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ABSTRACT

A number of mechanisme have been designed for controlling
entity visibility. As with most language concepts in computer
science, visibility control mechanisms have been developed in
an eseentially ad hoc fashion, with no clear indication given by
their designers as to how one proposed mechanism relates to aa-
other. This paper introduces a formal model for describing and
evaluating visibility control mechanisma. The model reflecta &
generalised view of visibilityin which the concepts of roquisi-
tion of access and provision of sccoss are distinguished. This
model provides & means for characterizing and reasoning sbout
the various properties of visibility control mechanisms. Specifi-
cally, a notion of precisences is defined in this paper. The utility
of the model is illustrated by using it to evaluate and compare
the relative strengths and weaknesses of the visibility control
mechanisms found in ALGOL6O, Ads, Gypsy, and an approach
we have developed, called PIC, that specifically addresses the
concerns of visibility control in large software systems.

1. Introduction

For over twenty years, nesting has been the predominant
visibility coatrol mechanism found in modern programming lan-
guages. It bas been informally argued elsewhero that nesting
is not sufficient to describe the wide range of possible visibility
relationships among the entities composing a software system
[5.24). A variety of languages, such as Ada [}, Clu [13], Eu-
clid (11}, Gypey (1], Mesa [15], MODULA-2 [20}, and Smalltalk
{8], have attempted to compensate for the inadequacics of nest-
ing by offering alternative and/or supplemental mechanisms for
visibility coatrol. As with most language concepta in computer
ecience, however, visibility control mechanisms have been devel-
oped in an essentially ad Aec fashion, with no clear indication
given by their designers as to how one proposed meochenism
relates to another.

This paper introduces & formal model for describing and
evaluating visibility coatrol mechanisms. The model reflocts &
generalised view of visibility in which the concepts of requisi-
tica of access and provision of accese are distinguished. This
mode! provides a means for characterising and reasoning about
the various properties of visibility control mechaniams. With
this model, language designers can better justify new meche-
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pisme and software developers can decide upon the suitability
of & mechanism for controlling entity visibility within their ap-
plication programs. Specifically, we have used the model to
formulate a definition of procisences and applicd that definition
in the evaluation of several visibility coatrol mechanisms.

The pext soction prescnts the basic features of the formal
model. The use of the model for describing visibility control
mechanisms is discussed in Section 3. Section 4 illustrates the
use of the model in evalusting such mechanisms. Theorems
are presented that scrve to characterise the relative strengths
and wesknessos of the visibility control mechanisms found in
ALGOL60, Ads, Gypsy, and an approach we have developed,
called PIC, that specifically addrosses the concerns of visibility
coatrol in large software systems (21,22,23].

2. Basic Definitions

Traditionally, the concept of entity visibility has been do-
fined in terms of declaration, scope, and binding (cf., [17]). In
many programming languages, an entity is a language element
that ia given & name. Thus, entitieginclude such things as data
objoects, types, statements (labels), or subprograms. A decls-
ration introduces an entity and associates an identifier (ame)
with that entity. The scope of & declaration is the region of
program text over which that declaration is potentially visible.
Many languages allow a singlo identifier to be associated with
more than one declaration and the scopes of those declarations
to overlap. Binding relates the use of an identifier, at a given
point in a program, to a particular declaration. A description of
a visibility control mechanism, then, is csseatially a description
of how that mechanism controls scope.

The formal model prosented bere is based on the more gen-
eral coacepls of requisition of sccess and provision of access,
which are two different, yot complementary, points of view on
visibility. Access to an entity is the right to make reference to,
ot wee of, that entity in declarations and statements. Requi-
sition of sccess occurs when an entity (implicitly or explicitly)
requests the right to potentially refer to some set of eatities.
Thus, in most programmicg languages & subprogram typically
requests access to iteelf and any locally declared entities, as well
es certain noo-local entities. Provision of accoss occurs when
an eatity (implicitly or explicitly) offers, to some eet of enti-
ties, the right to poteatially refer to that entity. Again, in most
programming languages, sccess to & subprogram (i.e., the right
to potentially invoke that subprogram) is typically provided to
the subprogram itsclf and, in languages supporting nesting, to
the subprogram's parent, siblings, and descendents. Under this



view, an actual reference by an entity ¢ to an entity ¢; is only
possible if ¢; roquosts access to ¢; and ¢; provides access to ¢;.!
A vinibility control mechanism is the means for specifying
requisition and provision. The distinction between requisition
and provision reflects the differences in the overall approaches
to coatrolling entity visibility taken in different languagoes. In
languages such as ALGOLBO and Pascal, requisition and provi-
sion are cesentially mitror images; those entitics requosted by an
entity are always also provided ¢o that entity and vico versa. In
the designe of languagos intended for the construction of large
and complex software systems, the dosire for greater control
over entity visibility has resulted in mechanisms that address
requisition and provision in separate, and often unequal, ways.
Our formal model, by drawing out this distinction, is equipped
to expose thoso differences in visibility coatrol mechanisms.
The model centors on the construction and manipulation of
a representation of cotity visibility relationships. This repre-
sentation takes the form of a graph called the visibility graph.

Definition. A visibility graph g = (N, Ary, Ayr) is a di-
rected graph where
N is « finite sct of nodes labeled by the (unique)
names of eatities;
A, is a finito set of ordered pairs of nodes (ny,n;)
denoting the requisition relationship n; “ro-
qQuests accoss to” n;;
Ayr is & finite oet o Brdered pairs of nodes (w;, n;)
denoting the provisioa relationship n; “is pro-
vided to" n;.

The ordered pairs in A, and Ay determine the arcs in the
graph. Any pair of nodes in & visibility graph may be connected
by multiple arcs resulting from the requisitioa and provision
relationships. A visibility graph may also contain loops (arcs
whose origin and terminus arc the same node) and cycles, both
resulting from recursive requisition and provision relationships.
Figure 1 depicts an example visibility graph.

A visibility graph uniquely represents a particular set of
visibility relationships amoag a set of entitics. The visibility
relationships of any entity ¢ are defined by the arcs from & node
1, to that node’s nearest acighbors in the graph (i.c., adjacent
nodes). The absence of an arc between two nodes indicates
that 0o visibility relationship exists between the cocresponding
entities.

To consider requisition and provision separately, we refer to
two spaaning subgraphs of a visibility graph. Ome represests
oaly the requisition relationships of the entities in the visibility
:;’P‘h'hihthotb«nmuuly the provision relatica-

ips.

Definition. A requisition graph ges = (N, Ave, Age) is &
visibility graph where Ay, = §.

Definition. A provision graph ge = (N, Aws, Ape) is o
visibility graph where 4,, = 4.

‘in the remalnder of this paper, when the Intended mesaing s choar, the
word “access” ks drepped frem esrtaln phrases lavelviag the torms “vequl
slticn® sad “provicion”. Thue, & “requesied eatity” s one to which acoes
le requested, aad the “requisition of an satity™ refers to the requisition of
8ccess be the eatity. Similarly, s “provided eatity® ks one for which sccess bs
provided, aad the “provicion of aa eatity” refers to the provision of scosss
o the eatity.
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N = (QRS}
Ay = ((R'Q).(S,R))
A" = ((Q,Q).(Q.R).(Q.s))

Figure 1: A Visibility Graph.

Two useful relationships betwoen visibility graphs can be do-
fined.

Definition. A visibility graph g requost-satisfies e visi-
bility graph A iff Ay € goo.

Definition. A visibility graph g provide-satisfies a viei-
bility greph A iff Ay, C gyr-

where wa say h C g if Np C Ny, Acep € Acey, 80d Apep €
Agey. Informally stated, the desire for a sct of eatities 45 to
be requested by (provided to) some entity e is satisfied by ¢
requesting (being provided) any set of entities s; of which o is
a subset.

A visibility graph can be derived from some represestation
of a program by applying the rules of a particular visibility con-
trol mechanism, or combination of mechanisma, to the entities
in the represcatation. More formally, we denote the collection
of program representations by R, denote the collection of vis-
ibility graphs by G, and define a function that performs this
mapping as follows:

Definition. A visibility function of : R — G is a function
that maps a program representation r € R to a visibility
graph g €G.

A oet of visibility functions VF = {vf,, of,,...} can be definod
where of , is the visibility function implementing the visibility
coatrol mechanism m.

The formal model uses the visibility graph to record req-
uisition and provision relationshipe without insisting on e par-
ticular interpretation of the consistency /inconsistency of those
relationships. For instance, an Ada interpretation of the graph
in Figure 1 would view node Q as representing & library ea-
tity—an entity, such as a sine function, provided to all other
entitiss—even though not all those other entities request it.
Thus, the Q-R and Q-S relationships, for example, would be
interpreted as consistent. The R-S relstionship, on the other
hand, would be interpreted as inconsistent. For Ada, a mini-
mum coaditioa for the consistency of s set of entity visibility
relationshipe is that the entities thet each entity requests are in
fact provided. In termw of visibility graphs, this correspoads to
the following property:

Definition. A visibility graph ¢ = (N, A, 4,.) is woll-
formed for Ada il Y(ny,n;) € A,,, (nj,n) € Ay



Of course, other consistency/inconsistency interpretations of
the graph in Figure 1 are also reasonable. For example, node
Q might represent some sort of “authorization® module; the
fact that S does not request access to Q might then indicate
a problem in the system. In general, the appropriateness of
an interpretation can depend upon the language, the applice-
tion domain, the development method, or even the managerial
discipline in force.

3. Describing Visibility Control Mechanisms

One of our primary goals in this work is to provide an eflec-
tive means of describing visibility control mechanisms so that
one can resson about and evaluate those mechanisms. Exist-
ing informal and formal descriptive methods have proven in-
adequate. The Pascal Report [10], for example, causes many
problems due to the ambiguity of its prose description of entity
visibility {4,10]. The few formal approaches to describing vis-
ibility control mechanisms are operational in nature and have
appeared primarily in operational and denotational semantic
specifications, where a mechanism is typically deacribed by the
manipulation of an (identifier) environment component (e.g.,
{3]). The technique of employing an eavironment component
in & formal description is unsatisfactory because the method
for deacribing manipulation of that environment component is
esoentially algorithmic (despite the use of a “functional” nota-
tion; see, for example, {7]). Morcover, the information in the
environment component is only explicitly described from the
perspective of entity requisition. Employing such a descrip-
tion makes it difficult to understand the ramifications of using
& mechanism. With nesting, for example, a subprogram’s so-
called “local” entities are unavoidably made visible to other
subprograms nested within that subprogram, but this fact is
only implicitly stated in existing formal descriptions of nesting.

In the formal model presented here, a visibility control
mechanism m is described by its corresponding visibility func-
tion vf,,. Each such function has two components that ex-
plicitly address the requisition and provision aspects of entity
visibility. The requisition function rf,, describes requisition by
mapping a program representation to a requisition graph while
the provision function pf,, describes provision by mapping a
program representation to a provision graph. Thus,

Y m(r) = tfu(r) U pf )

where r is some program representation and the union of two
visibility graphs g and h is the visibility graph (N,UN,, Ace U
Avens AprgUA,, »). Component functions rf and pf can be fur-
ther broken down into functions operating on individual kinds
of entities, such as subprograms and objects, as follows:

v/ u(')
’, n(')

where ek; denotes the entity kind upon which the requisition or
provision function operates. Hence, for each entity kind that
is of interest, there is a function that describes requisition and
a function that describes provision. Requisition functions are
similar in nature to the “binding” functions of [9]. Provision
functions, however, appear to have no counterpart in previous
formalisme.

The full description of a visibility control mechanism is of
course quite large and therefore presenting such a description

'Im.oh (') U--u 'In.oh‘. (')
'In.ol. (') U---u le.ch.. (')

in this paper is inappropriate. To illustrate the use of the de-
scriptive method, we instead just give descriptions of the req-
uisition and provision of subprograms as they are controlled by
the nesting mechanism of ALGOLGO. This entails the definition
of the requisition function rf ALCOLSO,subprograms 80d the provi-
sioa function pf ALGOLOO subprograms- The discussion is further
simplified by only considering the visibility of subprograms to
subprograms.

Requisition and provision functions, as mentioned above,
operato on a representation of a program. One suitable repre-
sentation for ALGOL6O programs is a graph we call the nesting

graph.

Definition. A nesting graph g = (N, Aye) is a directed
graph where
N is a finite set of nodes labeled by the (unique)
names of entities;
Apq is a finite set of ordered pairs of nodes (ni.n;)
denoting the relationship n; “parent of” n;,
which means n; is directly nested in n;.

Notice that for this example N consists only of nodes whose en-
tities are subprograms. Figure 2 shows the skeleton of a nested
ALGOLBO program and its representation as a nesting graph.

In the subsequent definition of the requisition and provision
functions, we make use of three auxiliary functions, each of
which maps the nodes N in a nesting graph to the powerset of
N as follows:

(1) Parent(n;) = {n;€ N|(n;,n)€ A,,)}

ng € N such that
(ne.n) € A,

and (n.,n,) € Ape
and 1 # 5

(2) Siblinga(n;) n;€EN

(3) Ancestors(n;) =

n; = Parent(n,)
{n, € N |or n; € Siblingo(Parent(n;)) }
or n; € Ancestors(Ancestors(n;))
For any n; € N, Parent(n;) will always be a singleton since an
entity can be directly nested in only one other entity.
The requisition function is now defined to transform a nest-
ing graph g = (N, A,,) into a requisition graph, explicitly de-

scribing the effect of ALGOLG0’s nesting mechanism on sub-
programa’ requisition.

Definition. 'Idwom.-“pr-roma(g) = (N‘- An- A")
where

N =N
1=3
_ ... y|or n; = Parent(n;)
Are = 1 (mirm5) or n; € Siblings(n;)
or n; € Ancestora(n,)
Ay, =0

From this description it can bo casily seen that (1) a subpro-
gram is requested by itaself, (2) a subprogram is requested by the
subprogram in which it is directly nested, (3) a subprogram ia
requested by those subprograma with the same parent, and (4) a
subprogram is requested by those subprograms nested within
it as well as requested by those subprograms nested within its



begin
procedurs A;
procedure B;

procedure D;
begin ... end D;

procedure E;
begin ... end E

begin ... end B;
procedure C;

procedure F;
begin ... end F;

procedure G;
begin ... end G

begin ... end C

begin ... end A
end

(a)

/®\©
ANAN

(®)

Figure 2: A Nested Program (a) and its
Representation as a Nesting Graph (b).

siblings. Figure 3 depicts a portion of the requisition gu.ph
corresponding to the nesting graph of Figure 2; for simplicity,
sclf-recursive requisition is not shown.

For ALOOLBO, the provision function is Quite similar to the
requisition function.

Definition. ’,Awomm.mm(ﬂ) = (N" A, A")
where

N =N
A, = 0
t=4
Ape = (ymy) 2 7 = Porent(n)

or n; € Siblings(n;)
or n; € Ancestors(n,)

185

Figure 3: Partlal Requisition Graph for Nesting
Graph of Figure 2.

These descriptions reveal the fact that in ALGOLEO requi-
sition and provision are casentially mirror-image counterparts.
In particular, the expression defining the set of tuples (n;, n;)
in Ay, of the provision function is the same as the expression
defining the set of tuples (n;, n;) in A,, of the requisition func-
tion, except that the i's and 5's are reversed. As illustrated
below, such a similarity is certainly not true of all visibility
control mechanisma.

We contend that requisition and provision functions of the
formal model presented here are easier to comprehend than the
manipulation of a dynamic environment component found in
other formal models. As mentioned above, for instance, thooe
other models make it difficult to recognize that with nesting,
a subprogram’s so-called “local” entities are unavoidably made
visible to other subprograms nested within that subprogram.
This problem is clearly expooed using the model presented here;
by simply looking at the requisition and provision functions
for subprograma it is immediately evident that a subprogram’s
suppooedly “local” child subprogram is in fact visible to any
other subprograms nested within that subprogram.

4. Evaluating Visibility Control Mechanisms

Visibility control mechanisms can be characterized in o
number of ways and these characterisations can then provide
a basis for evaluating the strongths and weaknesses of different
mechanisms. This section prosents ome such characterization
that is poesible within the framework of the formal model pro-
sented above. Specifically, the notion of prociscness is defined
for a visibility control mechanism in terms of the mechanism’'s
accuracy in capturing desired roquisition and provision relation-
shipe.

It can casily bo argued that a language’s visibility control
mechanism(s) m should be such that Vg € G, 3r € R such that
v/ m(r) request-satisfies and provido-satisfics 9. In other words,
it should be possible to find a program representation that real-
izes sny requisition and provision relstionships that a developer
might wish to devise, although additional requisition and pro-
vision may be allowed as well. It is not surprising that the visi-
bility control mechanisms of all modern languages that we have



examined satisfy this minimum requirement.? Stronger prop-
erties for evaluating mech are needed, however, which
leads to the following definitions.

Definition. A visibility control mechanism m s
requisition-precise iff Vg € G, 3r € R euch that A
¥ m(r) and Ay = gere-

Definition. A visibility contral mechanism m is
provision-precise iff ¥g € G, 3r € R such that A
Vln(’) and hv' = Gpe-

Definition. A visibility contro! mechanism m is precise
iff it is both requisition-precise and provision-precise.

Definition. A visibility control mechanism m is imprecise
iff it is neither requisition-precise nor provision-precise.

Intuitively, the definitions state that if for each poesible visi-
bility graph, a program representation can be found with the
property that the visibility relationships among its entities are
exactly those specified in the visibility graph, then the mech-
snism is indeed precise. A mechanism is less than precise if
the requisition relationships or provision relationships cannot
be exactly realized. This suggests the following hierarchy of
visibility control mechanisms besed on preciseness:

PRECISENMECHANISMS

4 N\
REQUISITION-PRECISE MECH. PROVISION-PRECISE MECH.

N 7/
IMPRECISE MECHANISM3

If we disregard eclf-recursive visibility, which in most languages
cannot be fully controlled, then entries in this preciseness-
characterization hierarchy are exemplified by the mechanisms
found in ALGOLGO, Ada, Gypsy, and PIC. The following the-
orems, whoose proofs are cnly sketched in this paper, position
these mechanisms in the hierarchy.

THEOREM 1. ALGOLG60 is imprecise.

PROOF (sketch). For a mechanism to be imprecise, & visi-
bility graph must exist for which a program represcatatioa can-
not be found that results in exactly the desired requisition and,
eimilarly, a visibility graph must exist for which a program rep-
resentation cannot be found that results in exactly the desired
provision. One such graph, which reflects a very common sit-
uation in programming, conveniently exhibits both these prop-
erties. This graph, depicted in Figure 4, represents two subpro-
grams A and B, each not callable by the other, sharing exclu-
sive use of a third, utility subprogram C. From the definition of
1/ ALGOL00,rubprograme 804 Pf ALGOLAO,rubprograms it CAB be scen
that for the two subprograme to be hidden from each other, and
0 not callable by each other, one cannot be nested (directly or
indirectly) in the other nor can they be siblings. The utility
subprogram must then be an ancestor (other than s parent) so
that it is callable by both subprograms. This being the case,
the utility subprogram must idably be requested by, and
provided to, other ancestors of the subprograms, thus violating
the desired visibility relationships. O

*Many pre-ALGOLSO languages do mot saticfy this requircment eince
they do mot support recersion. For example, the FORTRAN staaderd {2
excludes recursion from the language, and therefore no v can be found such
that of popraan(?) request-catishes or providesatistes o ¢ coatalaing &
loop In either its A,, or A,..
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Figure 4: Visibility Graph of a Common
Programming Situation.

THEOREM 2. Ada is requisition-precise but not provision-
precise.

PROOF (sketch). Ada supports a nesting mechanism simi-
lar to ALGOLGO’s, but in addition offers alternatives that can
be used to avoid many of nesting's shortcomings [5]. These
alternatives are the private/visible mechanism of Ada's encap-
sulation construct, the package, and the with clause. The first
can be used in combination with nesting to achieve a greater
degree of provision control than is possible in ALGOL6E0. In
particular, it can be used to selectively hide nested entities
that would otherwise be undesirably provided. That selection,
however, is on an all-or-nothing basis; either an entity is pro-
vided to all entities in the scope of the package or it is provided
to no entity. Therefore, Ada's version of nesting is still not
provision-precise. This shortcoming with respect to provision
extends to neot-free packages, where the “scope” of a package
ia then the entire program. Entities provided by s package (in
Ada’s terminology, the visible packaged entities) are unavoid-
ably provided to all other entities in the program and hence
their corresponding nodes in provision graphs have arcs to ev-
ery other node. Thus, Ada is shown not to be provision-precise.
To show Ada is requisition-precise, first observe that Ada pro-
grams can be constructed exclusively from nest-free packages.
Each such package employs the second alternative mentioned
above, the with clause, to specify the entities requested by its
contents. The with clause allows the realization of any arbi-
trary eet of requisition relationshipe since, in the extreme, one
package can be created for each of the entities in the program.®
In terms of visibility graphs and program representations, this
means that if only with clauses are used to induce requisition
arca, then for any given visibility graph a program representa-
tion can be found that results in exactly the desired requisition
graph. Thus, Ada is shown to be requisition-precise. O

THEOREM 3. Gypey is provision-precise but not

requisition-precise.

PROOF (sketch). Gypey does not support any degree of
nesting. To control provision, Gypsy employs a construct called

201 course, pursly local entities need mot be packaged, but can be left,

for last , I1n the subprog in which they are wsed. Recursive subpro-
grams refereacing ehared entities Iatroduce some minor complications, bet
this ¢can be handied by appropriate wes of p ters and packages [21].
Fiaally, types that are Ity 4 dent t be separately packaged

1t can be argued, however, that while this special case involves two or more
syatactically separaie type declarations, oaly one genulae type lo belng de-
fined; It makes 0o sense 1o request (or provide) access to one component of
the definition without requesting (or providing) access to the othaers.



an access list which specifies for an entity just thoso other en-
tities to which it is provided. In terms of visibility graphs and
program representations, this feature solely determines provi-
sion arca. Hence, for any given visibility graph a program rep-
resentation can be found that results in exactly the desired
provision graph with the consequence that Gypey is provision-
precise. Gypesy does not, however, have Ada’s concept of the
with clause. Indeed, there is no way to control requisition in
Gypey; all provided entitios are unavoidably requested. There-
fore, aside from visibility graphs having pairs of nodes con-
nected by both a provision arc and s requisition arc, desired
requisition relationships cannot be realised. Thus, Gypsy is
not requisition-precise. 0O

The languages positioned by the previous three theorems
illustrate each of the entries in the preciseness-characterisation
hiorarchy except the highest. That entry is illustrated by the
family of languages based on the PIC language framework,
which is an approach to visibility control in large software sys-
tems that we have recently developed.® In fact, the PIC lan-
guage framework was developed using the formal model de-
scribed in this paper; the framework provides support for the
explicit specification of both requisition and provision, and thus
coastitutes & precise visibility control mechanism. Before giv-
ing a proof of this, the basic visibility control features of PIC
are reviewed.

There are three asphcterto the PIC language framework.
First, the framework provides a system structure that results
in systems that are collections of nest-free modules. Second,
the requisition and provision of each entity in a system can
be precisely specified. The language features used to capture
those two aspocts of entity visibility are the requast clause, for
specifying requisition, and the provide clause, for specifying
provision. Third, the framework provides a module structure
that imposcs a strict separation of inter-module visibility con-
trol information from intre-module algorithmic detail. To real-
ise this separation, a module consists of two distinct parts: a
specification submodule, which contains a specification of the
module’s contents and all of the module’s request and provide
clauses, and & body submodule, which contains the actual code
sections of the module. For pre-implementation langusges in
the PIC family, the body takes the form of a design-langusge
description, while for implementation languages it coasists of
implementation-language code.

It is our contention thet precise visibility control mecha-
nisms are of great potential value to developers and maintain-
ers of large software systems. Such precision would permit the
requisition and provision of exactly those accesses desired in o
system while disallowing others. In addition, support for both
precise requisition and precise provision can result in a redun-
dancy that facilitates more rigorous analysis of the interface
relationships of a system's components. For example, based on
this view it is possible to formulate complementary descriptions
of exactly how two modules are intanded to interact, giving one
description from the perspective of each of the modules, and
then to analyse those interactions by checking the two descrip-
tions for consistency [28).

“PIC le an xcronym for “Preciee Interface Control®. Iaterface costrol b
that aspect of visibility control that deals with int dule relationship
Because we are concerned primarily with eupport for programming-la-the-
large—the Interactl g the modules la & program—we have chosen
to concentrale on that aspect la our work.
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package PrintQueue le
request LinkedList.( ListElement, List );

type Jobls .. ;
procedure Enqueue ( J : In Job )
request LinkedList.Insert;

procedure Dequeue  J : out Job )
request LinkedList.Delete
provide to Printer;

private
procedure Util ( ...)
request LinkedList Statistics;

end PrintQueue;

Figure 5: PIC/Ada Specification Submodule of a
Print Queue Package.

The capabilities provided by the language features of the
PIC framework are relevant throughout the lifetime of a soft-
ware system, and appropriate dialects of the features can be de-
veloped to make them compatible with s variety of languages,
such as design or programming languages. Below, our examples
are given in terms of an Ada-flavored dialect, which we refer to
s5 PIC/Ada, and we describe only those features of this dialect
that are concerned with one kind of module, namely PIC/Ada's
encapsulation unit, the package. Figure 5 presents a simple ex-
ample illustrating several aspects of the language features as
they are realised in PIC/Ada. The example shows the specifi-
cation submodule of a print queue package implemented using
linked lists. The entities provided by the packsge realise the
abstract operations of adding and removing a job from a print
queue.

A module’s specification submodule completely determines
both the entities requested by each entity in the module and
the entitics provided by the module. In PIC/Ada, the request
clause is a list of entity names beginning with the reserved
word request. The request clause appearing at the top of the
specification submodule in Figure § indicates that access to the
entities ListElement and List provided by package LinkedList
is requested for all the entities in packsge PrintQueve. The
roquest clause attached to Enqueuve, on the other hand, indicates
that access to the entity lnsert, defined in package LinkedList,
is requested only for Enqueve, since Enqueue is the ounly entity
in PriatQueve that has an sttached request clause mentioning
that entity. Similarly, the entity Delete, also defined in package
LinkedList, is only to be referred to by Dequeve.

The provide clause in PIC/Ada is a list of entity names
beginning with the rescrved words provide to. The provide
clause appended to procedure Dequese indicates that Dequeue
is oaly provided to the entitios of Printer. The abeence of &
provide clause is interpreted to mecan that access to the entity
is provided to “all*, which is the case for Enqueve. Thus, while
any module in the system would be allowed to add s job to
a print queue, Printer is the only module permitted to remove
a job. The entities declared in the so-called private part of &
package, such as Util, are not provided to any non-local entities.



The request clause is more precise and flexible than its coun-
terparts in most other languages, including Ada’s requisition
construct, the with clause, in at least two ways. First, it does
not necessarily import all the provided entities of a module but
can import subsets of those entities. Second, a request clause
can be attached to an individual entity of a module so that
requisition by the entities within that module can be differen-
tiated.

The provide clause is also more precise and flexible than its
counterparts in other languages. [n Ada, for example, provi-
sion is controlled on an all-or-nothing basis; either access to an
entity is provided to every module (in a given scope), or it is
provided to no module, and so the entity is hidden. While these
two extremes are useful (for instance, in describing the global
provision of a library module such as a package of trigonometric
functions or the hiding of a low-level utility subprogram within
the module needed to implement the trigonometric functions)
and indeed specified the same way in PIC/Ada as in Ada, the
intended provision of a particular entity often lies somewhere
in between [14]. Hence, the PIC language features' provide
clause may be appended to any of a module’s entities in order
to selectively limit their provision to specific non-local entities.

PIC/Ada, just like Ada, provides little control within a
module over the visibility of entities declared in that module.
This lack of control, which is based on the presumption that
entitics are declared Logether because they are strongly interre-
lated, can be viewed as a notational shorthand for a commonly
occurring situation. If more control is desired, then it can be
achieved through the crdtion of additional modules to hold
the appropriate entities. This limitation in PIC/Ada is not one
that is inherent in the PIC language features. For example, it
would be feasible to extend the semantics of request and provide
clauses to support intra-module control. Doing 5o in PIC/Ada,
however, would not be in keeping with the spirit of Ada; a level
of control such as that might be more appropriate in a language
based, for example, on Euclid.

‘The defaults for requisition and provision in PIC/Ada—that
is, the minimum amounts of inter-module visibility control in-
formation that must be explicitly supplicd by a developer—are
designed to mimic the control available in Ada. For instance,
83 mentioned above, the absence of a provide clause on s pro-
vided entity is interpreted to mean that access to the entity is
provided to “all”. A request clause, like an Ada with clause,
is used to import non-local entities, but requisition of all the
provided entities of a package need ouly entail the listing of
that package’s nante in a request clause, not each individual
tequested entity. In general, the PIC/Ada design philosophy,
which we believe is in keeping with the spirit of Ada, is that the
more control over mwdule interfaces desired by a developer, the
more information the developer must specify. For PIC dislects
besed on languages other than Ada, defaults of tighter control
or requirements of more complete inforination may be appropri-
ste. Thus, for example, it may be preferable in some languages
to interpret an absent provide clause as meaning provide to
“none”, rather than provide to “all”.

Given this brief review of the visibility control supported by
the PIC language framewark, we can now illustrate the highest
eatry in the preciseness-characterization hicearchy

THEUREM 4. PIC/Ada is precise.

PROOF (sketch). PIC/Ada permita the description of arbi-
"fry graph structures of requisition and provision relationshipe
using request and provide clauses; by definition, these clauses

(L1

can be used to completely determine the requisition and provi.
sion of individual entities and, therefore, can be used to realize
the requisition and provision of any desired vinibility graph.
This is true deapite the fact that PIC/Ada provides little con-
trol within a madule aver the requisition and provision of enti-
tiea declared in that module, since, in the extreme, one package
can be created for each of the entities in a aystem (cf., proof
of Theorem 2) and the requisition and provision of those enti-
ties controlled individually and precisely using request clauses
to determine requisition arcs and provide clauses to determine
provision arcs. PIC/Ada is thus shown to have & precise visi-
bility control mechanisin. 0O

To summarize, the theorems given in this section allow us to
rank four languages in terms of the preciseness of their visibility
control mechanisms, as (ollows:

PIC/Ada
e AS
Ada Gypsy

N /
ALGOLGO

It is interesting to note that no other languages we are aware of
reside at the same position in the preciscncss-characterization
hierarchy as that occupied by the dialects of the PIC language
framework. Indeed, the formal model aot only facilitates this
comparison, but it was also instrumental in leading us to the
definition of the request and provide clauses of the framework.
The full benefits of this straightforward, yet powerful, mech-
anism for controlling entity visibility are described further in
[21,22,23].

In addition to preciseness, there are other characterizations
of visibility control mechanisms that are useful for performing
rigorous evaluations. For instance, one would like to be able
to understand the kinds of situations that lead to imprecise
realizations of entity visibility when using a particular mecha-
aism. This would aid the development of appropriate program-
ming styles for use with that mechanism. We also recognize
that there are other considerations that affect how a visibility
control mechanism is used. For instance, the package in Ada,
besides being used in the control of entity visibility, is used as
a primary modularization tool; there are practical situations
in which modularity and visibility control constraints conflict.
The proof of Theorem 2 in particular suggests that precision
of requisition in Ada can be achieved by placing entities in
scparate packages. Such a separation may interfere with the
colocation of entities that, while perhaps not requested in the
same way, are otherwise logically related. The implications of
this and other considerations, as well as the development of ad-
ditional characterizations of visibility control inechani , are
currently under investigation.

6. Conclusion

Graphs have been used elsewhere to describe concepta re-
lated to visibility. For instance, graphs ace used informally for
describing neating’s effect on data and control flow in Ada pro-
grams {S]. Thotwas [18] uses graphs more (orumlly to analyze
“resource inforination flow™. ‘The usefulness of “I't ‘" ap-
proach is restricted by ita atrong orientation to the particular
wwdule interconnection language develuped in |18}, it was aever
intended an a general, descriptive formalism. Moreover, it lncks




the useful concept of pravision. Lipton and Snyder [12] use o
graph model o study a pacticular protection mechaniem, the
take and grant system, in which ares in a graph are labeled
with the access righta one node has to another. Although ori-
ented toward control of access, the purpane of this model i to
underatand the effect of rewrite cules that dynamically add and
delete nodes and arcs, and thus addreases a different problem
domain. Onsher [16] presents an extremnely complicated, albeit
general, graph model for describing entity relationshipe at mul-
tiple levels of abstraction, which was developed for speciflying
VLSI fabrication processes. While it would certainly be possi-
ble to recast that model to describe requisition and provision
relationships, the complexity inherent in the madel hinders its
usefulness (or our current purposes.

We have defined a formal model that can be used both
to describe visibility control mechanisms and to reason about
those mechanisms in order to provide characterizatioas of their
strengths and weaknesses. In this paper, we have shown how
the formal inodel can be used Lo characterize the preciseness of
visibility control mechanisms. In 30 doing, we have pointed up
the different approaches to controlling entity visibility employed
in four such mechanisms. Based on examples such as this, we
believe that the formal model can be a valuable aid to software
developers and language designers as they try to decide upon
the suitability of visibility control mechanisms.
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