspace, and placed it there.

In the case of one of the bolts: There is a complex manipulation objective for acquiring
a bolt. It must be inserted into a bolt-hole in the Top-Plate, and then screwed dowa.
The hand configuration chosen must facilitate fine-motion manipulation characteristic of
the insertion task. The bolt must be acquired in such a manner that the insertion can

proceed (e.g., its insertion axis must not be blocked).

It is clear from these examples that the grasp must be based on the constraints of
desired subsequent manipulation, as well as object characteristics. Within this assembly
task we can identify a number of classes of assembly operation. Each class is typified by
certain global choices such as position versus force control or by particular stereotypicat
details of the operation or task geometry. One class is the acquisition of an object and
its placement at some (possibly precise) location (e.g., the Base-Place). Another class of
operaﬁon is the acquisition of an object in order to snsert it into some container {e.g.,
the motor or the bolts). A third class of motion is the screwing down of the bolts once
they have been inserted. If we consider the details of trying to align the Top-Plate, or
perhaps the motor with some screw holes, then another class of motiox} is sliding an
object to align it on a surface. We can extend this still further by considering the use
of tools; a hammer must be swung down to hit its target — this is a particular ballistic
class of manipulation. It is clear that, in general, there may be many such operation
classes. The task-level input tb our grasping and manipulation framework will, therefore,

consist of the following: an object description (we shall explore its contents later), and

14

an indication of the operation class to be performed (one of a small subset of operation

classes we shall define).

§2.2 A Framework for Grasping

In this section, we shall formalize our observations into a framework for grasping and
manipulation. This framework specifies the structure of the tactical grasp planner men-
tioned earlier. In general, there are cases when tactical considerations may be insufficient
to complete some part of the grasp; we formalize a number of such error cases.

The ways in which a complex robot system, such as a dextrous hand, can interact with
the environment are many. We partition the set of all such interactions into a number of
domasns of interaction, each with specific characteristics. These specific characteristics
can then be chosen to suit the desired operation class and the target object description.
Within each such domain, hand control is accomplished by a specific approzimation to the
full power of the hand. Correct choice of domain will mean that the aspects of the hand
emphasized by the approximation will be those important for this object and operation
class, whereas the aspects ignored will be those that are not relevant. We define an
abstraction called a Grasp which will embody the approximate model for a domain of
interaction.

We start by assuming a hand coordinate system in the wrist of the hand model
(model ¢) F;,, (sce Figure 3(a)), and an object-centered coordinate system F,, (see Figure
3(b)) with its origin at the center of mass of the object. In the next section, the grasp
components are described in some detail, and this is followed by discussion of the grasp

selection and parameterization mechanisms.

The Grasp Components

A grasp G is a tuple (P,, A,, M,) consisting of:

Preshape Component,P,: Once the operation class and characteristics of the tar-

get object are known, a grasp can be chosen suited specifically to these. The preshape
component configures the hand in preparation for object acquisition. The preshape con-
figuration is, of course, a function of a particular grasp; but it is also a functio<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>