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ABSTRACT

We present a system for identifying human faces in gray-scale television imagery.
The system uses a threestage approach to image interpretation. The first stage is
data-driven image segmentation; the second is rule-based hypothesis formation; the
third is model-based hypothesis verification using an iterative relaxation process.
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1 INTRODUCTION

The goal of this study is to demonstrate the feasibility of recognizing images of faces in
indoor scenes. Two parts to this problem are the location in an image of where a face is
likely to be found and the matching of parts of that area with a model of an individual
face. In our previous report [12] we demonstrated the feasibility of locating faces based on
the detection of motion. In this report we demonstrate some success in recognizing faces
from models which are constructed manually. Figures 1 - 5 show the images of faces which
were used in this study. There are three images of each of three people. One of these
for each person was used to construct the model. This problem is described in terms of
matching data from the image with the model. The image data is organized into structures
which we call tokens. Tokens can be lines, regions, dark circular areas surrounded by light
annular areas, etc. In our system, we have used only lines and regions for the recognition
process.

Recognizing a face in an image requires finding a correspondence between tokens in the
image and a model of the appearance of a face. There are four parts to this problem:

1. Construction of the models
2. Extraction of tokens from the image.
3. Formation of initial hypotheses

4. Verification of hypotheses and model matching

The construction of the face models is based on the region and line tokens which can
be extracted and their geometric relationships. The model description is designed for
efficiency in conjunction with the matching algorithm and is described in Section 4.

The extraction of tokens from the image uses two algorithms which have been developed
in the VISIONS system and are described in Section 2.

In the formation of the initial hypothesis, possible correspondences between image
tokens and model tokens are obtained, based only on intrinsic properties. These possible
correspondences are the hypotheses, each with a score measuring the extent to which the
correspondence satisfies the required intrinsic properties. This is described in Section 3.
In the last stage, we seek to find a subset of these hypotheses that satisfy the geometric
relational constraints between the face tokens in the model. For this stage, we chose a
relaxation process, in which the scores of these hypotheses are adjusted in accordance with
the degree to which they satisfy the constraints. It can be thought of as an iterative process

of hypothesis verification by making and testing predictions about other hypotheses. This
process is described in section 4.
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2 REGION AND LINE SEGMENTATIONS

Region and line tokens are two fundamental ways of organizing data in an image. In
this section we describe the algorithms used for locating these tokens, and we present the
results for the set of test images. ,
The straight-line algorithm was developed by Brian Burns and is described in [2]. The
algorithm has four steps: '

1. Group of pixels with similar gradient direction. These groups are called edge-support
| regions.

2. Fit a plane to the intensity surface over an edge-support region. The line associated
with an edge-support region is the intersection of this plane with a horizontal plane
whose height is the mean intensity for the region.

3. Compute attributes for lines, such as length and contrast.

4. TFilter lines to retain the lines with the highest contrast and longest length. In our
experiments the 150 lines with highest contrast were selected, and of these the longest
60 were selected.

Figures 6 - 8 shows the lines which were extracted for each of the face images.

In the previous report, it was shown that the general location of moving objects could
be detected in pairs of images. Based on this result, we have made the assumption that
we have a bounding rectangle for the face in each image. Since for these experiments, we
have assumed a bounding rectangle for the face location, we also filter on location. The
result is that we have only the lines which intersect the rectangle. The filtered lines for
some of the images are shown in Figure 9.

Segmentation of the images into meaningful region tokens was particularly difficult.
Nevertheless, we obtained some useful results from the Nagin-Kohler algorithm [Kohler84].

1. The image is divided into sectors and for each sector a histogram of the intensity
values is constructed.

2. Clusters are identified in each histogram.

3. Small clusters are added. This is based on examining adjacent sectors for clusters
which may extend across sector boundaries but may not be large enough to be
detected by themselves. Once this is done, then connected component regions are
formed from the clusters.

4. Regions are merged across sector boundaries.
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The parameters in the algorithm can be set in a way which depends only on general
image characteristics. Although there are many parameters in the algorithm, these have
been collapsed into a single parameter called sensitivity, which controls the number of
regions produced. Empirically, this parameter has been quantized into five levels from
very low sensitivity to very high sensitivity for a wide range of images [1]. Figures 10 -
12 show the regions which were extracted using very high sensitivity for each of the face
images.



3 THE RULE-BASED OBJECT HYPOTHESIS SYS-
TEM |

The rule-based object hypothesis system, Rulesys, generates initial hypotheses for image
tokens such as lines and regions based on features computed from the image. An hypothesis
is an assignment of a confidence value to the matching of an image token with a model
token.

Our goal was to use these hypotheses to reduce the amount of computation for the
relaxation algorithm which computes the most likely matches based on geometric rela-
tionships. The object hypothesis system only relies on intrinsic properties. The intrinsic
properties are the feature values of regions and lines which are computed for an image and
stored in a data base for use by the object hypothesis system. The algorithm for assigning
a confidence value is based on rules.

A simple rule is a piecewise linear function which defines a score based on the value
of a scalar feature as shown in Figure 13. This rule specifies two veto ranges where the
function is negative and a positive voting range with zero in between. In general, an
hypothesis about a match between an image token and a model token will require more
than one feature. Thus, simple rules are combined into complex rules. They can be viewed
as defining an area of feature space which represents a vote for an hypothesis, which could
be the identity of an image token. For example, lines which mark the side of a face are
expected to be vertical and relatively long compared with other lines in the face. The
vertical line rule is an example of a rule which uses line orientation:

vertical-lines

Feature: (line theta)
Rule: medium

Veto: (or low high)

The resulting value of the function is called the score and corresponds to the confidence
in a particular hypothesis based on the value of the computed feature. Figure 14 shows
the result of applying this rule to the lines in the images in Figure 9 . Features can provide
both positive and negative evidence. It is may be possible to veto a particular hypothesis
based on the value of a feature. For example, the vertical line rule above, if the orientation
of a line were close to 0 or 7, would veto the hypothesis that it is vertical. This rule can
be combined into a complex rule for the side of the face so that if a line is vertical, the
hypothesis that it is part of the side of the face is vetoed.

The features themselves can be the location of the token or some intrinsic property. In
addition it is possible to combine features for regions with those for lines. The rules are

divided into five categories:

¢ simple rules for regions
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simple rules for lines

e complex rules for regions

complex rules for lines

combined region and line rules

Simple Rules for Regions — intrinsic and location rules for regions
The intrinsic feature rules are based on a single feature which is computed directly
from the image. The features used for regions are:

e size: the number of pixels in a region
e intensity: the average pixel intensity for a region

e compactness: the ratio of the boundary of the region to the area of the interior. The
boundary pixels are all the pixels which have at least one of their four-connected
neighbors outside the region, so the most compact shape is a square.

Simple rules can be defined in terms of either absolute or relative values. For example,
when specifying the rule for finding vertical lines, one can assign the value 1.0 to lines
whose orientation is between 0.4 and 0.6 times 7 radians. Relative rules are those which
can be described without reference to absolute measurements. For example in the rule
which is used to find regions which form the mouth based on intensity, the values can be
specified with respect to the values for all the regions in the image. The top and bottom 5
% are discarded, then the remaining range is divided into five intervals whose endpoints are
designated as vlow, low, medium, high, and vhigh. Thus, the rule is described as follows:

nouth-regions-intensity
Feature: (intensity mu)
Rule: low
Veto: high

The location rules are based on the minimum and maximum extents of the region with
respect to the minimum and maximum extents of the area corresponding to the face. The
basic assumption is that the minimum and maximum x- and y-coordinates for the face are
known. We have had some success with using hierarchically smoothed difference images
to determine the extents of the face. For example in the following rule, the values for
*mask-top-third and *mask-y-midpoint are computed from the minimum and maximum
y-coordinates for the face.



miny-in-top—third

q:feat-vals smask-top-third *pask-y-midpoint *mask-y-nidpoint)
(:feature extents miny) ,

(:score-vals 100.0 0.0 -20.0)

(:type . .primitive)

Simple Rules for Lines
The intrinsic features used for lines are:

e contrast: the slope of the plane which approximates the intensity surface
e length: the distance between the two endpoints of the line
e orientation: the angle of the line measured from the x-axis

Since the scale of the image is already known, medium-length lines can be specified on an
absolute scale, as in the following rule:

medium-length-lines

(:feat-vals 7.0 10.0 26.0 30.0)
(:feature line length)

(:score-vals -20.0 100.0 100.0 -20.0)
(:type . :1primitive)

The location features used for lines are: X- and y-coordinate of the midpoint of the
line. Example:

top-of-head-lines-y

(:feat-vals xmask-top-third *pask-y-midpoint *mask—y~midpoint)
(:feature mid-point-y)

(:score-vals 100.0 | 0.0 -20.0)

(:type . :1primitive)

Complex Rules

Complex rules are formed by combining rules, and this may be done in an hierarchi-
cal way starting with combinations of simple rules. We used two principle methods for
combining the scores from different rules. The first is a simple weighted average of the
scores, where the weights are specified in the rule according to the importance of each of
the component rules. The second is a weighted average with veto, so that the resulting
score is a veto if any one of the component scores is a veto. For example, the following rule
combines the rules long-length-lines and vertical-lines with weights 2 and 3 respectively:
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side-of-face-lines

(:rule-list long-length-lines vertical-lines)

(:score-form weighted-average-w-veto long-length-lines 2
vertical-lines 3)

(:type . :lcomplex)

Figure 16 shows the results of this complex rule.

Combined Region and Line Intersection Rules

With the current system it is possible to select regions based on whether they intersect
a set of lines or not. For example, when attempting to identify eyes, it is useful to look
for dark regions of a particular size, but it is also important to find horizontal lines which
bound the region.

The set of rules which was used for generating hypotheses for regions and lines is
contained in Appendix A.



4 MODEL MATCHING

4.1 Matching Technique

As mentioned in the Introduction, recognizing a face in an image requires finding a cor-
respondence between features in the image (here lines and regions) and a model of the
appearance of a face. This has two stages. In the first, possible correspondences between
image features and model parts are obtained, based only on intrinsic properties. These
possible correspondences are the hypotheses, each with a score measuring the extent to
which the correspondence satisfies the required constraints on intrinsic properties. In the
second stage, we seek to find a subset of these hypotheses that satisfy the geometric rela-
tional constraints between the face parts in the model. For this stage, we chose a relaxation
process, in which the scores of these hypotheses are adjusted in accordance with the de-
gree to which they satisfy the constraints. It can be thought of as an iterative process of
hypothesis verification by making and testing predictions about other hypotheses.
Thus there are three components to model matching:

(1) A model representing both the intrinsic and relational constraints on the parts of a
face.

(2) A process for forming initial hypotheses, based on intrinsic properties only. (This is
what is done by the Rulesys, as described earlier.)

(3) A (relaxation) process for adjusting the scores of these hypotheses to reflect the degree
to which they satisfy the geometric relational constraints.

The next two sections will present (1) and (3). As mentioned above, (2) was treated earlier.

4.2 Model Representation

The representation we use for models is a hybrid one: some information is stored explicitly,
some implicitly. For each face part, the type of image feature it corresponds to is stored
explicitly: in the current implementation this is either region or line. Further details of
its intrinsic properties are stored implicitly, by giving the name of a Rulesys rule (or in
general a function) that will return a list of hypotheses for possible occurrences of this
face part in an image. Thus the specifics of these intrinsic properties are stored elsewhere,
usually in the Rulesys knowledge base.

In the current system, the only relational constraints are those on relative position
in the image. Instead of storing these many relative-position constraints explicitly, we
keep only the position of each face part with respect to a face-model coordinate system
(with origin midway between the eyes). The actual relative positions of the face parts
are implicit in this representation, and can be computed as needed during the matching
process. However, in general there are many relative-position constraints, n(n—1) of them



for a model with n parts. Checking them all would be computationally too expensive, and
inefficient since most of them are redundant. So, while the relative positions themselves
are stored implicitly, we do keep explicitly a partial list of other face parts with respect to
which these positional constraints are actually checked. Put another way, the confidence
of an hypothesis is updated by making predictions about the positions of other face-
part hypotheses, and checking how well these predictions are verified. Instead of making
predictions about the positions of all other face parts, the system makes predictions only
about a subset of the other face parts. This is sufficient, and computationally far less
expensive. Also, if these other parts are chosen to be nearby the given part, then the
matching process will be more robust, in that it will be more tolerant of systematic and
random distortions of the face in an image.

The actual Lisp specification of a face model can be seen in Figures 37, 38, and 39,
which show the models used in the experiments. The face parts used were those that
apeared as reasonably well defined image features (regions or lines). Six items are given
for each face part:

(1) A symbolic name, used for referring to this model part from elsewhere in the model,
and for labelling displays of matching results. '

(2) What kind of image feature the face part appears as, currently either region or line.

(3) & (4) Respectively the X and Y coordinates of the position of this face part with
respect to the face coordinate frame. (These coordinates were obtained by making
measurements on images of the three subjects.)

(5) The function or Rulesys rule used to generate a list of initial hypotheses for this face
part. -

(6) The list of other face parts (referred to by their symbolic names) for which the relative-
position constraints are checked.

4.3 Relaxation

As mentioned above, relaxation is essentially an iterative process of updating the confidence
in each hypothesis based on how well predictions made from that hypothesis are verified
amongst the other hypotheses. Thus a collection of hypotheses that actually make up
a face will mutually support each other (in that predictions made from any one will be
verified amongst the others). Hypotheses that are not part of face interpretation will not
have their predictions verified, and so their confidences will be decreased. Predictions are
made only for a subset of the positional constraints on a given hypothesis; this imposes
an “horizon” on the prediction and verification possible on any one pass of the relaxation
updating. So this process is iterated several times, in order that the effects of more distant
hypotheses may be propagated, to produce a globally consistent interpretation.



Put another way, all hypotheses in a complete face interpretation should (ideally) be
ip the correct relative positions with respect to each other. On any one iteration, only
a chosen subset of these relative-position constraints are checked. The repetition of the
updating ensures that all the relative positions are checked. For example, suppose that a
left-eye hypothesis fails to find the (supporting) left side of the face. Then its confidence will
be decreased by the updating. On the next pass, the corresponding right-eye hypothesis,
which may previously have received strong support from this left-eye hypothesis, will also
have its confidence decreased. Thus the failure to find a corresponding left side of a
face will, over the course of two iterations, affect the confidence in a right-eye hypothesis
through the linkages between hypotheses, even though there are no direct constraints
expressed between right eye and left side of face.

The reasons for choosing a relaxation process were discussed in a previous report
[12]. Note, however, that since that report was written, the relaxation procedure has
been entirely recoded and considerable improvements made. This has arisen largely from
the need to interface the relaxation procedure effectively with the Rulesys, and from re-
interpretation of relaxation as an iterative, local process of top-down hypothesis verifica-
tion, rather than as a merely bottom-up process of adjusting confidences of match pairings.
This re-interpretation has been fruitful, in that it has lead to a new understanding of how

the process works, suggesting practical improvements in its implementation, and also mak-

ing clearer the connections between relaxation and higher-level processes of intepretation
and control.

The basic relaxation updating formula used can be described as follows. Let F be the
set of face parts in our model, I be the set of image features (regions and lines), let Hy; be
the hypothesis that matches face part f € F with image feature ¢ € I, and let C}'.f) be our
confidence in Hy; on the kth iteration of the relaxation process. (These confidence values
will be real numbers in the range [0, 1].) For k = 0, we take initial confidences derived from
a linear rescaling of the Rulesys scores to the range [0, 1]. If no such hypothesis exists, this
confidence is taken to be zero. The updating rule, in its simplest form is:

Cl*+) = min (C}’;’, v) (1)
where )
U= ——— max min (C¥,c®, D 2
R, e (07 € D) 2)
and

1
D= (3)
1+ 7]|(pi +0q, — oay) — pill;
The set nbd(f), for f € F, the neighborhood of f, is the set of all face parts for which a
prediction is made based on an hypothesis for f; p;, for i € I, is the coordinate vector of

image feature i in the image; qy, for f € F, is similarly the coordinate vector of face part f
in the face-frame coordinate system; o is the scale factor that converts face-model distances
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into image distances. Tﬁus, given Hy;, the hypothesis that image feature ¢ corresponds to
face part f, (p; + 0q, — 0qy) is the predicted image position of face part g. So the ||.. .||,
in (3) is the image distance by which p;, the position of image feature j, differs from the
predicted position of face part g. Thus D measures, on a scale from 0 to 1, the degree to
which the hypothesis H,; fits the prediction of where g should be, under the hypothesis
Hy;. In (3), 7 is the tolerance factor that controls how much being in the wrong spatial
position reduces the goodness of the match. The other two terms in (2), C}f) and C®

gi
are respectively the confidences of Hy; and H,; from the previous iteration. In particular,

C}f) will normally incorporate information that has propagated in from further afield than
nbd(f).

{ The evaluation of the updating formula requires several nested iterations, which could
be computationally expensive. However, as mentioned in the previous report [12], advan-
tage can be taken of the regular structure of this formula to make a number of short-cuts
in its evaluation. Choose two critical confidence values, a and f, with the significance that
confidence values less than a can be effectively treated as 0.0; similarly, confidence values
greater than 4 can be effectively treated as 1.0. It is not possible to compute the exact
value of the updating formula without complete evaluation. However, it is often possible
to determine early in the computation that the resulting value must be less than a, or
greater than . (For example, in the evaluation of a minimum, if any term is found to be
less than a, we can conclude that the ultimate minimum must also be less than .) In
such cases the computation can be cut off early with the result 0.0 or 1.0, as appropriate,
without any significant efect on the resulting confidence values. A simple application of
this idea produced a 30-fold speed-up in the updating process. It is related to the notion
of alpha-beta cut-off in minimax game-tree searching (from which source it was adapted
[10]).

These cut-off values a and # were used in the previous report [12]. However, this idea
has been further exploited to improve the speed and reliability of the updating process. In
the updating rule, as formerly described, not only was it necessary to define and search a
“neighborhood” for each face part, but it was also necessary to define and search a “neigh-
borhood” around each image feature. The initial computation of these neighborhoods in
the image data was a computationally expensive process, and the correct definition of these
neighborhoods was crucial. If the neighborhoods were too small, the relaxation matching
might produce incorrect answers, because it might not be able to find some necessary
support for an hypothesis. If the neighborhoods were too large, correctness would not be
affected, but searching such excessively large neighborhoods would increase computation
time inordinately. Furthermore, it was not possible to integrate such construction of image
neighborhoods with use of the Rulesys in a natural way, since the image description is not
directly accessible in its entirety through the Rulesys, but only sets of object hypotheses.

We have therefore made use of the lower cut-off value a to do away with the need for
such image neighborhoods. In updating an hypothesis about a particular face part, we
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make predictions about neighboring face parts (neighboring in the face model), and check
how well they are verified by searching for a best matching hypothesis to each prediction. A
simple but expensive method would be, in finding a best match, to examine all hypotheses
known to the system. The use of image neighborhoods was an attempt to reduce this cost.
However, it is possible to do far better.

Every match to a prediction is evaluated in two respects: in its positional correctness
and its confidence from the previous iteration. We are interested only in matches with
confidences greater than a, so a match can fail in only two ways: its confidence from the
previous iteration is less than a, or its positional correctness is less than a. Now, hypotheses
with confidence less than « are automatically dropped. Thus the only significant matches
are those with positional correctness greater than a. However, from the symmetry and
monotonicity of the positional correctness term, it can be seen that all such matches must
lie within a certain radius of the predicted position, a radius that depends simply on a, 0,
and 7.

By using a special data structure that permits the rapid retrieval of hypotheses within
a certain radius of a given position, we can make this verification process quite direct. This
data structure and the tuning of it to give optimal performance are discussed elsewhere
[8]. To further speed up the verification, separate data structures were maintained for
the different kinds of hypotheses (that is, hypotheses for the different face parts), but the
usefulness of this refinement may depend on the density of hypotheses in the image.

%.4 Experimental Results

We conducted a modest experiment to, test the effectiveness of this technique for distin-
guishing human faces. From our database of images, we chosen three images each of three
subjects, “Hiro”, “Les”, and “Mike”, nine images altogether. Region and line segmenta-
tions were computed for each image, and stored in the image-feature database. We had
previously developed face models for each of the three subjects, and Rulesys rules for
forming initial hypotheses for the component parts of these models.

Each image (or rather the segmentations derived from it) was matched in turn against
the three face models, using four iterations of the relaxation process, and an overall match-
merit measure was computed for each match. For each image, the model which matched
it best (according to the match merit) was chosen as the identity of that image. In order
for a model to match well, there must be good matches for every one of its parts. So
for each face part, we select the hypothesis (after matching) of highest confidence. The
overall match merit is a function of these best-match confidences for all face parts. Two
functions were used: the minimum (under the view that a match is only as good as its
weakest support), or the average (under the view that the overall match merit should
depend continuously on the best-match confidences).

The results of the identification experiments can be seen in the match scores in Tables 1
and 2, and in the confusion matrices in Tables 3 and 4. Using the averageconfidence, six out
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of the nine images were identified correctly. This is double the rate that would be expected
by chance. Furthermore, the errors are not random, but are very systematic: All the images
of “Hiro” and “Mike” were identified correctly, while all the “Les” images were misidentified
as “Mike”. This indicates that the errors arise from some underlying similarity between
the models for “Les” and for “Mike”, and that this similarity is asymmetric. The “Mike”
model is more tolerant, in that not only does it match well to images of “Mike”, but
it also matches well to images of “Les”—better than does the “Les” model itself. This
suggests that at this stage the accuracy of identification is not limited by the image features
used, but by the discriminating power of the models. The identification could therefore
be improved by adjusting the “Mike” and “Les” models to be more discriminating, by a
slightly different choice of face parts and constraining relations. The results obtained by
using the minimum confidence are similar, five out of nine correct, and again demonstrate
confusion between the “Les” and “Mike” models.

Figures 17, 18, 19, 20, and 21 show the progress (over several iterations) of the relax-
ation process on a typical matching problem, that of matching the “Les” model against
one of the “Les” images. (Here the image and model agree.) In each figure, the labels
indicate the image feature that matches best to each face part, along with the confidence
of the match hypothesis. Before the relaxation (Figure 17), none of the best matches
are correct (or if they are correct, as in some other cases, it is largely accidental). This
is understandable, since the purpose of the initial hypothesis formation is only to find a
conservative set of candidate matches. After a single iteration of the relaxation updating
(Figure 18), almost all (and sometimes all) the best matches have reached their final as-
signment. The following iterations (Figures 19, 20, 21) make only a few small adjustments
in the best matches, usually just cycling between two competing best-match hypotheses
that are nearly tied in their confidence scores. (This can be seen in the choice of matches
for the mouth-line and mouth-region.) The numeric values of the confidences change no-
ticeably, and continue changing (it would take many iterations for them to converge), but
the actual rank ordering of the matches changes hardly at all—aside from the alternation
of closely competing hypotheses just mentioned. Similar series of results can be seen in
Figures 22-26, 32-36, and 27-31.

The “correctness” of the match of image data against the true corresponding model
can only be evaluated by human judgement. In most cases, the image feature (region or
line) chosen by the relaxation process as the best match to a particular face part would
be the best match chosen by a human judge, or very close to it. (This can be seen in
Figure 21, and also in the other examples shown in Figures 26, 36 and 31.) Failures can
usually be attributed to poor localization of the image features by the initial segmentation
and token-formation processes. This is particularly true of long line features, such as the
sides of the face. (The localization of large region features, such as hair rezions, was so
poor that such features could not be used at all for model construction and matching.)
Also, the spectacles worn by the subject “Mike” made it very difficult to detect his eyes.
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As can be seen in Figure 36, his eyes are mislocated at the tops of the spectacle frames.
The effect of this mistake propagates, and causes a systematic upward mislocation of other
face features (mouth, chin, hair line).

The computation time for the matching, including the formation of initial hypotheses
and four iterations of relaxation matching, typically took 30 to 50 minutes of CPU time on
a VAX 750. Roughly a third of the time was taken up by the initial hypothesis formation
(Rulesys), another third by the first iteration of relaxation (in which there are many
hypotheses to consider), and the remaining time by the subsequent iterations of relaxation
(which become quicker as the number of remaining, viable hypotheses decreases). The
computation was done in interpreted Lisp (CLisp), written under experimental conditions
with no particular care taken regarding code efficiency, and with a considerable amount of
additional tracing and instrumentation code. Given this, it is not unreasonable to expect
that, in practice, this computation time could be reduced to several minutes by careful
programming in a language such as C.

14

4



5 CONCLUSIONS

We have shown how human faces can be recognized and identified in images with a mod-
erate degree of success, under somewhat restricted viewing conditions (frontal view, with
known orientation and range). Our technique is based on an initial, general-purpose seg-
mentation of the image into regions and straight lines, followed by rule-based formation of
initial hypotheses about the correspondences of parts in a face model to image features,
and a relaxation process to find sets of hypotheses that satisfy the relative positional
constraints of the face parts.

It seems that the accuracy of identification could best be improved by refinements in
two parts of the system. First, the structure of the models should be modified to make
them more discriminating between the individuals to be identified. Second, the initial
segmentation processes should be refined in order to better localize the extracted image
features. This would require some kind of perceptual-organization process, and in the long
run perhaps feedback from the higher-level model matching.

An alternative to better segmentation would be to adjust the match criteria so as to
be more tuned to the actual localization of image features. For example, the localization
of a line feature is much better in the direction perpendicular to the line than in the
direction along the line. The rating of positional discrepancy could be modified to give
more weight to the perpendicular discrepancy, and be more tolerant of discrepancies along
the direction of the line. This was in fact tried, but gave only slightly improved results
at a greatly increased computational cost. A feasible compromise would be to apply the
simple discrepancy measure in early iterations of matching, when there are many obviously
poor matches to be rejected, and then to apply some more sophisticated measure in later
iterations, when it remains only to refine the confidences of a few retained matches. This
variant, however, has not been tried at this point.
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TABLES

Image Model
Hiro Les  Mike
1] 0.6914 | 0.5608 | 0.5809
Hiro 2 | 0.7029 | 0.5462 | 0.6691
310.6596 | 0.5317 | 0.5639
1 | 0.7420 | 0.7029 | 0.7494
Les 2 | 0.5932 | 0.6026 | 0.7170
3 10.5309 | 0.5890 | 0.7366
1 | 0.6647 | 0.6578 | 0.7031
Mike 2 | 0.4126 | 0.3726 | 0.5082
3 10.4575 | 0.3839 | 0.5171

Table 1: Average confidence of matches.

Image Model
Hiro Les  Mike
. 110.4322 | 0.4149 | 0.4300
Hiro 2 | 0.6287 | 0.4569 | 0.4928
f 3 1 0.5555 | 0.4003 | 0.4245
: 1]0.6754 | 0.6268 | 0.7109
Les 2 | 0.4536 | 0.3829 | 0.5962
3 | 0.3245 | 0.3500 | 0.5924
1 { 0.5096 | 0.5524 | 0.6337
Mike 2 | 0.2728 | 0.3109 | 0.2473
3] 0.2263 | 0.3109 | 0.3123

Table 2: Minimum confidence of matches.
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True Computed Identification
Identification | Hiro Les Mike

Hiro| 3 0 0
Les|<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>