Finer Grained Concurrency
for the Database Cache

J. Eliot B. Moss
Bruce Leban
Panos K. Chrysanthis

COINS Technical Report 86-54
October 1986

This is a revision of TR 86-42. It reprints a paper appearing in the proceedings of the
Third International Conference on Data Engineering, Los Angeles, CA, February 1987.
Compared with TR 86-42, we have added pseudo-code for the algorithms described, and
removed material related to maintaining locks on ranges of atoms.

Abstract. The database cache transaction recovery technique as proposed in [Elhard
and Bayer 84| offers significant performance advantages for reliable database systems.
However, the smallest granularity of locks it provides is the page. Here we present two
schemes supporting smaller granularity. The first scheme allows maximal concurrency
consistent with physical two-phase locking, with the same per-transaction I/O cost as the
original database cache scheme. The second scheme offers the same concurrency as the
first, but features reduced I/O on commit, at the cost of some increase in recovery time.

1 Introduction

Recently a new database recovery technique, called the database cache, was proposed in
[Elhard and Bayer 84]. The database cache simplifies database recovery management
and boosts performance — strong advantages that make it attractive for use in practical
database systems. However, its concurrency control scheme is two-phase locking on pages,
where the page size is determined by the I/O devices. Elhard and Bayer said in their paper
that a smaller lock granularity would “complicate the algorithms considerably”. Here we
show the opposite: that smaller lock granularity can be achieved simply and easily.

After a brief summary of the original database cache algorithm, which we call EB for
short, we present two new schemes. Both offer maximal transaction concurrency under
restriction to algorithms using two-phase locking at a physical level. Scheme I retains the
page oriented I/O of EB, and thus increases concurrency (by locking units smaller than
a page) but does not reduce (or increase) the total I/O cost of a transaction. Scheme
II reduces the I/O at commit time, by writing only the modified parts of pages. How-
ever Scheme II can require additional reads when recovering, and additional writes when
propagating changes into the database.

2 The Database Cache

As can be seen in Figure 1, the database cache algorithm uses three distinct storage areas:

The Database: This is the physical database. It is a collection of pages that can be
accessed randomly, and is reliable.!

The Cache: This is the main memory workspace for running transactions. It is indeed
organized as a page-oriented cache of the database. Cache contents are lost in a
system crash.

The Safe: This is in essence the tail (most recent part) of the commit log. It is a reliable
collection of pages, similar to the physical database. However, it is usually accessed
sequentially for speed, and its size is more comparable to the cache size than to the
size of the database.

All activities in the database cache algorithm are in terms of pages. Database pages
always reflect the work only of committed transactions; that is, no “dirty” pages are

ever written to the database. Hence the database never requires undo processing upon

1That is, we will not go into the details of archiving and media recovery.

install //copy

fetch @ write

DB g "\ il /- ”| Safe
force w recover
(Disk) (Disk)
Cache

(Main Memory)

Figure 1: Structure of the Database Cache

recovery. To guarantee this property, the cache is assumed to be large enough to hold
the pages modified by any transaction. Elhard and Bayer discuss how to eliminate this
restriction for long (large) transactions. We will not consider such transactions here, since
we believe it is no more difficult to deal with them in our schemes than in EB.

The cache contains two kinds of pages: originals and copies. An original page reflects
the effects of all committed transactions and no active ones. A copy is a page being
modified by an active transaction. When a transaction wishes to read a page, it acquires
a read lock on it, and then accesses the (original) page via the cache. The read is easy
to satisfy if the page is in the cache. If the page is not in the cache, a free cache slot
is obtained (as described below), and the page is fetched from the database. To update
a page, a transaction first acquires a write lock on it. If the page is in the cache, the
transaction makes a copy of it, and modifies only the copy. If the page is not in the cache,
the transaction fetches it from the database, marking it as a copy rather than an original.
However, for easier extension to our later algorithms, our routines make both a copy and
an original.

Here is pseudo-code for the routines just described: PRead, PUpdate, Find, and Make-
Copy, as well as the helper routine FindOrig. Cache slots contain the following information:
the page data (data), original vs. copy vs. free (status), the database page number (page),
and two fields (changed and safe) to be discussed later. Database pages contain only page
data. We assume that there is a function Readers (Writers) to tell us the current set of
transaction holding read (write) locks on a given page. By convention, we use ¢ to indicate
a transaction, d for a database page number, ¢ for a cache slot index, and s for a safe page
number. To simplify the presentation, we have assumed that transactions do not make

multiple calls on PRead or PUpdate for the same page. All pseudo-code routines are to

be executed atomically, except at points where they explicitly wait for a condition to be
satisfied, or block for I/O.

PRead(t,d)
wait until Writers(d) = {};
Readers(d) «— Readers(d) U {t};
¢ — Find(d);

return c;

PUpdate(t, d)
wait until Readers(d) C {t};
Readers(d) « {t};
Writers(d) — {t};
¢ «— Find(d);
¢’ — MakeCopy(c);
return c¢';

Find(d)
¢ — FindOrig(d);
if ¢ # nil then return ¢;
(here we do the fetch)
¢ — FindFree();
cache[c].data — DB|d];
cache|c|.status «— original;
cache[c].page «— d;
cache[c].changed « false;
cache|c].safe « nil;
return c;

MakeCopy(c)
¢' — FindFree();
cache[c'].data «— cache|c|.data;
cache[c').status «— copy;
cache|c'].page « cache[c|.page;
cache|c'|.changed «— (anything);
cache[c'].safe « nil;
return c;

FindOrig(d)
C « {c| cache|c].status = original and
cache[c].page = d};
(note: |C| < 1)
if C # {} then return choose(C);
return nil;

When a transaction commuits, it releases its read locks, tnstalls its modified copies as
originals, writes these new originals to the safe (more details below), and releases its write
locks. To abort, a transaction simply releases all its locks and discards its copy pages. Here
are the routines for commit (TCommit, InstallCopy, and FindCopy) and abort (TAbort,
DiscardCopy, and Makefree).

TCommit(t)
(release read locks)
D « {d|t € Readers(d) — Writers(d)};
for each d € D do
Readers(d) — Readers(d) — {t};
(process modified pages)
D « {d|t € Writers(d)};
n — |D|;
10
for each d € D do
¢ + InstallCopy(d);
t—t1+1;
WriteSafe(c,? = n);
Writers(d) « {};
Readers(d) « {};

InstallCopy/(d)
¢ «— FindOrig(d);
¢' — FindCopy(d);
cache[c|.data « cache|c'].data;
cache[c|.safe « nil;
cache[c|.changed «— true;
MakeFree(c');
return c;

FindCopy(d)
C « {c| cache|c].status = copy and
cache[c|.page = d};
(note: |C| < 1)
if C # {} then return choose(C);
return nil;

TAbort(t)
(release read locks)
D « {d|t € Readers(d) — Writers(d)};
for each d € D do
Readers(d) — Readers(d) — {t};
(process modified pages)

D « {d|t € Writers(d)};

for each d € D do
DiscardCopy/(d);
Writers(d) « {};
Readers(d) « {};

DiscardCopy/(d)
¢ + FindCopy(d);
MakeFree(c);

MakeFree(c)
cache[c].status « free;
cache|c|.page « nil;
cache|c|.safe « nil;

To free a cache slot, we choose some unlocked (original) page in the cache as a replace-
ment victim. If the victim has been modified since being fetched from the database, it is
forced back to the database. So that we can detect such modifications, original pages are
marked changed or unchanged, and this marker is initialized and updated appropriately.
We will not discuss cache replacement policies; the choose routine is assumed to embody
whatever policy is chosen by the designer. Here is the code for FindFree and Force.

FindFree()

C « {c| cache|c].status = free };

if C # {} then return choose(C);

C « {c| cache|c].status = original and
Readers(cache|c].page) = {} and
Writers(cache|c].page) = {}};

(by assumption, C cannot be empty)

¢ — choose(C);

if cache|c].changed then Force(c);

" MakeFree(c);

return c;

Force(c)
d « cache|c].page;
DB|d| « cache|c|.data;
cache|c].changed « false;

Let us now consider commit processing and recovery. As noted above, when a transac-
tion commits, it writes to the safe, atomically, the new versions of the pages it modified.
The safe is used as a circular buffer and contains in essence a tail of the commit log. In
recovery we simply scan that tail in the order it was written, putting pages back into the

cache slots from which they came. Having rebuilt the cache, we continue with normal
processing. There is a small catch, though: before we overwrite a page on the safe, we
must be sure it is not needed for crash recovery (restart-free in the terminology of Elhard
and Bayer).

Suppose we overwrite a particular page p at the beginning of the safe. If there is
another copy g of the page on the safe, then ¢ is more recent than p, so we do not need
p. If there are no other safe copies of p, and p is not still in the cache, then when p was
replaced in the cache it was forced to the database; therefore we do not need the safe copy.
The only situation left is a page with no other copies on the safe, but which is still in the
cache. In this case we force the cache original to the database before overwriting the safe
version.

A second catch is that a crash might occur while writing pages to the safe. The pages
produced by a given transaction, which we will call a commit group, must be written
atomically. As in EB, we do this by specially marking the last page of a commit group.
TCommit indicates to WriteSafe which page is last, and the recovery algorithms ignore
pages on the safe not followed by one marked as last.

In our code we assign log sequence numbers to pages as they are written. These numbers
are strictly increasing. The safe slot used for a given page is the sequence number modulo
the size of the safe. The integer part of the result of dividing the sequence number by the
safe size gives the round count (in the terminology of EB): the number of times that safe
slot has been used. In EB it is shown that we need only record the low bit of the round
with each page. We have used full sequence numbers in the pseudo-code, for clarity and
simplicity.

The data structures used in safe management are as follows. The safe begin pointer is
the sequence number of the oldest page considered to be part of the safe. It is stored on
the safe as safe.begin, and maintained in volatile memory as SafeBegin. SafeSeqNum is a
volatile variable giving the sequence number of the newest page on the safe. It must be
recalculated after a crash. This is done by searching backwards from the safe begin pointer
until new pages are found. We continue that search until we find a page marked as last,
so as to implement atomic writing as previously described. Each safe slot contains page
data (data), the database page number for this data (page), the cache slot from which
it was written (cache)?, whether or the page is last in a commit group (last), and the
sequence number of the page (seq). When a page is written to the safe, the cache slot is
set to indicate the safe location. This is used later by FreeSafe to determine if the safe

slot is restart-free. Again, EB provided a different, but equivalent, encoding of the same

2This is not strictly necessary, and was not done in EB, but it simplifies recovery.

information.

WriteSafe(c, last)
SafeSeqNum «— SafeSeqNum + 1;
s «— SafeSeqNum mod SafeSize;
FreeSafe(SafeSeqNum — SafeSize);
safe[s].data «— cache[c].data;
safe[s].page «— cache[c].page;
safe[s].cache « ¢;
safe[s].last « last;
safe[s|.seq — SafeSeqNum;
cache[c].safe + SafeSeqNum;

FreeSafe(n)
while SafeBegin < n do

C + {c|cache|c].safe = SafeBegin and

cache[c].changed};
for each ¢ € C do
(there will be at most one c)
Force(c);
cache|c].safe «— nil;
SafeBegin +— SafeBegin + 1;
safe.begin «— SafeBegin;

Recover()

for each ¢ do MakeFree(c);

SafeBegin « safe.begin;

SafeSeqNum « SafeLast();

for s « SafeBegin to SafeSeqNum do
s + &' mod SafeSize;
¢ «— safe[s].cache;
cache|c].data « safe[s].data;
cache|c|.status «— original;
cache|c|.page « safe[s].page;
cache[c|.changed « true;
cache[c].safe «— safe[s].seq;

SafeLast()
s +— SafeBegin — 1;

while safe[s mod SafeSize].seq < SafeBegin do

s—s8—1;
while not safe|s mod SafeSize}.last do
8§+—8—1;

return s;

To reduce delays at commit and in obtaining free cache slots, we could have a back-
ground process that chooses unlocked, changed, original pages according to some policy
(e.g., safe copy likely to be overwritten soon) and forces them to the database. It should
also update the safe begin pointer to stay ahead of committing transactions. The back-
ground process trades occasional unnecessary 1/0 for improved response time; its page
choice policy would be important in controlling system overhead.

In summary, the salient properties of the database cache approach are:

e It keeps the database and safe clean, avoiding global undo upon recovery.
o It keeps the cache clean, avoiding I/O upon transaction abort.
e Commit processing is fast because it involves only sequential writes to the safe.

e Recovery is fast because it requires only a sequential reading of the safe.

3 Scheme I: A Technique Using Page-Oriented I/O

We now describe our first scheme for finer grained locking. It retains the page oriented
1/0 of EB, but substitutes locking of smaller items, which we will call atoms. An atom is
a subcomponent of a page; no atom spans more than one page and no two atoms overlap.
Transactions might request atoms in groups (e.g., a sequential range of atoms); however,
to simplify the presentation, our code will consider requests only of individual atoms.
An atom might be a bit, a byte, or a larger unit, as chosen by the database designer.
For example, one could make every byte be an individual atom, and support field and
record locking by locking groups of atoms together. In that case, one would probably want
to optimize the data structures for recording the atom locks, etc., towards dealing with
ranges. Alternatively, one could consider each (physical) record to be an atom, in which
case ranges might not be so interesting. At any rate, we are not specifying exactly how big
atoms are, nor are we trying to suggest optimal data structures (or any at all) for dealing
with atom locks. Traditional techniques will apply without difficulty. Further, it would not
be hard to incorporate hierarchical locking and fancier lock modes (e.g., intention locks).
Since it would complicate the presentation, we do not consider such embellishments here.

The changes to EB are as follows. When a transaction desires to read an atom, it first
acquires a read lock on it, and then accesses the relevant page in the cache, fetching it from
the database if necessary, just as in EB. Note, however, that a read request can access (the
original of) a page being modified by a different transaction, so long as the atoms that the

transactions access are different (which locking insures).

When a transaction desires to modify an atom, it acquires a write lock on it, and fetches
the page if it is not in the cache. It makes a copy of the page if it does not already have
a copy, and works on the copy. Note that unlike EB, there will always be an original page
for each copy. This design is the easiest to explain; we describe some alternatives at the
end of this section. Similar to the read case, we can acquire write locks on, and modify,
some atoms of a page, while another transaction is reading (or modifying) other atoms of
the same page.

When a transaction aborts, we simply release its locks and discard its copies. When a
transaction commits, we first release its read locks. Then we copy its write locked atoms
back to the original pages in cache, being careful not to disturb any other atoms in the
originals. Finally we write the modified originals to the safe, release the write locks, and
discard the copy pages.

The installation of the modified atoms and writing of pages to the safe needs to be done
as a single atomic action, to avoid including parts of another transaction’s modifications
if two transactions commit at about the same time. One way to achieve the required
atomicity is to use a mutual exclusion lock. When a transaction is to commit, it acquires
the lock, performs its commit actions, and then releases the lock. Note that this does
not interfere with active transactions in any way, and that since access to the safe is
sequential, we cannot do any better (provided the processor is fast enough to keep the
disk busy throughout the commit phase). There is no problem with concurrent access to
original pages: transactions reading atoms will not be looking at the parts of the pages
being modified, and ones modifying the pages (i.e., making copies during installation of
the committing transaction’s changes) will not install back the parts of the pages we are
changing.

As in EB, original pages in the cache reflect the updates of all committed transactions
and none of the transactions in progress. The I/O to the safe and the database is exactly
the same. To see this, simply note that a transaction writes to the safe exactly those
pages containing atoms it modified. In EB it would have locked whole pages, but would do
the same safe writes. Recovery is unchanged from EB, as is safe management and cache
replacement (if a page is considered to be locked when any of its atoms are locked). Here
is the code for the procedures that have changed. We use a to indicate an atom number,
and Page(a) to indicate its page number.

ARead(t, a)

(PRead changed to handle atoms)

wait until Writers(a) = {};

Readers(a) — Readers(a) U {t};

¢ — Find;(Page(a));

return c;

AUpdate(t, a)

(PUpdate changed to handle atoms and
per-transaction copies)

wait until Readers(a) C {t};
Readers(a) «— {t};
Writers(a) — {t};
¢ — FindCopy;(Page(a),t);
if ¢ # nil then return c;
¢ — Find;(Page(a));
¢’ — MakeCopyi(e,t);
return c';

Find;(d)
¢ — FindOrig(d);
if ¢ # nil then return c;
(here we do the fetch)
¢ — FindFree();
cache|c|.data «— DB|d);
cache|c|.status «— original;
cache|c|.page « d;
cache[c].changed « false;
cache|c].safe « nil;
cache|c|.trans « nil; (only change)
return c;

MakeCopyi(c, t)
(changed for per-transaction copies)
¢' «— FindFree();
cache[c'|.data — cache]c|.data;
cache[c'].status « copy;
cache[c'|.page — cache|c|.page;
cache|c'].changed «— (anything);
cache|c'].safe « nil;
cache[c'].trans «+ ¢; (only change)
return c';

FindCopy;i(d,)
(changed for per-transaction copies)
C + {c| cache[c].status = copy and
cache|c|.trans = ¢t and
cache|c].page = d};
if C # {} then return choose(C);
return nil;

TCommitI(t)
(now handles atoms and per-transaction copies)
A — {a|t € Readers(a) — Writers(a)};
for each a € A do
Readers(a) «— Readers(a) — {t};
A — {alt € Writers(a)};
D — {Page(a)|a € A};
n — |D|;
1t — 0;
for each d € D do
A + {a|t € Writers(a) and Page(a) = d};
¢ + InstallCopy;(d, t, A);
t—1+1;
WriteSafe(c,? = n);
for each a € A do
Writers(a) «— {};
Readers(a) « {};

InstallCopy;(d, t, A) .
(CopyAtom copies individual atoms)
¢ — FindOrig(d);
¢' « FindCopyi(d, t);
for each a € A do CopyAtom(a,c',c);
cache|c|.safe « nil;
cache[c].changed « true;
MakeFree(c');
return c;

TAbort;(t)
(now handles atoms and per-transaction copies)
A « {a|t € Readers(a) — Writers(a)};
for each e € A do
Readers(a) «— Readers(a) — {t};
A « {a|t € Writers(a)};
for each @ € A do
Writers(a) « {};
Readers(a) < {};
D « {Page(a)|a € A};
for each d € D do DiscardCopyj(d,t);

DiscardCopyi(d,t)

¢ «— FindCopyi(d,?);
MakeFree(c);

11

Even as it stands, this simple extension may be useful for increasing the concurrency
of the database cache. The cost lies in maintaining finer grained locks, and in maintaining
n+1 versions of pages under modification by n active transactions. It is natural to consider
reducing the I/O to the safe at commit time, by writing only the modified parts of pages.
As might be expected, this affects the algorithm in other ways, as we will see in the next
section. We note in passing that EB, as well as our schemes, is easily adapted for use with
optimistic concurrency control [Kung and Robinson 81].

In the code above, unlike EB, we will sometimes have an original page that is not
strictly necessary. This happens when a transaction desires to modify a page not currently
in the cache. In fact, if the whole page is locked, we can omit the original page just as
in EB, with no other change to our algorithms. Let us now consider what happens if the
whole page is not locked and we do not keep an original copy. Suppose transaction T}
made the original request, and that transaction T; requests some of the unlocked atoms.
Further suppose that in order to avoid fetching the page from the database, we give T,
a copy of Ty’s copy. Now, if T} aborts and T; commits, we are in trouble: we cannot
reconstruct the original value of the atoms locked by T). Similarly, if T; commits first,
we cannot formulate the correct value to write to the safe. Solutions to these problems
include:

Maintaining the original version, as presented.

Fetching the page from the database for T’s request, rather than copying the copy.

Fetching the page from the database if T} aborts, or if T; commits first.

Giving T: a copy of T’s copy, so that T; can proceed immediately, but starting a
fetch of the page from the database just in case T; commits first or T, aborts.

Some of the above techniques require distinguishing copies from copies of copies. Any
of the approaches might be reasonable, depending on the nature of the application.

4 Scheme II: A Technique Using Atom-Oriented I/O

In Scheme I, when a transaction T commits, a full copy of every page containing atoms
modified by T is written to the safe. Scheme II takes a different approach: only the
modified atoms are written, not the entire page. This can significantly reduce the commit
I/0. For example, suppose transaction T updates three records that happen to lie on
different pages. Under Scheme I, three pages must be written to the safe when T' commits.

12

However, if the records are small, they might all fit in one page. Scheme II will write just
one page.

Let us consider commit processing in more detail. In Scheme I, we simply write the
new value of each modified page to the safe. The last page is specially marked so that we
can tell if there is a crash while writing. For Scheme II, we write a sequence of variable size
records, containing modified atoms. Each record contains the atom data, the identity of
the atom, and the cache page from which it came. We are not concerned with the details
of the encoding of this information, only with what information can be recovered. For
atomicity in writing each transaction’s commit data, we write a commit group as a set of
pages, padding out the last page if necessary. The last page of each group is marked, as
before. We will also find it convenient to mark the first page, so that we can identify entire
commit groups. This is useful because once any page of a commit group is overwritten
(e.g., the first one), the rest of the group may be difficult, if not impossible, to decipher.

Recovery is different under Scheme II. We read the complete commit groups (those
having both a start and end page), in the order they were written to the safe, and install
the atoms into the cache. As we do so, for each page we keep track of which atoms have
been filled in from the safe, and which are unknown. Once we have processed all the
commit groups, we scan the cache, and for each page that has remaining unknown atoms,
we fetch the page from the database and fill in the unknown atoms. We can schedule the
database reads in any order we like, so we can reduce the I/O latency.

As in EB and Scheme I, we may need to force pages to the database before overwriting
an old commit segment on the safe. Suppose we are about to overwrite the first page of the
commit segment for transaction T. The simplest scheme is to force every cache resident
page that was modified by T'. (Note that pages not in the cache must have been replaced,
so they have already been forced to the database.)

Doing forces is a little more tricky in Scheme II than before, however. The reason is
that the safe may not contain enough information to reconstruct the whole page. Hence,
if we crash while writing the page to the database, we cannot recover the contents of the
missing atoms. Hence, we must write at least the atoms not on the safe, if not the whole
page, somewhere, before writing to the database. We can use an intentions list, separate
from the safe, to hold the values of the pages being forced. First we write all the pages
to the intentions list, and then write them to the database. The recovery procedure will
redo any saved intentions. This is a simple approach, and should not add significantly to
restart time because the intentions list will not contain many pages.

On the other hand, rather than using an intentions list, we can just make sure there is
a full copy of page p on the safe before forcing p to the database. There are three ways to

13

make this guarantee:

o Whenever p is modified and does not have a full copy on the safe, the modifying
transaction writes a full copy to the safe instead of just the modified atoms. This
approach simplifies safe management, as compared with the alternatives presented
below. However, it may increase the commit time of the transaction writing the
full copy. The significance of this increase depends on the capabilities of the disk
hardware and software, etc.

e We can wait until the commit segment containing the first modification to p is about
to be overwritten, and write a full copy to the safe then. This approach requires
keeping track of how much space is left on the safe and insuring that we can always
make the necessary number of full copies in the worst case. Determining the absolute
minimum space required is possible but complex. A simpler method is to keep room
for all cache resident changed pages that do not have a full copy on the safe. Delaying
full copies until the last moment can also hold up committing transactions.

o We can make a full copy sometime between the two extremes of the previous methods.
We can wait until we are getting close to overwriting the first commit segment, but
make the full copy when the I/O channel to the safe is otherwise idle. This method
reduces interference between safe management and committing transactions.

To manage any of these schemes we need to know whether any given cache page has a
full copy on the safe, and if so, where that copy is (so we will know when it is about to
be overwritten). To do this, we use the safe field of the cache entry to indicate whether
and where the page has a full copy on the safe. The code of Scheme I manages this field
properly. Note that writing some atoms from a page will not cause safe to be changed.
However, as a special case, if a transaction modifies a whole page, we can write the whole
page to the safe, and set safe appropriately, rather than writing it as atoms (our code does
not show this).

Below we present code for the simplest implementation of Scheme II: make a full copy
of a page whenever the page is modified and has no full copy on the safe. We assume
that there are routines to manage the buffering of modified atom information: WriteStart,
WriteAtom, and WriteEnd. Full copies are written separately, before the atom data of a
transaction. For simplicity, we have assumed that there is always some atom data, so that
we do not have to consider whether to flag a full copy page as the last one of a commit
group. This would be easy to incorporate into an actual system, however.

14

Recovery is subtle in Scheme II. We can establish the end of the safe as before, but
setting up SafeBegin is tricky, since safe.begin may be in the middle of atom pages. How-
ever, atoms can be ignored until a full copy of their page is found. Such a full copy either
exists (making the atoms redundant) or does not (the page was forced to the database,
also making the atoms redundant). So we simply skip any atom data at the beginning, as

well as atoms occurring before a full copy of their page.

TCommitu(t)
A « {a|t € Readers(a) — Writers(a)};
for each a € A do
Readers(a) — Readers(a) — {t};
WriteStart(); (sets up atom buffering)
A « {a|t € Writers(a)};
D «— {Page(a)|a € A};
n « |DJ;
1+ 0;
for each d € D do
A « {a|t € Writers(a) and Page(a) = d};
¢ + InstallCopyi(d, t, A);
if cache|c].safe = nil then
WriteSafe(c);
else
for each a € A do WriteAtom(c, a);
(note: all atoms buffered until the end)
for each a € A do
Writers(a) — {};
Readers(a) < {};
WriteEnd(); (finish writing)

WriteEnd()
n « (number of pages needed);
FreeSafe(SafeSeqNum + n — SafeSize);
(write out buffered atom information);
(each page still has .seq and .last);

Recovery()
for each ¢ do MakeFree(c);
SafeBegin « SafeFirsty();
SafeSeqNum « SafeLast();
s' «— SafeBegin;
while s' < SafeSeqNum do
s «— §' mod SafeSize;
if safe[s] is a full copy page then

15

¢ + safe[s].cache;
cache[c|.data « safe[s].data;
cache[c|.status «— original;
cache[c|.page «— safe[s].page;
cache[c|.changed « true;
cache[c].safe «— safe[s].seq;
s e—s+1;
else

s' «— next page after the commit group;
for each atom a € the commit group do

¢ + FindOrig(Page(a));

if ¢ # nil then

copy atom data into cache|c;

SafeFirstn()
s — safe.begin;
while safe[s mod SafeSize] is an atom page do
s+— s+ 1;
return s;

5 Conclusions and Directions for Further Research

We have presented two schemes that provide finer grained concurrency control for the
database cache. The most obvious direction to take now is to implement these schemes
and see how they work. There are several aspects that might be explored:

o The replacement policy for the cache and the advisability of, and algorithms for, a

background process to free cache slots and force pages to the database.

e Comparison of EB, Scheme I, and Scheme II along the lines of the performance

studies reported by Elhard and Bayer.

o Investigation of alternatives regarding the creation of originals in the cache when a

page not in the cache is locked for writing.

o Consideration of the various safe management (forcing) policies possible for Scheme
IL.)

e Testing the effects of different atom sizes on the performance and behavior of the

system.

e Comparison of any of the schemes with their corresponding version using optimistic

concurrency control instead of two-phase locking.

16

While we leave a number of questions unanswered, we have shown with Scheme I that
fine grained concurrency control for the database cache is not difficult to devise, should
not be complicated to implement, and will offer improved concurrency. Whether Scheme
II offers real advantages over Scheme I remains to be seen. While finer grained physical
locking can improve concurrency, greater gains might be made by taking the semantics of

higher level operations into account, as suggested in [Schwarz and Spector 84, Weihl and
Liskov 85].

References

[Elhard and Bayer 84] K. Elhard and R. Bayer, “A Database Cache for High
Performance and Fast Restart in Database Systems”, ACM Transactions on Database
Systems, Vol. 9, No. 4, December 1984, pp. 503-525.

[Kung and Robinson 81} H. T. Kung and J. T. Robinson, “On Optimistic Methods for
Concurrency Control”, ACM Transactions on Database Systems, Vol. 6, No. 2,
June 1981, pp. 213-226.

[Schwarz and Spector 84] Peter M. Schwarz and Alfred Z. Spector, “Synchronizing
Shared Abstract Data Types”, ACM Transactions on Computer Systems, Vol. 2,
No. 3, August 1984, pp. 223-250.

[Weihl and Liskov 85| William Weihl and Barbara Liskov, “Implementation of Resilient,

Atomic Data Types”, ACM Transactions on Programming Languages and Systems,
Vol. 7, No. 2, April 1985, pp. 244-269. .

17

