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ABSTRACT

This paper presents an evaluation and improvement of an algorithm
[LAWS4] for the recovery of translational motion parameters of a sensor moving
through a static environment. The algorithm computes the direction of transla-
tional motion using a search through a two-dimensional parameter space for values
that are optimal in terms of their consistency with the image dynamics of features
over a pair of frames. The direction of translation is computed from the mini-
mum of an error surface constructed in the two-dimensional parameter space. We
evaluated the effectiveness of the algorithm using synthetic images on the basis of
the number of feature points matched between frames, the relative angle between
the camera orientation and the direction of translation, the influence of noise, and

computational cost.

The algorithm is robust across a very wide range of camera translations,
using as few as eight feature points. Accuracy generally improves when the number
of feature points is increased to 16. The algorithm experiences difficulties when
the angle between the direction of translation and the direction of view approaches
ninety degrees. In such cases the error surface in the vicinity of the minimum is flat
causing ambiguity in the location of the minimum. In addition, fluctuations in the
error surface due to different sources of noise become more important if the error

surface around the minimum is shallow.

A significant improvement in the robustness and computational speed of
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"the algorithm is achieved by incorporating a new method for the search for the
minimum of the error surface. The approach is based on an assumption of global
smoothness of the error surface, which allows the use of a regularization constraint.
The approach uses a multi-step hierarchical search beginning with a coarse sampling
of the error surface (the first step). In the second step, using a smaller neighborhood
and a finer resolution, the error surface is sampled around the minimum found in
the previous step. In this step a more faithful representation of the error surface
near the exact minimum is obtained. In the third step the error surface obtained in
the second step is smoothed using a regularization technique. An error surface with
much finer resolution and lower noise is found, whose minimum is detérmined by
the shape of the error surface found in the second step. The second and third step
can be repeated using the previous minimum until sufficient accuracy is achieved.
Lawton [LAWS84] used a global search technique, followed by a local hill-climbing
technique, in the search for the error minimum. The local-hill climbing technique
failed in cases of non-convex, i.e., noisy, error surfaces. Our hierarchical approach
with smoothing results in more robust and faster algorithm. We believe that these
translational motion results will be qualitatively similar to other forms of camera

motion, such as pure rotation and motion constrained to a plane.
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1. INTRODUCTION

1.1 Background

This paper focuses on analysis of the motion of a camera through a static envi-
ronment. In particular, we examine the vector field describing the changes in the
positions of the images of environmental points over time. Gibson |[GIB50] first
introduced the idea of "optic flow”, which is essentially a vector field representation
of the image displacement of environmental points induced by motion. Gibson ob-
served that the patterns and extent of displacements of image points should provide
some information about the sensor motion and environment. We will refer to the
vector field as the displacement field. For more details about the computation of

displacement fields, see [BAL82, ANA85, ANAS6|.

The first part of this paper describes the results of an extensive testing of
the Lawton algorithm [LAW84| for the recovery of translational motion parameters,
based on the idea of consistency of image feature dynamics. It should be noted that
a motion search algorithm in this same class of algorithms was developed earlier by
Williams [WIL80]. The later uses consistency of image dynamics, as well as surface
depth computation, in order to recover both the translational motion parameters of

the camera and the depth of image regions under the assumption that each region
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represents a planar surface oriented at one of directions orthogonal or parallel to
the image plane of the camera. Both of these algorithms avoid computation of the
entire image displacement field prior to the recovery of translational motion param-
eters. They compute motion parameters and displacements simultaneously. In that
respect, they are different from the algorithms that use the entire displacement field
to recover parameters of motion such as [ADI84], or generalized Hough transform

approaches in [AGG81], [BAL81], [ORO81], [DAV83].

The axis of translation of a sensor may be uniquely specified by.the point
where it intersects the image plane (the axis of translation is assumed to start from
the focal point). The intersection of the axis of translation and the image plane
is called the focus of expansion/contraction (abbreviated to FOE/C), see [BALS2].
The search for the translational axis (FOE/C) is done by hypothesizing many pos-
sible positions of the FOE/C on the image plane. The consistency of the location
of the hypothesized FOE/C with the displacement of several interesting points is
checked and expressed as an error value. Error values found at these hypothesized
positions of the FOE/C on the image plane determine an error surface. The search
for the minimum error is then equivalent to the search for the most probable posi-
tion of the FOE/C. Equivalently, the error surface minimum determines the camera
translation which is most consistent with the displacement field. The robustness

and accuracy of the method are due to its unique combination of local and global

characteristics.

)
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The local nature of the technique and its accuracy are the consequence of
correlation measurements of intensity values between a window in one image and a
window in a subsequent image. These windows are centered around corresponding
”interesting” features in two images. The correlation between these windows is
used to find the displacement of a feature from one image to another (from one
instance in time to another), along the line between the hypothesized FOE/C and
the feature point, and to associate with this displacement a measure of confidence,
or, equivalently, a measure of error. The smaller the error, the greater the confidence

about the orientation and magnitude of the feature displacements.

The global nature of the technique arises from the contribution of many
points which ideally are spread across the image at different relative orientations
to the FOE/C; the points selected should be distinguishable or trackable, and if
few are used should be selected via an interest operator [LAW84, MORS81|. The
solutions are stable despite the presence of noise, false feature matches, occlusion
of features, and other causes of unreliable information. The reason is that the
search for the position of the FOE/C depends on the set of points whose motion
is jointly constrained. Displacements not in agreement with the majority of other
displacements will, in effect, be disregarded during the search. The direction of
displacement of a local feature as suggested by the optimal position of the FOE/C
should be but is not necessarily consistent with the displacement obtained by local
computations. The determination of the optimal position of the FOE/C, which is

consistent with the image dynamics of interesting points over a sequence of images,
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is in a sense an averaging process of the contribution of displacement vectors.

This paper considers only translational motion. However, there are two
closely related cases of camera motion in a static environment which should be
amenable to a similar approach [LAW84] and which should show equivalent results.
One of them occurs when the camera motion is constrained to a known plane,
where the camera rotation is about the axis perpendicular to that plane. The other
is pure rotation about a fixed axis, -described by only three parameters. While
the algorithm is efficient in low-dimensional parameter spaces (specifically the 2D
parameter spaces of pure translational motion or motion constrained to a plane, or
the 3D parameter space of pure rotations), it has yet to be proven better in higher-
dimensional parameter spaces, i.e., for motions with arbitrary sensor rotation and

translation.
1.2 Summary of Paper

In the first part of this paper (Chapter 2) Lawton’s algorithm for constrained search

for the translational motion parameters is described and tested on both synthetic
image;s and outdoor motion sequences. The influence of the following parameters is
examined:

1. The number of feature points in the image plane which are matched between
two frames;

2. The accuracy with which the direction of translation can be recovered as a
function of the relative orientation of the camera line of sight to the direction
of motion;

3. The resolution of the sampling of the FOE/C during the global search;
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The size of the window used for feature correlation between frames;
The step size of feature displacements during feature matching;

The efficiency of computation;

NS ;e

The robustness of the method with respect to uncorrelated noise.

The experiments show that the search for the minimum of the error surface,
used by Lawton, failed in some cases [PAV85]. The algorithm started with a sparse
sampling of the error surface followed by a finer-resolution local hill-climbing search
for the global minimum of the error surface. There are problems and inefficiencies in
this search algorithm. Namely, if the global search in the two-dimensional parameter
space is too sparse, there is a possibility of missing the correct minimum. This
happens when the error surface around the minimum is relatively flat and exhibits
small fluctuations. The local hill-climbing technique fails because the assumption
of monotone convexity of the error surface is violated in such cases. The local
search gets “trapped” in one of the locally convex regions, not necessarily at the
real minimum. These cases of ambiguity cannot be resolved by any local search

method [PAV85].

On the other hand, if the global search is performed with much finer reso-
lution, there is unnecessary computation involved in computing many error values
in which we are not interested. Indeed, we are interested only in the position of
the minimum of the error surface. This aspect becomes more and more important
when the number of interesting points followed from one frame to another increases

and when the speed of the computation is critical. Thus, it is not feasible to solve
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the search failure problem with higher FOE /C sampling rate.

In the second part of the paper we present an improvement of the algorithm
by imposing a smoothness constraint on the error surface. The suggested approach
is based upon a strong conjecture, which is supported by experimental evidence,
that the error surface should be smooth if more than a few points are tracked
between a pair of frames. The idea of lower spatial resolution, which can be used in
conjunction with the smoothing of the error surface, is consistent with the general
perception of how the motion is detected in biological systems [ULL81]. Smoothing
of the error surface corresponds to a spatial smoothing of the image intensity values,
and thus to a decrease of the acuity of perception derived from temporal analysis
of multiple frames. Smoothing of the error surface then reflects our belief that in
"the guidance mode” a high acuity of perception is not essential for the evaluation
of motion parameters. A high a‘cuity of perception is undoubtedly important for

the estimation of the environmental structure.

The assumption of smoothness of the error surface is viewed as a kind of
regularization constraint [POG84). To simulate a smooth error surface which still
passes close to the error values computed by displacement vectors of interesting
features, one can use a variety of regularization functionals. We have chosen one
which is similar to the regularization functional used in the work on extraction of
depth maps from stereo [GRI81]. The methodology can be visualized as a problem

of finding the equilibrium position of a thin metal plate forced to pass close to a

O
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given sparse set of points in the space. The best plate (surface) is the one which
follows the given data within some tolerance and at the same time has the smallest

possible potential energy of deformation.

The constraint of smoothness that has been introduced leads to a variational
problem which was solved numerically by a method of conjugate gradients [HES80].
The regularization method and the conjugate gradient technique used in this paper

are described in Chapter 3.

Not only should the robustness of the algorithm be improved by the smooth-
ing modification, but the computational speed should also be improved since the
expensive computation of the error surface via a high sampling rate can also be
significantly reduced. Only a few sparse error values near the minimum are nec-
essary to determine the overall shape of the error surface. The shape of the error
surface determines the position of the minimum and that happens with reasonably
satisfactory accuracy. Interleaving the computation of the local error surface with
its smoothing results in a robust end efficient algorithm. The experimental results

and their discussion are presented in Chapter 4.

A similar idea appeared recently in the work by Medioni [MEDS85], but in the
context of Adiv’s work [ADI84]. The authors have chosen a regularization functional
which reflects constraints applied directly to the displacement field; however, the
chosen constraints are only partially justified. We do not introduce constraints that

early, but only when the error surface is already created, in the last step of the
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evaluation of motion parameters.

Sopetgen -
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2. EARLY EXPERIMENTS

ROBUST RECOVERY OF TRANSLATIONAL MOTION

PARAMETERS USING GLOBAL FEATURE CONSTRAINTS

In this chapter we introduce more formally the method of analyzing a dis-
placement field for the recovery of the translational motion parameters of a camera
moving in a static environment [LAW84]. Then the results of experiments which
were designed to test the robustness and limits of the algorithm are described. The
analysis of this set of experiments leads to some refinements for which the theo-
retical foundation is given in Chapter 3 and for which the results can be found in

Chapter 4.
2.1 Translational Motion and Displacement Fields

In this section we present a brief review of the FOE/C algorithm and the
general ideas that are necessary to follow the discussion of the experiments in the
following section; the reader is encouraged to consult [LAW83, LAWS84| for more

details.

In the case of pure translational motion of the camera in a static environ-

11
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ment, the intersection of the image plane and the vector describing the translational
motion of the camera focal point is called the FOE/C. The displacement vector of
any image feature lies on the radial line connecting the FOE/C and the feature (see

Figure 1).

As few as two image points would be sufficient to identify the correct translational
motion, providing that the non-collinear displacements of the two points can be
accurately found. In practice, however, the proper correspondence between the
projection of environmental points in two or more consecutive frames is difficult to
find. Typically, the correspondence between similar parts in two images is estab-
lished using techniques such as scalar valued correlation functions MOR81, AGG81,
LAWS83, ANA86| or symbolic token matching of key image events [FAN82, DAV83,
SMI86|. There are a variety of problems that make such mechanisms unreliable: the
size of the local area to be searched, the presence of noise in the image, occlusion

of surfaces, insufficient resolution of the image, etc.

~ Redundancy and global constraints on the feature dynamics across frames
can be used to overcome these difficulties [BHA85]. Since the displacement vectors
of all features in a static environment (i.e., no independently moving objects) are
constrained to emanate from the FOE/C, the use of additional features should in-
crease the confidence about the correct position of the FOE/C. Use of redundant
features would compensate for features that provide weak or incorrect information

(e.g., features in low contrast or homogeneous regions, features at occlusion bound-

4
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The camera model and the displacement field produced by two environmental points
A and B during the motion of the camera specified by the translational vector 6.
The Z axis is along the line of sight and passes through the center of the image
plane. The origin of the camera centered coordinate system is at the camera’s focal
point and images of environmental points are obtained by the central projection.

Figure 1: Camera model and FOE/C.

aries). However, the use of too many features is computationally expensive.
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2.2 Error function

The position of the FOE/C can be obtained in two basic steps. The first
step is the extraction of features and the second step is the search for the position
of the FOE/C which is most consistent with their displacements. The whole search

procedure is symbolized in Figure 2.

The feature extraction process is responsible for the extraction of distin-
guishing points which can be tracked from one frame to another. Contour points of
high curvature are a good choice because they are less likely to produce ambiguous
matches in succeeding frames. The contours can be extracted using a variety of
techniques: thresholding, zero-crossing, boundary curvature measures, local con-

trast measurements, etc., [LAW83, LAWS84].

The direction of translation is then found by a search across hypothesized
FOE/C positions in the image plane. A hypothesized position of the FOE/C and
a feature in the first frame determine a line. The feature is expected to move in
the second frame along this radial line not more than certain number of pixels. To
determine the extent of the feature displacement, a correlation measure between
a window centgred at the position of the feature in the first frame and a window
moving along the radial line is computed. If a feature, say A, has moved in the
subsequent image to the position A; some distance d along the radial line, then a
window around A is expected to correlate nearly perfectly d units along the radial

line in the next frame. Equivalent information is given in the error measure between

)
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~ FOE,

~
_ IMAGE PLANE

<+—— ERROR SURFACE

<—— UNIT SPHERE

The position of the FOE/C in the image plane is hypothesized. For the position
FOE, the best correlation matches for features A and B are found along radial paths
from FOE, through A and B at, let us assume, positions A and Bj, respectivelly.
FOE, itself is at the intersection of the image plane and the translation vector
5.1. The position of the FOE; also uniquely determines a point on the unit sphere,
centered at the camera focus, where the translation vector §; pierces the unit sphere.
At that point, the error associated with the best match for features A and B is
recorded. For a different hypothesized position of the FOE/C, for example, FOE,,
the best match for features A and B might be found along a radial path at the
positions Az and B;. The error is expected to be large if the assumed position of
the FOE/C is incorrect. This process is repeated for many hypothesized positions
of the FOE/C resulting in an error surface over the unit sphere. The position of
the minimum of the error surface determines the correct axis of translation (or,
equivalently, the correct FOE/C).

Figure 2: Search for the FOE/C.

15
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features A and A;:
error(featurea, features,) = 1 — corr(featureq, featurea,). (2.1)

Several measures were examined by Lawton for feature matching: the
normalized correlation, the Moravec correlation (which was used in this paper)
[MORT7], and the normalized absolute value difference. These correlation func-
tions differ in speed and precision. The size of the n x n correlation window can
affect accuracy. In addition, alternative forms of interpolation should be considered,
because windows from one frame can be displaced to positions with non-integer co-
ordinates in the second frame (i.e., the windows in the second frame are not aligned
with pixels). Thus, approximate matching at integral pixel positions can be used,
but when higher precision is required, some form of interpolation should be used. In
this work a bilinear interpolation [ABR68] is used to compute the intensity values

at non-integer pixel positions.

. As an alternative to correlation matching, we are currently examining the
use of symbolic features, or ”tokens” (interesting points with a set of attribute-value
pairs [SMI86]). The replacement of correlation matching with symbolic matching
has the potential of significantly increasing the speed of computation!, but it was

not used here.

If the position of the hypothesized FOE/C is very close to the correct FOE/C,

then most of the features will return good matches and small errors, resulting in a

1 Lawton, private communication
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very small total error for that particular position of the FOE/C. If, on the other
hand, the position of the hypothesized FOE/C is far from the correct position,
the computed total error will be significant, since many features will return a poor
match. By hypothesizing FOE/C positions across the image plane, an error surface
can be constructed, with the minimal error expected at the position of the correct
FOE/C. By representing the orientation of the axis of translation and associated
error values on the unit sphere centered at the camera focus, rather than in the
image plane, a more uniform sampling of the hypothesized position of the FOE/C

can be achieved.

In the experiments that follow, the hypothesized position of the FOE/C on
the unit sphere is specified by angles # and @, where ¥ is the angle between the
translational axis and the Z-axis (the Z-axis is chosen along the line of sight), and
i is the angle between the projection of the translational axis on the X-Y plane and
the x-axis (left-handed polar coordinate system). We stress here that the angle ¥ is
the key parameter, since it represents the deviation of motion from the line of sight.
The variation of the results as a function of ¢ is expected to be less significant,
because it is the distance of the FOE/C from the center of the image that matters

and not its angular position.

The error surface on the unit sphere can be constructed starting with a coarse
sampling over polar angles. The resolution of the sampling is one factor determining

the precision of the method and speed of the search. The grid spacing in the (¢, )
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coordinate system in the set of experiments described in Section 2.3 was roughly

45, 22.5, and 11.25 degrees.

Once the coarsely sampled error surface is found, the search for the minimum
of the error surface is continued locally around the minimum found by the coarse
sampling. (The smallest error value of the coarse global search is taken as the
initial guess for a finer resolution local search). Lawton used a very simple hill-
climbing technique for the local search under the assumption that the error surface
is a strictly convex function in the vicinity of the global minimum. Error values
at eight new neighborhood points around the current minimum were computed.
The new neighborhood points were chosen at half the distance from the previous
neighbors. The point with the smallest error among these nine points was found and
became the new starting point for the next iteration of the local search. The new
neighborhood was searched, again with a radius equal to one half of the previous
spacing between the neighbors. The procedure was repeated until the radius of the
neighborhood became smaller than a limiting value 6. If the error surface near
the minimum were convex, this would guarantee that, when the local search was
completed, the position of the minimum of the error surface would be found with
an accuracy of £6,. The purpose of the global search was to localize the search for

the minimum of the error surface in such a convex neighborhood.
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2.3 Description of Experiments

We describe now an initial set of experiments that we performed with the
motion algorithm just discussed. This is followed by a discussion of the results
(Section 2.4) which sets the stage for the improvements described in Chapter 3 and
Chapter 4. The experiments were performed using the VISIONS image operating

system [HANB84|. The goals of these experiments were:

¢ to determine the minimum number of features required for robust recovery

of the motion parameters
e to determine the susceptibility of the method to image noise
¢ to determine the precision of the recovery of translational parameters

e to determine the applicability of the method over the range of all possible

translational motions.

Initially, we analyzed the algorithm on the same natural outdoor image se-
quence (the road-sign images) used by Williams [WIL80] and Lawton [LAWS3].
These images have a spatial resolution of 128 x 128 pixels. We repeated these ex-
periments with only a slight discrepancy from the values determined by Lawton,
probably due to different features. The results were satisfactory even with only
four feature points, and the use of eight feature points was as effective as 64 fea-
ture points. The global search was performed with a resolution of 22.5° and the

local search parameter was 6, = 0.005 radians (=~ 0.29°). The total number of the
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hypothesized FOE/C positions was around 160 in each of the experiments. The

EARLY EXPERIMENTS

results of the experiments are shown in the following table:

Results for the Road-Sign Sequence

Exper. No. of Translational axis coordinates
No. features x coord. y coord. z coord.
1 4 -0.8451 -0.4353 0.3101
2 8 -0.8338 -0.4150 0.3638
3 16 -0.8226 -0.4285 0.3736
4 32 -0.8439 -0.4218 0.3313
5 64 -0.8439 -0.4218 0.3313
6* 140 -0.8373 -0.4204 0.3493
Difference Exps. 2 and 6 -1.19% -2.38% 2.86%
Difference Exps. 5 and 6 -0.79% -0.33% 5.15%

*[LAWS4]

The exact translational axis for the road-sign images is not known. Therefore,
the absolute precision of the search is unknown, and it is not clear whether there
is any systematic deviation from the correct translational axis, nor whether the
algorithm would perform as well for other viewing directions relative to the direction

of motion.

We constructed synthetic images to assure controllable experiments. One of
the images is shown in Figure 3. It is a part of a motion sequence created with a
computer graphics system which incorporates ray-tracing techniques [WHI80]. The
sequence was a reasonable substitute for real-world images since light was handled
somewhat realistically. For example, shadows, specular reflection, decrease of the

light intensity with distance, and the physical laws of reflection and refraction were
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" RAY-TRACING IMAGE !

TFigure 3: Synthetic image used in experiments.

incorporated. Synthetic images permit accurate control of camera motion in a static
environment. Evaluation of the actual algorithm performance on real world images

should be performed as data bases of those motion sequences become available.

The images have a spatial resolution of 256 x 256 pixels. In these experiments
the camera position and motion were known exactly. Feature points on this image
appeared at some of the corners of checkerboard squares, on the prism, and on the
sphere boundaries. The camera field of view was 43.6° ~ 45° as opposed to 90°

in Lawton’s experiments. The line of sight was inclined 15° towards the horizontal
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checkerboard. In all experiments the displacement of the camera was calculated
so that the maximal displacement of the nearest point on the checkerboard did
not exceed eight pixels and the maximal displacement of the furthest point on the

checkerboard was about four pixels.

First, a set of translations in the Y-Z plane was generated, starting from the
line of sight (Z-axis), and increasing ¥ by increments of 15° from 0° to 90°, and then
by increments of 30° to 180° (keeping ¢ = 90°). The translations in the directions
along the X-axis and the bisector of the first X-Y quadrant were also analyzed (i.e.,
for (¥,0) = (90°,45°)), as well as the translation along an "arbitrary” direction

specified by the angles (d, ) = (62.4°,64.8°).

Parameters were varied from a default set of parameters. The default pa-
rameters used were: correlation window displacements of 1 pixel (with a maximum
allowed displacement of 10 pixels), correlation window size of 7 X 7, sampling in
polar coordinates of roughly every 45°, and a local search precision of §,, = 0.005
radians. Tables 1 through 6, given in Appendix A, present the results for images
without noise. Table 7 presents results when uncorrelated noise of varying strength

is added to the first image.

The number of hypothesized FOE/C positions during the entire search (com-
bined global and local) was about 60, 160, and 375 (Tables 1, 2, and 3, respectively).
The construction of the error surface was the time-consuming part of the search and

it is very important from the point of view of efficiency to minimize the number
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of hypothesized FOE/C positions. We would like to stress here, however, that the
algorithm and the environment in which it was performed were designed for pro-
gramming flexibility in an experimental development process, and not optimized

for speed. Thus, the computational speed can be greatly improved.
2.4 Discussion of Early Experimental Results

Before we consider the results of individual experiments, several general
remarks about the shape of the error surface for a camera moving in a static envi-
ronment are in order:

1. The greater the number of features, the "smoother” the error surface is
expected to be. With fewer features, the contribution of one feature to the
total error value is greater. If some features are “weak” or if their number
is small, the error surface is rougher.

2. The use of more features proportionally increases the computation time.
3. The closer a feature is to the FOE/C, the less reliable its contribution.

4. Features further from the FOE/C usually have larger displacements (al-
though the displacement is also a function of the depth of the environmental
point) and therefore predict more accurately the orientation of the radial line
on which the FOE/C should lie.

5. Since the position of the FOE/C is initially unknown, the features should be
spaced more or less uniformly throughout the image plane.

Let us consider the case of camera translational motion parallel (or almost
parallel) to the image plane. This corresponds to the situation when 9 ~ 90° to the
direction of the line of sight. In this case the FOE/C is far away from the image
center (Figure 4). We will show in the following brief analysis that the error surface

in these situations is flat and that the FOE/C cannot be accurately recovered.
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When the FOC is n times the image size away from the image plane, a displacement
of a feature d units towards the FOC causes the lateral displacement of the feature

of dy = d/n.

Figure 4: Search for a distant FOC.
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Let us assume that a window A in Figure 4 centered at (z,y) moved a distance
d towards the FOC (analysis is similar for the FOE). Let us further assume that
the FOC is on the Y-axis at the distance n- D, n > 1 from the center of the image,

where 2D x 2D is the size of the image plane. Then, according to Figure 4, we have:
d:/d=z/(n-D+y)~z/n-D (2.2)

or forz ~ D,
d; = d/n. (2.3)

For example, for translations 75° and 85° away from the line of sight, the values
for n are n ~ 4 and n = 10, respectively. From these equations we can see that
the correlation function must be able to detect a change of feature position in the
z-direction of the size d, in order to accurately predict the position of the FOE/C
on the Y-axis. However, since the size of the displacement d is limited, at best, by
the image size, d; is expected to be very small when the position of the FOE /C
is far from the image center. In general, the displacement d is usually assumed
to be small to avoid ambiguities during the matching process. If the correlation
function is not able to detect lateral displacement of a feature of the size d,, then
the position of the FOE/C is unknown with an angular uncertainty of d;/d. Thus,
in the cases of translational motions more perpendicular to the line of sight there
is a need for very accurate correlation measurements which often cannot be met.
That is the reason why the error surface for these directions becomes flat around

the minimuin.
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The sensitivity of the correlation function also depends on the window size.
The averaging nature of a correlation function (being a sum of products) works
against its sensitivity. Windows that are larger do not necessarily imply better

results.

The tables presented in Appendix A are considered next. In these tables,
the second column represents the directions (in polar coordinates) in which the
camera is translated and hence are the values which the algorithm is supposed to
recover. We refer to these directions as ”correct” values. The other columns specify
deviations (in degrees) from the correct values for experimental runs for 4, 8 and 16
feature points, respectively. The quantity AQl = \/W is a measure of total
deviation of experimentally obtained direction of motion from its correct value. It
should be emphasized again, however, that the value of ¥ is the important motion
parameter because it measures deviation of the direction of translational motion

from camera orientation.

In some cases the local search fails and it is not possible to recover the
correct axis of translation. These cases are marked with an A (for ambiguous) in
the tables. Tables 1 through 3 show that the ambiguous results appear mostly for
motions tending towards being perpendicular to the line of sight. In all these cases,
the value returned by the algorithm was the coarse grid sampling point with the
smallest error. Very often this was the direction (¢,) = (90°,90°). Because of

the noisy nature of the error surface, the assumption of the convexity of the error



Chapter 2:  EARLY EXPERIMENTS 27

surface near the minimum, a necessary condition for the local hill-climbing search,
is false. Rather, the local search returns a value close to the value returned by
the global search. Note that decreasing sparseness of the global search results in a
smaller number of ambiguous values (compare Tables 1, 2, 3, Appendix A). Thus,
failure to recover the correct axis is indeed due to the local part of the search, and
not a failure of the FOE/C method. (That is why we label these cases as ambiguous

and not as errors.)

Most experiments suggest the improvement of accuracy in determination of
camera motion parameters as the number of features is increased. It seems that
16 and often 8 feature points give adequately reliable results (see Tables 1 to 3),
with errors of only a few degrees from the correct axis. For four feature points the
results are not accurate, though they are relatively close to correct results when
the camera translation is along the line of sight. In real-world images, this would
be not a sufficient number of features. It is plausible that 32 or 64 feature points
would improve the precision of the search for the FOE/C, but in most cases where

the camera is oriented approximately towards the direction of motion this will not

be necessary.

A finer resolution of the window displacements (sampling every third of a
pixel along the radial line, see Table 4) does not produce much improvement with
respect to the default set of parameters, demonstrating that the correlation measure

between the two windows has a relatively broad peak at the maximum.
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Surprisingly, a window of smaller size (3 X 3) often gave quite satisfactory
results and in some cases recovered the axis of translation when larger windows
failed to do so (compare Tables 1 and 5). One conjecture is that the error function,
Eq. (2.1), is more peaked because there is less averaging effect in the summation of
the window intensity values. Since the computation time with smaller windows is
shorter, this window size might be used in the initial stages of computation if the
noise level in the images is low. A window of size 11 x 11 did not give results any

better than the default window of size 7 x 7.

Supplying an initial guess close to the correct translational axis (Table 6)
gave very good results in many cases. The search is done locally in a neighborhood
dp around the initially supplied axis. The significance of this result is in showing that
the correlation measure is able to detect the changes of axial positions to within a
few degrees. However, one should not be misled by the quality of the results. Since
we have limited our search space to a very small 6 neighborhood around one of the
points on the error surface, any returned value for the minimum will be not more
than 12 -8y away from the initial guess. We find this upper bound by the following
simple theoretical analysis. The value +2 - 6y of the bound is a consequence of the
fact that each time a new local minimum is found, the new area in which the search
is continued has half the diameter of the old one. Thus, in the best case we can
search in an area with boundary not further than 60f60/2+60/4+. .. = 2-69. Thus,
the primary problem is to determine the correct neighborhood for local search and

therefore the global search must have sufficient resolution.
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INRGE HITHOUT NOISE HHITE NOISE 1S PERCENT

WHITE NOISE 30 PERCENT

White noise added in various amounts to the image shown in Figure 3.

Figure 5: Synthetic images with added white noise.

Table 7 represents resulis of the search for the correct translational axis
when one of the images was corrupted with uniform white noise. Some corrupted
images are shown in Figure 5. The program parameters were the same as those of
Table 3, which was judged to represent the best results. The number of features
was 16 and the last column of the Table 3 should be compared with the results in
Table 7. Noise was uniformly distributed, with an intensity range of 0 to 100, a

mean of 50, and a standard deviation of 30. The gray level values of the first frame
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ranged from a minimum of -88 to a maximum of 86, with an average of -54.0 and
a standard deviation of 27.0. The added noise intensity ranges were approximately
12%, 30% and 60% of the intensity range of the uncorrupted image. The results
show the stability of the search in the presence of noise, with a degradation of the
performance as the noise level increases. We are further exploring the relationship
between the noise level, the error values returned by the correlation function, and

the overall performance of the algorithm.
2.5 Conclusions About Early Experiments

We tested the performance of the algorithm for various translations on syn-
thetic images. The overall performance of the algorithm for cases where the camera
motion is within =~ 45° off the direction of the line of sight was very good: robust
with respect to noise and accurate. The algorithm can return the translational
axis to within a few degrees of the correct axis even if the image is subjected to

significant disturbance by noise.

We found that the algorithm is not adequately sensitive to translational mo-
tion élmost normal to the line of sight. This is due to the insensitivity of the
correlation function and the failure of the local search in the case when the er-
ror surface around the minimum has a broad valley-like shape and exhibits small

fluctuations.

We suggest a new approach which would impose a constraint of smoothness

of the error surface and avoid the local hill-climbing technique. In the next chapter
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we will give reasons for such a constraint and in Chapter 4 we will demonstrate

that this approach increases both speed and reliability of the search for the correct

translational axis.



3. SMOOTHNESS CONSTRAINT OF THE ERROR SURFACE

In this chapter we address theoretical aspects of the proposed improve-
ment of Lawton’s [LAW84] algorithm and discuss the search for the FOE/C from
the point of view of the regularization analysis [POG84]. We will introduce the
assumption of smoothness of the error surface in order to gain in robustness and
speed of the algorithm. The smoothness assumption is viewed as yet another type of
the regularization constraint, among many types used so far in the vision research.
In the rest of the chapter we outline the mathematical method of the conjugate
gradient [HES80] used to solve a variational problem introduced as a result of the
regularization analysis. The details of the conjugate gradient method used in this
paper are given in the Appendix C. The regularization method, as well as the con-
jugate gradient method, are described in greater detail elsewhere, [GRI81, TER82,

POG84|, but we present it for the sake of completeness.

It has been shown that the regularization method is implicitly found in many
low-level vision algorithms [POG84]. In our opinion it reflects a global constraint in-
troduced into low-level computations in an attempt to incorporate high-level knowl-
edge. Research in low-level vision is faced with the problem of reconstructing envi-
ronmental information from its projection on different media. As in any projection, a
lot of information is lost and the inverse problem of reconstructing the environment

is difficult. Typically, a global constraint on the solution is assumed and then ap-
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plied to the local reconstructive computations; examples of these constraints involve
the smoothness of the displacement field, the assumption of the least surface vari-
ation, the smoothness of the velocity field along a contour, etc. These constraints
are definitely a step forward in the process of the recovery of the environmental
data, but they might be good for one set of images and properties, while they fail
for some other set of images. Also, one type of constraint may not be enough to

guarantee the uniqueness of the solution for the inverse problem.

For the interested reader some references which are relevant to the applica-
tion of regularization analysis in low-level vision are given below. Tikhonov [TIK63]
or Tikhonov and Arsenin [TIK77| are sources for a rigorous formulation of regu-
larization analysis. Horn and Schunck [HORS80] and Hildreth [HIL84] used the
constraint of the smoothest velocity field consistent with the data to compute flow
fields. The smoothness constraint used later in this chapter is similar to those de-
veloped by Grimson [GRI81, GRI82] and Terzopoulos [TER82, TER84], although
Grimson and Terzopoulos were more interested in the problem of visual surface
interpolation. Ikeuchi and Horn [IKE81] derived shape from shading also using a
variational principle. Ullman’s work on structure from motion [ULL79] belongs to

this class of problems as well.

We now proceed with the statement of the regularization method and in

Section 3.2 we give a short account of the numerical procedure we used to derive

the results presented in Chapter 4.
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3.1 A Short Overview of Regularization Analysis

In the introduction to this chapter we have mentioned that many low-level
vision algorithms are of an inverse or ill-posed kind, and as such usually violate one

(or more) of the conditions required for well-posed problems:

1. existence of the solution
2. uniqueness of the solution

3. a continual dependence of the solution on the initial data

Roughly speaking, ill-posed problems do not provide a unique solution and the
space of acceptable solutions has to be restricted by some criterion. The process of

restricting the space of solutions is called the regularization method.

Mathematically one can formulate an inverse problem as one in which the

role of the solution and data is exchanged. For example, a linear set of equations
y=A-z (3.1)

asks for solution y, given an operator A and a set of data z. The inverse problem

would be
2 = A_l . y (3.2)
i.e., given A and y, find z.

If the solution is unique both problems can be solved by requiring that a

norm (symbolized here as || ||) of the difference of the vectors A - z and y

|42~y (3.3)
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is minimal (ideally 0). If, for some 2, given A and y, this requirement is achieved, z
would be considered the solution. When the solution is not unique, it is necessary to
impose a constraint on solutions z, to eliminate implausible solutions. For example,

a constraint which requires that z minimizes the functional P

1pair = [ S nie(52) .4

r=0
is found to be very effective in many cases. These functionals are also called the
Tikhonov stabilizers, and have the property that they provide the ”smoothest”
solutions z. In addition, they have the important property that if the generalized
derivatives of up to the p-th order (integrand in Eq. (3.4)) are square-integrable
functions, the solution can be shown to be unique (up to the null space of the
functional P) if A is linear and continuous (which is often the case). Most stabilizing

functionals used so far in early vision are Tikhonov stabilizers (see [TER84]).

One of the key tools in the regularization method is therefore the choice of
the functional P. The choice is not unique and usually depends on the nature of
the problem, as well as the effectiveness of the functional in restricting the space of

possible solutions so that the problem becomes well-posed.

There are three types of approaches to ill-posed problems. The acceptable

solutions are searched among those that:
1. Minimize
|A-z-y]

subject to a constraint |Pz|| < Const. In other words, the solution z should
best fit the data, while keeping the generalized variation of its derivatives
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bounded.
2. Minimize

122

subject to the requirement ||A -z — y|| < Const. In other words, the so-
lution z should have the smallest possible functional (Eq. (3.4)) while still
being sufficiently close to data. The larger the noise in the image, the larger
the constant Const should be. Examples are the smoothest surface or the
smoothest velocity variations which follow data within some limits.

3. Minimize

14z = yl* + X || Pz||".

Lambda is called the regularization parameter. Note that the first and the
second case are limiting cases of this case. For large A the second term is
dominant and the problem reduces to the second case, i.e., the search for
the most regular solution. When ) is very small, the emphasis is on the
solution that best fits the data. An optimal A is needed which will provide
the solution that follows the data as close as possible while still satisfying
the regularization constraint. Regularization theory provides techniques for
determining the best A [TIK77], but ad hoc values of A are used in this paper.

As an example, let us examine the case of fitting a smooth surface through
a sparse set of unreliable data. This problem can be viewed as a problem of repre-
senting a very rough surface with a similar but a smoother one. Grimson [GRI82]
approached this type of problem by searching for solutions using the third func-
tional discussed earlier. In the analysis of a problem from stereo vision, Grimson
concluded that it is necessary to fit a surface through values specified on a zero-
crossing contour which would have the smoothest variation (the smallest curvature)

and would still be consistent with the supplied data. After expressing the problem

1]
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as a variational problem, the next step was the minimization of the expression

E IS(z,y) — C(z,v)||* + /\/(sz + 82, +282) dz dy. (3.5)
(z)

The integral in this equation is over the region where the surface is defined. The
integrand is a function of the second order partial derivatives of the surface being
fitted, for example, S,, = 8?S(z,y)/0zdy. This integral corresponds to the ||Pz|*
term and expresses the smoothness constraint. The sum is over a set of indices (z, y)
for which the sparse data C(z,y) are known. The sum is of the ||A -z — y|| type. A
is the regularization parameter. The greater the A the more relative importance is
given to the second term in the minimization process and the smoother the function
will be. At the same time the solution is more likely to depart from the initial sparse

set of data C(z,y).

Assumption of a Smooth Error Surface. Since so many problems in low-
level vision are ill-posed, is the determination of the motion from the displacement
field using the FOE/C method an ill-posed problem? If so, in what sense is it
ill-posed and what is a good choice for the stabilization functional? We argue
that this problem is ill-posed mainly because the solution is so susceptible to small
fluctuations in the error surface. If there is a noise in the error surface in order to
gain robustness and a meaningful solution we impose a smoothness constraint on
the error surface, similar to the way Grimson imposes a smoothness constraint on

a surface to fit stereo depth data.
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From the experiments reported in Chapter 2 we concluded that the error
surface exhibits smooth behavior on a large scale, say over several pixels, but is not
smooth over distances on the order of pixel or less. Globally, the error function
is smooth because the correlation function between the tWo features is a relatively
smooth function of the feature displacement provided that the displacement is small,

that there is no occlusion, and that no dramatic local changes take effect.

Global smoothness of the error function is due ultimately to its construction
from many smooth functions. The correlation function is computed along the ra-
dial line connecting the hypothesized position of the FOE/C and a feature. This
has the advantage of being a one-dimensional search for the best correlation, as
opposed to a two-dimensional search in all directions around the feature. One can
think of this one-dimensional function as a cross-section along the radial line of the
two-dimensional correlation function. The two-dimensional correlation function in
question should have its peak exactly on the radial line connecting the correct po-
sition of the FOE/C and the feature. The maxima of all correlation functions give
rise to the global minimum of the error surface. If the interesting points and their
two-dimensional correlation functions are fixed and the FOE/C moved slightly off
its best position, a new set of cross sections determined by new radial lines and
the two-dimensional correlation surfaces will be found. The maxima of the new set
of one-dimensional correlation functions are just slightly off in value and position
from the old maxima, since the two-dimensional correlation functions are relatively

smooth functions. Therefore, the total error will change slowly in the vicinity of
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the minimum. Consequently, the total error function, which is determined by many
smooth functions, should be also a smooth function. In addition, if there is a good
spatial distribution of the points around the FOE/C, as the FOE/C moves signif-
icantly from its correct position, it is very likely that many points will not have
a good match anywhere on their new radial lines; consequently, the error function

should increase in all directions as the FOE/C is moved.

We stated in Chapter 2 that in some cases the local search for the minimum
resulted in unreliable data. The local search sometimes failed to return the correct
location of the FOE/C because it found a false minimum due to the presence of noise
in the error surface. The noise can be a consequence of digitization effects, external
factors, imperfect sensors, not enough features, etc. For example, digitization noise
causes the correlation functions along the radial lines to have a non-smooth behavior

if the characteristic length is about a pixel or less.

Our hypothesis is that the problems that led to the failure of the recovery
of the correct translational axis are due to non-smoothness of the error surface due
to small local fluctuations, and that a regularization constraint is needed in these
cases to guide the search for the minimum of the error surface. The information
about the position of the minimum is supported by the overall shape of the error

surface in this area, and therefore it reflects the contribution of many points on the

error surface.

The other advantage of this approach is that the fitting procedure can speed
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up the search process. Because of the assumption of global smoothness of the error
surface, the search for the minimum can start with a rather sparse set of error
values. A smooth surface is fitted through this set of points. Then, the search
continues around the minimum of the smoothed surface with a finer resolution and
in a smaller region. The selection of the initial number of points in the sparse set
of data requires a compromise between the validity of the surface shape and the

efficiency of the method.

The smoothing procedure critically depends on the choice of the regulariza-
tion parameter A (see Eq. (3.5)). Too much smoothing results in less accurate
data, while not enough smoothing causes results to be less reliable. It is hoped that
the choice of the parameter will be supplied by a high-level vision module, or that
it can be suggested from estimation of the noise in the surface. The global shape
and the noisiness of the surface determine the size of the regularization parameter.
The greater the overall curvature of the surface, the harder it is to fit the surface
(to follow the given data) and the smaller the parameter A has to be (less weight
is given to the smoothing functional). If the surface near the minimum has low
principal curvatures and there is more noise in an image, the larger the regular-
ization parameter should be (the stiffer the interpolating surface). These last two
requirements require therefore that the regularization parameter should decrease as

we approach the minimum.

The regularization theory for linear A and P is equivalent, according to

s

il
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[POGB85], to the method of generalized splines, whose order depends on the order
of the stabilizer P, see Eq. (3.4). Consequently, our technique can be also viewed

as one form of this particular interpolation technique.
3.2 Conjugate Gradient Method

In this section we state the variational problem which results from the
smoothness constraint on the error surface. The solution of the variational problem
is achieved by the conjugate gradient method. The flavor of the conjugate gradient
method, without proofs of equations, but with enough rigor to help the reader
understand the basic concepts and steps, is given in Appendix C. For more detail

about the conjugate gradient method reader is referred to Hestenes [HES80].
The problem with which we are concerned here is the minimization of the
positive-definite quadratic functional

f(z) = -;—:::'A r—h'z+C. (3.6)

z is an n-dimensional vector of unknown values, A is an n X n positive-definite
matrix, and h is a vector of given data. The symbol * denotes the transposition
of matrices and vectors; C is an arbitrary scalar. The solution of the problem z,
satisfies the equation

Az,—h=0. (3.7)

(Compare with Eq. (3.3) in the first section of this chapter.)

To find the minimum of f(z) in Eq. (3.6), the set of linear equations rep-
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resented in Eq. (3.7) must be solved. There are many methods for solving this
equation, such as the well-known Jacobi and Gauss-Seidel procedures (see, for ex-
ample, [STU80]), but the conjugate gradient methods are the best for cases where A
is a sparse matrix. We will see that the matrix A in our problem is a sparse matrix
because it has only a few off-diagonal elements (it is quasi—diaéonal), and therefore
it is appropriate to take advantage of the conjugate gradient method. The only
disadvantage of the method is that it does not converge monotonically towards the

solution, though the convergence is guaranteed in not more than n iterative steps.

In Appendix C we derive the conjugate gradient (CG) algorithm for the
solution of Eqgs. (3.6) and (3.7). Here we concentrate only on the derivation of

matrices, A and h, which appear in our formulation of the regularization problem.

Thin metal plate problem. We approximate an error surface represented by
a sparse set of points with a surface that a thin metal plate would form, if forced
to pass close to the given set of sparse data. A plate is [COU53| an elastic two-
dimensional body, in the shape of a plane when in equilibrium, whose potential
energy under deformation is given by the integral of a quadratic form in principle
curvatures p; and p;:

¢ (El? + ,%g) + ;%; (3.8)
where C; and C; are some constants. For small deflections it follows that

2 2 1
—+—==AS=8;+S,, — =5.,8,, — S%, 3.9
p1 P2 v p1P2 wo T (39)
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where S, is the second partial derivative of the surface with respect to = and Y
coordinates. By using the assumption of the "thinness” of the metal plate we find

that the potential energy of the plate deformation is proportional to

/ /n (8%, + S% +2SL%) dz dy,

where 1 is the domain in the X-Y plane over which the surface (thin plate) has to

be found. The plate should pass close to values

C(i,7) (1,7 € ©),
where X defines a sparse set of data (¥ C ). After incorporating the last set of
constraints C(¢, ) by the method of Lagrange multipliers, the problem becomes one
of the minimizing of the expression

£(S) = / /n (5%, + 8% +252) dedy + 8 ¥ |S(is) - Cd)’. (3.10)

i,jET
Here § is the inverse of the regularization parameter A from the first section of this

chapter. We assume for simplicity that {2 is a quadratic grid and ¥ is a subgrid of

lower resolution.

By introducing numerical approximations for the second-order partial deriva-
tives [ABR68], in the case of equally spaced coordinates (zir1 — =i = h = yip1 — ¥:)

Eq. (3.10) becomes:

-
(]

n—-2 n-1 n-1n-
1

&n(S) = }—L:_;{Z Z (Sio1j — 28i; + Siy1,j) + (Sij-1 = 28ij + Sijs1)’

=1

1]
o
-
Il

i=1 5=0 g
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n—-2 n-2
+2 Sisrg = Siger + Sip 1)’} +B D 18— Cigl* (3:11)
1=0 J=0 1,JET
The problem can be rewritten as
&n(S) = %S*QS -pBC'S,
where
Q=A+pBAs (3.12)
and

1, if C.',,' 75 0;

Anli. i) = '
5(7,7) {0, otherwise.

The matrix A with elements Aiju for an n X n dimensional surface is an n? x n?
matrix. It will be convenient for n to be an odd integer. Moreover, we choose

n = 2™ 41 (m is an integer) in order to generate the subgrids of sparse data whose

dimensionality is 2™~* + 1, where i = 1,...,(m — 1).

Considering pairs (¢,7) as row and column indices, matrix A can be visual-
ized as an n X n matrix with six different types of elements. These elements can be
viewed as masks used to compute the new interpolated surface values from the old
surface values. They will be also called templates (after [GRI81]). The values in the
templates are found by expanding Egs. (3.11) and (3.12) and comparing elements
in these equations with the same pairs of indices (7, 7). Special care should be taken
with the boundary values of 7 and j. The boundary values cannot be neglected
because the dimensions of the matrices are usually low, and because the boundary

values propagate inwards during the interpolation procedure. If we label templates
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a,b,c,d,e, f, we represent A symbolically as

(abcc ccba\
b d e e e e d b
c e [ f f [ e
c e f f f [ e
A=|: 1 o SN
c e [ f f [ e
c e f f f [ e
b d e e e e d b
Kabcc ccba}

where the templates are:

4 -4 1 -4 10 -6 1
a= | -4 2 ] b= 2 -6 2

1

2 -6 2
c=[1 _26 i:; ;6 1] g— |6 18 -8 1
2 -8 2
1 1
1
2 —6 2 9 _8 2
= [t 8 19 -8 1 f={1 -8 20 -8 1
2 -8 2 9 _g 9
1 1

The templates in A are masks of the given shapes, with matrix elements not shown
equal to zero. To compute a new value of the surface in row r and column ¢ the
convolution of the template with the surface is performed so that the position of the

bold-faced integer is at the pixel (r,c). For example, the new value of the surface
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Spe¥ is (we use the template b because it is in row 0, column 1):
Sp1. = —480,0 + 1050,y — 6502 + So,3 + 2510 — 6511 + 2512 + S2,1.

The only other consideration is that the masks have to be mirror reflected and rotated
s0 that the complete matriz A;j i s symmetric for reflections across diagonals, rows,
and columns. Thus the letters (e.g. a,b,c,...) in the matrix A only denote the same
kind of template, but they do not show its appropriate reflection and/or rotation.
For example, the template b in the next to last row and the first column of matrix

A, is template b above rotated 90° counterclockwise, i.e., the new surface value is
no20 = —4Sn-10+10S,_20—6S,_30+ Sn-4,0 +25n-1,1 —6Sn_2,1 +2S5,_31 + Sn—23.

The template b in the last row and the second column is the mirror-image along rows

of the shown template b, etc. For more details consult Appendix C and [GRI81].

This completes our exposition of the theoretical tools used in this paper.
The result of applying these tools is to improve the detection of motion; this is the

subject of the next chapter.



4. IMPROVED SEARCH FOR THE ERROR MINIMUM

Problems with noisy error surfaces can be partially overcome by smooth-
ing. We repeated some of the experiments reported in Chapter 2 to examine the
influence of the smoothing procedure on the accuracy of the recovery of the correct

translation.

The improved versipn of the search for the error minimum consists of the
following steps: In the first step the error surface is very coarsely sampled over
the grid in the two-dimensional space of polar angles determining the direction of
camera translation. (By error sampling we mean computation of error values using
correlation among the features.) The coarsely sampled error surface exhibits a
minimum which is the starting point for the next, finer, search. The eight adjacent
neighbors on the square grid of the minimum just found determine a neighborhood

where a finer search should continue.

The second step is a finer sampling of the error surface in the neighborhood
found in the previous step. This error surface is rough and it would be a mistake,
as we have seen in Chapter 2, to immediately continue with finer error sampling at

some new minimum in a smaller neighborhood.

Instead, in the third step, the local error surface found in the previous step

is smoothed. The smoothing eliminates fluctuations in the error surface and de-

47
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termines the correct position of the minimum based on the global support of all
points in the local error surface. Besides eliminating fluctuations, the smoothing
procedure can increase the resolution of sampling without deterioration of quality.
Since the smoothing operation takes a fraction of the computational effort involved
in sampling the error surface, the speed of search for the same resolution is also

significantly improved.

Finally, the second and the third step are repeated, as a group, as many
times as necessary, to get the desired angular accuracy of the direction of motion.
In practice, this repetition is often unnecessary; the precision of computafions with
angular resolutions smaller than 0.5° is limited by other factors such as image
digitization, imprecision of the correlation matching, etc. The results after the

third step are already very accurate.

As will be seen in the next section, the problems connected with the local
search reported in Chapter 2 were overcome. For the cases labeled as ambiguous
in earlier experiments, the newly found axes were clearly closer to the correct axes.
Recall that most of the cases labeled as ambiguous had incorrectly returned the
translational direction to be the (90°, 90°) axis. The reason was that, due to the
shallowness of the error surface, the global search returned this axis as the best
estimate, and the local search was not able to overcome fluctuations in the error
surface and converge closer to the actual axis. The precision of the recovery of the

exact axis continues to deteriorate as the translations become more orthogonal to
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the line of sight; this remains a problem with the correlation matching.

The other advantage of the new approach is in increased computational
speed. Since the only interesting point on the error surface is its minimum, we
would like to avoid computing unnecessary error values where they are not needed.
We increased the sparsity of the error surface to test the limits of the algorithm.
Since the error surface is rather flat, the results with very coarse sampling of the
error surface were very good, although there was a limit to the sparseness of the
sampling. These experiments indicate that a coarse error surface around the min-
imum provides enough support for the actual position of the minimum. All these

conclusions follow from the experiments described in the next sections.
4.1 Description of the Experimental Procedure

In these experiments we used the same images and the same camera, envi-
ronmental, and algorithm parameters as described in Section 2.2. A subset of the
runs presented in Appendix A was repeated to examine the aspects of the algo-
rithm relevant to the error surface smoothing. The numerical data for the new set

of exi:erimental runs with smoothed error surfaces are presented in Appendix B.

4.1.1 Coarse sampling of the error surface. = The experiments started, as
we have mentioned, with a construction of a sparse error surface defined on the
entire parameter domain, (9 € (0,180), ¢ € [0,360)). The step size in ¢, 69, was
typically 11.25°, and the step size in ¢, 6y, was 22.5°. This choice resulted in a

16 x 16 dimensional error surface. Error surfaces sampled so coarsely returned in all
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e minimum

o correct minimum

Inverted error surface for translational motion 30° off the line of sight. ¥ changes

- from 0° — 180° in increments of 11.25°. ¢ changes from 0° — 360° in incre-
ments of 22.5°. The minimum () at (33.75°,90°) corresponds to the error value
0.2734 (Compare Table 1, Appendix B). The correct (o) direction of translation is
(30°,90°). 16 feature points are used. The principal curvatures near the maximum
are small, and the valley is quite pronounced.

Figure 7: Coarsely sampled error surface for 30° translational motion

off the line of sight.
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the cases the position of the minimum which was the closest to the known correct

value. The inaccuracy was determined by the resolution in (9, p) parameter space.

The coarsely sampled error surfaces for translational motions 30° and 75°
off the line of sight are shown in Figures 7 and 8. The error surfaces are shown
for the entire range of parameter values of ¥ and @. In all the figures, the error
surfaces are shown inverted for a better presentation. Note that the curvature in
the J-direction (see Figure 8) is smaller when the translational axis is more off
the line of sight. For example, the ratio of the curvatures in 9-direction for the
error surfaces in Figures 8 and 7 is equal to 0.47. A larger neighborhood around
the minimum has to be chosen for surfaces with smaller curvature, such as the one
presented in Figure 8, to guarantee that a finer sampling will not miss the error
surface minimum. The criterion was simply that all the error values on the boundary
determined by ¥4, < ¥ < 9y, 1L < ¢ < g should be significantly larger than the
minimum found. For motions that are more along the line of sight, the boundaries
weré determined as the first neighbors of the minimum (on the coarse grid). In
other words, if §9 and 6 are current sampling intervals in (¢,¢) parameter space,
then the boundaries are: ¥; = Fmin — 09, Fy = Ipmin + 69 and L = ©Omin — 6,
©U = Pmin + 6. For motions along axes more perpendicular to the line of sight,
the error surface is flatter and the boundaries are determined as the second-closest

neighbors. In other words, the boundaries are: 91 = Ymin — 269, Yy = Fpin + 269

and 1 = Pmin — 260, U = Emin + 260.
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e minimum

o correct mintmum

. Inverted error surface for translational motion 75° off the line of sight. ¥ changes
from 0° — 180° in increments of 11.25°. ¢ changes from 0° — 360° in incre-
ments of 22.5°. The minimum (o) at (78.75°,90°) corresponds to the error value
0.3297 (Compare Table 1, Appendix B). The correct (o) direction of translation
is (75°,90°). 16 feature points are used. The curvature in the ¢ direction is much
smaller than that in Figure 7, indicating a shallow valley and increased difficulty of
the search for the minimum.

Figure 8: Coarsely sampled error surface for 75° translational motion

off the line of sight.
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4.1.2 Possibility of several local minima. Figure 9 shows a densely sampled
error surface illustrating local fluctuations. It is possible that several local minima
exist for the error surface, which led to the failure of the recovery of the correct
minimum in the error surface when the local hill-climbing technique was used. The
error surface is for eight feature points in the image and it would be smoother for
more features; however the presence of noise would increase the roughness of the
surface and a similar situation could occur. In other experiments the error surface
was not sampled so densely before smoothing because this would be computationally

too expensive.

4.1.3 Fine sampling of the error surface. We now proceed with the
description of the finer search for the error minimum, i.e., steps two and three.
In the step two, the error surface is sampled in a small neighborhood around the
minimum found during the coarse search. Then, this patch of the error surface is
smoothed and the minimum of the smoothed error surface is found (step 3). The
second and the third step are then repeated in the neighborhood of half the size
of the previous neighborhood. These steps are shown in Figures 10 through 13,
- in which unsmoothed and smoothed local error surfaces are shown for motion 30°
off the line of sight. These results are discussed in more detail below; the search

procedure could be characterized as a hierarchical search with smoothing.

Results from coarse sampling of the error surface over the entire parame-

ter range, shown in Figure 7, suggested that the minimum of the error surface is
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o minimum

o correct minimum

+ alocal minimum

Unsmoothed error surface, near the minimum for eight feature points (inverted). ¢
changes from 40°—102° in increments of 2°. ¢ changes from 40°—102° in increments
of 2°. The minimum (o) corresponds to the error of 0.1153, at ¥ = 70°, © = 60°.
The correct direction (o) is ¥ = 62.4°, p = 64.8°. A local minimum (+) is seen at
¥ = 56°, p = 64° with the error value of 0.1228, and it could have been promoted
in the global minimum, if the coarser search missed the first minimum.

Figure 9: Densely sampled error surface near the minimum.
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s minimum

o correct minimum

. Unsmoothed error surface, near the minimum; the surface is shown inverted. ¢
changes from 22° —34° in increments of 4°. @ changes from 82° —94° in increments
of 4°. The minimum () corresponds to the error of 0.2708, at ¢ = 26°, o = 94°.
The correct (o) direction of camera translation is for ¢ = 30°, ¢ = 90°.

Figure 10: Unsmoothed error surface near minimum for 30°

translational motion off the line of sight.
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. Smoothed version of the error surface in Figure 10 (inverted). ¢ changes from
22° — 37.5° in increments of 0.5°.  changes from 82° — 97.5° in increments of 0.5°.
The minimum (+) corresponds to the error of 0.2739, at ¥ = 27.5°, o = 91.5°.

The correct (o) direction of translation is for ¥ = 30°, p = 90°. The regularization
parameter is § = 0.1.

Figure 11: Smoothed error surface near minimum for 30° translational

motion off the line of sight.

"
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somewhere in the vicinity of the direction 9 = 33.75°, ¢ = 90°. Thus, a finer
sampling of the error surface in the range ¢ € [22°, 38°], p € [82°, 98°| is per-
formed; this surface is presented in Figure 10. (The actual surface is an array
of 5 x 5 real values, here it is displayed only as a 4 x 4 surface.) The resolution
in the parameter space was §9 = §p = 4°. The minimum 0.2703 found in this
step was at Jpin = 26°, ppin = 92°. The quantity AN = \/m, where
A = pin — Feorrect ; DO = POumin — Peorrect; Was used as a measure of the devi-
ation from the correct values of the position of the FOE/C. In this case we have
Afl = 5.7°, which represents a significant deviation from the correct direction of
translation. The position of the known (correct) minimum is marked with a cir-
cle, while the minimum found by a simple search among the error surface values is

marked with a solid circle (disk).

Figure 11 shows the error surface from Figure 10, after smoothing with the
regularization parameter equal to 0.1. The resolution of the smoothed error surface
was 69 = 6 = 0.5° and the range of the angular parameters remained the same as
that in Figure 10. This implies an eightfold increase in the resolution, for a fraction
of the computational cost. The minimum 0.2739 of the smoothed error surface,
marked with + in Figure 11, at 4 = 27.5°, ¢ = 91.5°, represents an improvement
in the position since the total error is Af} = 2.9°. The improvement is marked by

the arrow demonstrating the change in the minimum position after the smoothing.

The second and the third step were then repeated around the minimum of
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the smoothed error surface (i.e., around the point ¢ = 27.5°, ¢ = 91.5°). The error
surface was sampled in the range ¢ € [26°,34°], ¢ € [86°,96°] with an angular
resolution of 2° for both parameters. This neighborhood is half the size of the

neighborhood from the second step. The result is shown in Figure 12.

The search in this smaller neighborhood (see Figure 12), found a better
minimum, which was missed in the second step (see Figure 10). The smoothing,
shown in Figure 11, guided by the overall shape of the error surface indicated that
this might happen. The directional error A} was further reduced from Af} = 2.9°

to Afl = 2°,

Finally, another smoothing was performed with the angular resolution of
0.25°. The result is shown in Figure 13. The minimum values were ¢ = 31.75°, ¢ =
89.25°, the error being 0.2698. The final error, after this smoothing, with which
the direction of translation is found was Al = 1.9°. This error is obtained after a
total of five steps:

A coarse search over the entire parameter space 9 € [0°,180°), p € [0°,360°),
A fine search in 16° X 16° neighborhood ¥ € [22°,38°], ¢ € [82°,98°],
A smoothing in the same neighborhood,

A still finer search in a 8° X 8° neighborhood ¥ € [26°,34°], ¢ € [86°,96°],

AR e

A smoothing in the last neighborhood.

We felt that further increase of the angular resolution (the last angular resolution
being 0.25°) was beyond the precision of the FOE/C search with 16 interesting

features. This was also in agreement with earlier experiments described in Chapter
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e minimum

o correct minimum

Unsmoothed error surface, over a smaller domain around the minimum than in
Figure 10. ¢ changes from 26° — 32° in increments of 2°. ¢ changes from 86° — 94°
in increments of 2°. The minimum () corresponds to the error of 0.2687, at
¥ = 32°, ¢ = 90°. The correct (o) parameter values are ¥ = 30°, ¢ = 90°. It is
important to notice that the value of this minimum is smaller than the value of the
minimum found in Figure 10, and that the present minimum was missed during the
first search.

Figure 12: Unsmoothed error surface near minimum for 30°

translational motion off the line of sight.
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+ minimum

o correct minimum
e minimum from Figure 10

- Smoothed version of the error surface in Figure 12. # changes from 26° — 33.75°
in increments of 0.25°. ¢ changes from 88° — 95.75° in increments of 0.25°. The
minimum (+) corresponds to the error of 0.2698, at ¥ = 31.75°, o = 89.25°. The
correct (o) parameter values are ¥ = 30°, = 90°. The regularization parameter
is § = 0.1.

Figure 13: Smoothed error surface near minimum for 30° translational

motion off the line of sight.
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The incorporation of smoothing into the translational algorithm results in an
algorithm which is more reliable (using smoothing to guide us towards the correct
minimum) and faster (concentrating on computation of error values only in a small
neighborhood around the current minimum). The total number of points on the
error surface computed was 323 (= 273 (coarsest) + 25 (medium) + 25 (finest)),
where 273 of them (i.e., 84.5% of the total 323) were due to the lack of any knowledge
about the direction of translation. These coarse calculations become unnecessary
once the approximate direction of motion is established and in subsequent frames
it is most likely that only finer, local search (which needed 50 surface points) would

be needed.

4.1.4 The advantage of finer error sampling. It is possible that a slight
increase in the density of error surface sampling might actually save repetition of
steps two and three from the previous subsection (i.e., steps 4 and 5 from the list
above). Figure 14 shows the same error surface as in Figure 10, but sampled with
twice the density, i.e., at the angular resolution of 2°. The minimum found at
(32°,90°) is a much better prediction than that of (26°,94°), as found in Figure 10,
as is the directional error A} = 2°. After smoothing the error surface in Figure
14 (shown in Figure 15) the minimum (31°,89.5°) was found, with AQ} = 1.1°.
This result is even better than that obtained in the two passes depicted in Figures

10 to 13. The latter, one-pass approach, needed 81 error surface computations
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versus 50 needed for the two-pass approach. Both procedures, the one described in
the previous subsection and the one in this subsection, seem to have about equal

performance.

4.1.5 A need for larger neighborhood. A sampling in a larger neighbor-
hood around the minimum might be required after the first step for motions that
are more off the line of sight, as those shown in Figures 16 and 17 for the trans-
lation in direction (62.4°, 64.8°), and in Figures 18 and 19 for the translation in
direction (90°, 90°). Note the difference in the angular separation in these figures
as compared to 30° motion. The reason for sampling in a larger neighborhood is
that the error surface is more shallow. The search did not fail, as the local hill-
climbing method did, and the smoothing procedure always improved the position

of the previously found minimum.
4.2 Overview of Experimental Results

Until now we have concentrated our attention on experiments for specific
axes of translation. Now, we present a global overview of all the experiments.
The numerical values for the error minima before and after smoothing and their
positions for many possible translations are given in Appendix B. The details of
how to interpret these tables are given in the introduction to Appendix B. From
Tables 1 and 2 in Appendix B, where the results for 16 feature points are presented,
we can see that the precision of the method remains in the range of 1-2 degrees

for axes inside a 45° cone around the line of sight, and 5-10 degrees outside that
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e minimum

o correct mintmum

Unsmoothed error surface near the minimum with finer sampling than in Figure 10.
¥ changes from 22° —36° in increments of 2°. ¢ changes from 82° —9G° in increments
of 2°. The minimum (e) corresponds to the error of 0.2687, at 9 = 32°, p = 90°.
The correct (o) values are ¥ = 30°, o = 90°.

Figure 14: Unsmoothed error surface near minirnum for 30°

translational motion off the line of sight.
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0.5° 0.5°

+ mintmum
o correct mintmum

e minimum from Figure 14

Smoothed error surface near the minimum (see Figure 14). ¢ changes from 22° —
35.5° in increments of 0.5°. ¢ changes from 82° — 97.5° in increments of 0.5°. The
minimum (4) corresponds to the error of 0.2709, at ¥ = 31°, o = 89.5°. The

correct (o) parameter values are § = 30°, o = 90°. The regularization parameter
is f=0.1.

Figure 15: Smoothing of the error surface from Figure 14.
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e minimum

o correct minimum

Unsmoothed error surface, near the minimum (inverted). ¢ changes from 40° — 96°
_ in increments of 8°. ¢ changes from 40° — 96° in increments of 8°. The minimum
(¢) 0.83782 is at ¥ = 64°, p = 64°. The correct (o) parameter values are 9 =

62.4°, p = 64.8°.

Figure 16: Error surface near minimum for (62.4°, 64.8°) translational

motion off the line of sight.
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+ mintmum

o correct minimum

o minimum from Figure 16

Smoothed error surface, near the minimum. ¥ changes from 40°--102° in increments
of 2°. p changes from 40° —102° in increments of 2°. The minimum (+) corresponds
to the error of 0.3938, at # = 68°, p = 64°. The correct (o) values are ¥ =
62.4°, p = 64.8°. The regularization parameter is § = 1.

Figure 17: Smoothed error surface near minimum for (62.4°,64.8°)

translational motion off the line of sight.
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* minimum

o correct minimum

Unsmoothed error surface, near the minimum. ¢ changes from 60° — 116° in in-
crements of 8°. o changes from 74° — 102° in increments of 4°. The minimum (o)
corresponds to the error of 0.2238, at ¥ = 84°, = 94°. The correct (o) parameter

values are ¥ = 90°, o = 90°.

Figure 18: Unsmoothed error surface near minimum for 90°

translational motion off the line of sight.
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20

+ minimum
o correct minimum

o mintmum from Figure 18

- Smoothed error surface, near the minimum. ¢ changes from 60°—122° in increments
of 2°. ¢ changes from 74° — 105° in increments of 1°. The minimum (+) 0.22183 is
at 9 = 86°, ¢ = 92°. The correct (o) parameter values are § = 90°, ¢ = 90°. The
regularization parameter is 8 = 0.1.

Figure 19: Smoothed error surface near minimum for 90° translational

motion off the line of sight.
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cone. The search for the minimum is not influenced by the shape of the surface and
there were no ambiguous results. The smoothing process improves the location of
the recovered minimum because the position of the minimum is determined by the
shape of the whole surface near the minimum. We now discuss some of the topics in
the algorithm that are introduced by the new approach and that are not mentioned

in Chapter 2.

4.2.1 Choice of the correlation measurement. We tested the influence of
the choice of the correlation function on the shape of the error surface (see Section
2.2). The normalized correlation function and the Moravec correlation function gave
similar results, both in terms of precision and in terms of efficiency. The absolute
difference correlation function was less precise. As in the experiments in Chapter
2, decreasing the step size of feature displacements did not result in significant
improvements. The most notable change in the error surfaces occurred when the
number of features increased from eight to 16. This can be seen by comparing the
Tables 7 and 8 with Tables 1 and 2, Appendix B. The latter choice resulted in much

smoother error surfaces.

4.2.2 Influence of noise. The influence of white noise on the error surface was
also examined. The first frame in the image sequence was corrupted with white noise
whose amplitude was 60% of the range of intensity values in the noiseless image.
The shape of the error surface in the image sequence with white noise showed only

small change, which is not noticeable on the graph. Since is is difficult to judge
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the influence of noise from the change of the shape of the error surface, we give a
numerical example. For the translation (45°, 90°) the error values for images with
added noise where Ey;, = 2.2142 at (46°, 90°) before smoothing, and Ep, = 2.2157
at (48°, 90.5°) after smoothing. A similar result is found in Table 7, Appendix A.
Ein for the same motion and image without noise was E,;, = 0.1980 as seen in
Table 2, Appendix B. Although the absolute values of the error surface increased
more than tenfold after the noise was added, the directional error A} = 3° remained
in the vicinity of the directional error A} = 1.1° for noise-free image. Thus, the
FOE/C approach itself has good stability against noise, as we concluded in the

earlier experiments.

4.2.3 How coarsely should. the error surface be sampled?  One of the
advantages of this search procedure is that the sampling of the error surface can
be relatively sparse. We tested the influence of the sparsity of the error surface
around the minimum on the accuracy of the method. Results are given in Tables 3,
4, and 5 in Appendix B. An example of the error surface sampled every 4° for the
translation along (30°, 90°) has been already shown in Figures 10 and 11. The per-
formance deteriorates as the number of sampled points decreases. An error surface
of dimension of 5 x 5 still gives acceptable resolution. Five points for one parameter
can still determine the curvature of the error surface with enough precision. A 3x 3
surface gives too crude results. By computing the error surface with 2" + 1 points,
and smoothing it with 2™ + 1 points (m > n) per dimension, the speed is increased

by a factor of approximately 2™". In our cases the speed increased by a factor



e

“

Chapter 4: IMPROVED SEARCH FOR THE ERROR MINIMUM 71

Between 4 and 64,

4.2.4 Results for eight feature points. At the end of Appendix B we give
results of experiments for 8 feature points in the image. As expected, the results

are worse than those with 16 features, though still in acceptable error ranges.



5. CONCLUSIONS AND FUTURE WORK

We have examined a procedure for detection of translational motion of
a sensor moving in a static environment by using global constraints on feature
dynamics. It has shown a great robustness and quite impressive accuracy. It is the
unique combination of the local and global properties of the FOE/C method that
results in an optimal performance. We have improved the method by introducing
a smoothness constraint on the error surface associated with the position of the
FOE/C on the image plane. The smoothing process is superior to a lpcal search
process since it increases the speed and robustness of the method while it does not

degrade the accuracy of the recovered minimum.

We have found that the performance of the FOE/C algorithm does deterio-
rate as translations of the camera become more perpendicular to the line of sight.
We have shown that this deterioration is directly connected to the insensitivity of

the correlation function for cases where the FOE/C is far from the center of the

image plane.

The measurements were performed in a highly controlled environment with
well-defined interesting points. Real-world images could produce less accurate re-
sults. The use of more frames [BIA85] could compensate for the inaccuracy in

the position of the FOE/C found from only two frames. We have not analyzed
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the effect of the uncertainty in the position of the FOLE/C and feature points on
error propagation in subsequent frames. This problem is addressed in [SNY86].

Higher resolution images and larger feature displacements would certainly increase

the precision of the method.

The major stumbling block in terms of speed remains the bilinear interpo-
lation and the correlation matching. As noted, the use of symbolic features would
further increase the speed of the method, and others in our environment are exam-

ining this issue.

Note that the surface smoothing which we have introduced is not only a
technical device for eliminating noisy error surfaces, but also a form of a regulariza-
tion constraint. Thus, the surface smoothing reflects our assumption about visual
recognition, which is that the overall shape of the error surface is more important
in perception of motion than its detailed structure. The choice of the regulariza-
tion functional is not unique, but the one we used proved to be satisfactory. There
are methods to find the optimal regularizatiqn parameter, based on known (or as-
sumed) knowledge of the noise in the images. In the case of the Wiener optimal filter

[WIES50], for example, it is possible to find the optimal regularization parameter.

The natural extension of this work is the measurement of camera motion
parameters for more complicated motions. Two immediate choices are motion in a
known plane and rotation around an axis. Although in parameter spaces of higher

dimensions (dim > 2) the methods we used will be less intuitive, it is possible to
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extend the conjugate gradient algorithm to any finite-dimensional parameter space.
Perhaps one can introduce a regularization constraint (of the same type we have
_used) for each pair of the parameters and assign different weights to corresponding

functionals.

Another extension of this work is the construction of the environmental depth
map using FOE/C and the extent of feature displacements. The depth map can be
an intermediate-level knowledge base for higher-level vision algorithms. It can be
used for both recognition of the environment and as a feedback for the evaluation

of the camera motion parameters.
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APPENDIX A

In this appendix a summary of experimental runs reported in Chapter 2 is
presented. Tables showing the results of the evaluation of the FOE/C algorithm for
translational motion are presented. The results are discussed in greater detail in
Section 2.4. The minimum of an error surface is obtained by a global search followed

by a local hill-climbing search, (i.e., the original Lawton algorithm [LAW84]).

Each table is characterized by a change of the value of one of the parameters

from a default set of parameter values. These default parameter values are:

1. The step size in the correlation matching along radial lines emanating from
the FOE/C between the two windows around interesting points is one pixel.

2. The maximum distance a feature is assumed to move in the search for the
best correlation is 10 pixels.

3. The size of the correlation window is 7 x 7 pixels.

4. The precision with which the translational axis was determined in the (¥, )
space is 8., = 0.005 radians (0.29°).

5. Density of the initial global search for the minimum of the error surface is
roughly 45°. The number of steps in the local search is a function of 6.

The results with these default parameter values are shown in Table 1 of this
appendix. The other tables summarize results obtained from multiple runs of the
algorithm under varying conditions, where usually only one parameter from the
set of default parameter values is changed. Tables 1 through 6 are images without

noise, while Table 7 presents results with uncorrelated uniform white noise. The
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following information is relevant for all tables:

The parameter that is changed from the default value, given above, is spec-
ified in the title of the table.

The second column in the tables represents correct values (known from the
setup of the synthetic images) for the direction of motion. We have used left-
handed spherical coordinate space. ¥ is the angle between the translational
axis and the Z-axis; @ is the angle between the projection of the translational
axis on the X-Y plane and the X-axis.

Other columns give experimental results for deviation (in degrees) of angles
¥ and ¢ from the correct values.

Symbol A stands for the "ambiguity” in the search for the right axis, a
phenomenon discussed in Section 2.4.

The quantity AQ = /Ad¥?+ Ap? is a measure of a total deviation (in
degrees) of the experimentally recovered axis from the correct axis.

At the end of a table the number of correlation matches between the two

images in given. This number is the total number of matches during both
global and local search.
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Table 1: Coarse Resolution Global Sampling of FOE/C Positions.

Correct and experimental values for the translational axis, using the initial (default)
set of parameters in the algorithm. (Global sampling every 45°.) Note that the
parameter ¥ is the key angular parameter since it measures deviation of motion
from the line of sight. The results are discussed in Section 2.4.

Exp. Correct 4 features 8 features 16 features
No. (9,0) | (A3,Ap) | AQ | (A0, Ap) | AT | (AJ,Ap) | A
1 0,0 | (07,%) [07 | (IL.L,®) [11| (14 7% | 14
2 (15,90) | (13.7,-4.0) | 14.2 | (0.8,-4.2) | 4.3 | (1.2,1.7) | 2.1
3 (30, 90) A (34,-2.3) | 4.1 | (1.6,-0.5) | 1.7
4 (45, 90) A A A
5 (60, 90) A A A
6 (75, 90) A A A
7 (%0, 90) A A A
8 (120, 90) | (38.2,0.0) | 38.2 A A
9 (150,90) | (8.2,0.0) | 82 | (8.2,0.0) | 82 | (8.2,0.0) | 8.2
10 (180, 90) A A A
11 (90, 45) A A A
12 (90, 0) A A A
13 | (62.4, 64.8) A A A
No. of matches 2760 5520 11040

* (any value of p is acceptable in this case)
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Table 2: Intermediate Resolution Global Sampling of FOE/C Positions.

Increased density of points during global sampling over the unit sphere (approxi-
mately every 22.5°, other parameters are the same as in Table 1).

Exp. Correct 4 features 8 features 16 features
No. (D,0) | (A3, Ap) [ AQ | (Ad,Ap) [ AO | (Ad,Ap) | AQ
1 (0, *) (0.7, %) 0.7 (1.1, %) 1.1 (1.4, *) 14
2 (15,90) | (13.7,-4.0) | 14.2 | (0.8,4.2) | 4.3 | (1.2, 1.7) 2.1
3 (30,90) | (20.8,-3.4) | 21.0 | (3.4,-2.3) | 4.1 | (1.7,-0.8) | 1.9
4 (45, 90) | (16.7,-2.7) | 16.9 | (10.7,-2.3) | 11.0 | (-0.1,-0.3) | 0.3
5 (60, 90) A A A
6 (75, 90) A A A
7 (90, 90) A A A
8 (120, 90) | (21.3,0.0) | 21.3 | (21.3,0.0) | 21.3 | (21.3,0.0) | 21.3
9 (150, 90) | (18.7,0.0) | 18.7 | (-8.7,0.0) | 8.7 (8.2, 0.0) 8.2
10 (180, 90) A A A
11 (90, 45) A A A
12 (90, 0) A A A
13 | (62.4, 64.8) A A (-5.8, 25.2) | 25.9
No. of matches 6680 13360 26720

* (any value of p is acceptable in this case)
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Table 3: Fine Resolution Global Sampling of FOE/C Positions.

Increased density of global sampling (approximately every 11.5°, other parameters
are the same as in Table 1). This table is the reference table for the set of runs with
smoothing of the error surface presented in Appendix B. Compare also Section 2.4.

Exp. Correct 4 features 8 features 16 features
(9,0) | (A9,Ap) | AT | (A0,Ap) | AN | (AJ,Ap) [ AN

2
S)

1 ©% [ (07,% [07 | (ILL,H |11 ]| (047 |14
2 (15,90) | (13.8,-4.0) | 14.3 | (0.8,-5.0) | 5.0 | (1.4,2.4) | 2.8
3 (30,90) | (20.8,-3.5) | 21.0 | (3.4,-2.3) | 4.1 | (1.4,-0.2) | 1.4
4 (45,90) | (16.7,-2.7) | 16.9 | (5.9,-0.2) | 5.9 | (-0.1,-0.3) | 0.3
5 (60, 90) A (18.1,-4.3) | 18.6 | (3.7,0.0) | 3.7
6 (75, 90) A : A A

7 (90, 90) A A A

8 (120, 90) (21.3, 0.0) 21.3 (9.8, 0.0) 9.8 (9.8, 0.0) 9.8
o | (150,90) | (18.7,0.0) |18.7| (-8.7,0.0) | 8.7 | (8.2,00) | 8.2

10 | (180, 90) A A A

11 (90, 45) A A A

12 (90, 0) A A A

13 | (62.4, 64.8) A A (-5.8, 25.2)

No. of matches 15200 30400 60800

* (any value of  is acceptable in this case)
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Table 4: Increased Correlation Resolution for Feature Matching.

Displacements between the windows are 1/3 of the pixel size. Other parameters are
the same as in Table 1.

Exp. Correct 4 features 8 features 16 features

0,0) | (A9,Ap) | AN | (A9,Ap) | AQ | (Ad,Ap) | AO

2
[

1 (0, %) (12,%) [12 ] 07,® [17] (21,% | 21
2 (15,90) | (8.5,-4.4) | 95 | (1.6,-7.1) | 7.2 | (1.2,1.0) | 1.6
3 (30, 90) A (-0.4,-2.1) | 2.1 | (-2.3,0.6) | 2.4
4 (45, 90) A A A
5 (60, 90) A A A
6 (75, 90) A A A
7 (90, 90) A A A
8 (120, 90) | (38.2,0.0) | 38.2 A A
9 (150,90) | (8.2,0.0) | 8.2 | (8.2,0.0) | 8.2 | (8.2,0.0) | 8.2
10 (180, 90) A A A
11 (90, 45) A A A
12 (90, 0) A A A
13 | (62.4,64.8) A A A
No. of matches 8280 16560 33120

* (any value of o is acceptable in this case)
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Table 5: Small Correlation Window for Feature Matching.
Correlation window size is 3 x 3. Other parameters are the same as in Table 1.
Exp. Correct 4 features 8 features 16 features
No. (9,0) | (Ad,Ap) | AQ | (AV,Ap) AN | (AY,Ap) | AQ
1 (0, *) (2.4, %) 2.4 (2.3, %) 2.3 (2.2, %) 2.2
2 (15,90) | (-1.8,0.0) | 1.8 | (2.6,-6.9) | 7.4 | (-1.3,8.7) | 8.8
3 (30,90) | (-6.4,0.0) { 6.4 | (-6.1,0.5) | 6.1 | (-4.2,4.4) | 6.1
4 (45,90) | (1.7,-0.2) | 1.7 A (0.5,-1.0) | 1.1
5 (60, 90) | (-3.9,-0.7) | 4.0 | (-8.5,-0.6) | 8.5 A
6 (75, 90) A A A
7 (90, 90) | (43.6,0.2) | 43.6 A A
8 (120, 90) | (13.6,0.2) | 13.6 A A
9 (150,90) | (8.2,0.0) | 82 | (-11.7,0.0) | 11.7 | (8.2,0.0) | 8.2
10 (180, 90) A A A
11 (90, 45) A A A
12 (90, 0) A A A
13 | (62.4, 64.8) A A A
No. of matches 2760 5520 11040

* (any value of ¢ is acceptable in this case)
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Table 6: Accuracy of Local Search.

Initial guess (the exact value) for the translation axis is supplied as an input pa-
rameter to the algorithm. Other parameters are the same as in Table 1.

Exp Correct 4 features 8 features 16 features
No. (0,0) | (A9,Ap) [ AQ | (Ad,Ap) | AN | (Ad,Ap) | AN
1 0,5 | (07,% |07 | (1.0,%¥) |10 | (15 7% | 15
2 (15,90) | (13.8,-4.0) | 14.3 | (0.6,-4.6) | 4.7 | (1.3,1.7) | 2.2
3 (30,90) | (21.1,-3.5) | 21.3 | (3.5,-2.4) | 4.3 | (-2.8,0.8) | 2.9
4 (45,90) | (16.1,-2.7) | 16.4 | (10.7,-2.3) | 11.0 [ (0.2,-0.4) | 0.4
5 (60, 90) | (15.9,-2.7) | 16.1 | (8.7,-3.0) | 9.2 | (3.9,0.0) | 3.9
6 (75, 90) FH+ (25.2,-1.5) | 25.2 | (2.8,0.9) | 2.9
7 (90, 90) | (13.2,-0.4) | 13.2 FH+ F*
8 | (120,90) | (20.7,0.2) | 20.7 | (8.0,2.1) | 8.3 | (7.5,1.2) | 7.6
9 (150, 90) | (0.1,0.0) | 0.1 | (0.1,00) | 0.1 | (0.1,0.0) | 0.1
10 | (180, 90) A A A
11 (90, 45) A A A
12 (90, 0) A A A
13 | (62.4, 64.8) | (11.4,-2.6) | 11.7 | (-6.7,-0.4) | 6.7 | (10.0,-4.5) | 10.9
No. of matches 1720 3440 6880

* (any value of p is acceptable in this case)

**(fails to converge)
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Table 7: Influence of Noise on Accuracy of Algorithm.

Addition of uniform, uncorrelated, white noise. Other parameters are the same
as in the experiments in Table 3, with 16 features. For more information refer to
Section 2.4.

Exp. Correct Experimental values
No. (9, 0) 12%* AN 30%* AN 60%* AR
1 (0, *) | (1.8, %) | 1.8 [ (22,%) | 22 | (115, ¥ | 11.5
2 (15,90) | (2.1,1.0) | 2.3 | (-0.7,-3.9) | 4.0 | (1.0,7.3) | 7.4
3 (30,90) | (-3.6,1.4) | 3.9 | (-2.8,1.8) | 3.3 | (-3.4,4.2) | 5.4
4 (45,90) | (0.5,-0.3) | 0.6 | (-6.2,2.7) | 6.7 | (2.7,-2.4) | 3.6
5 (60, 90) | (4.6,-0.3) | 4.6 (4.6,0.0) | 4.6 | (9.8,-2.1) | 10.0
6 (75, 90) A A A
7 (90, 90) A A A
8 (120, 90) | (9.8,0.0) | 9.8 | (9.8,0.0) | 9.8 | (9.8,0.0) | 9.8
9 (150, 90) | (-1.0,0.0) | 1.0 | (-1.0,0.0) | 1.0 | (14.8,18.3) | 1.0
10 (180, 90) A A A
11 | (62.4,64.8) | (1.0,25.2) | 25.2 | (-6.1,25.2) | 25.9 [ (1.0, 25.2) | 25.2
No. of matches 60800 60800 60800

* (percent of uncorrelated noise)

**(any value of p is acceptable in this case)
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In this appendix the summary of experimental runs using the improved
algorithm developed in Chapters 3 and 4 is presented. The minimum of the error
surface is first obtained by a global search over the entire parameter space. The
position of the minimal error is returned. Then, the search for the global mini-
mum is continued around the previously found minimum with an increased angular
resolution in a smaller parameter domain. Finally, an increase in the resolution is
achieved by a surface interpolation process using the conjugate gradient .algorithm

as described in Chapters 3 and 4.

All the runs have the same default set of algorithm parameters. This is a set
which is similar to the set of parameters judged to give accurate results from the
first set of experiments (Appendix A, Table 3). The set of default parameter values

in this appendix is:

1. The step size along radial lines emanating from the FOE/C in the correlation
matching between two windows is one pixel.

2. The maximum distance a feature is assumed to have moved between frames
in the search for the best correlation is 10 pixels.

3. The size of the correlation window is 7 x 7 pixels.

4. The step size of the initial global search for the minimum of the error surface
is 11.25° (7/16) for ¥, and 22.5° (n/8) for .

5. The Moravec correlation function is used for matching between features.

84
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The tables summarize the results obtained from multiple runs of the al-
gorithm under varying conditions. Some of the results are displayed in Figures 9
through 19 in Chapter 4. The results are discussed in a greater detail in Sections 4.1

and 4.2. The regularization parameter § is a new variable in this set of experiments.

The first few tables represent runs with 16 interesting points. Table 1 rep-
resents results of a coarse sampling of the error surface for various directions of
motion (compare Subsection 4.1.1). Table 2 gives data for a finer search around the
minima found in Table 1 and is discussed in Subsection 4.1.2. Tables 3, 4, and 5

contain results with decreased sampling rate of the error surface (Subsection 4.2.3).

Tables 6 and 7 represent runs with eight feature points (Subsection 4.2.4).
The results are mostly inferior to those with 16 interesting features. The results of

finer search for eight feature points are given in Table 7.

The following information is relevant for the tables:

e The (¥,p) column of the tables represents correct values (known from the
setup for synthetic images) for the direction of motion. ¥ is the angle between
the translational axis and the Z-axis. ¢ is the angle between the projection of
the translational axis on the X-Y plane and the X-axis. We used left-handed
spherical coordinate system. All the angles are in degrees.

e The column with the header (J,94,69) gives the range of values of ¥,
where ¥;, 9y are the minimum and the maximum value (both included),
respectively. 69 is the increment of 9.

e The column with the header (pr,on,0p) gives the range of values of p,
where ¢, o are the minimum and the maximum value, respectively. 6
is the increment of ¢.

e The two columns (¥.,94,69) and (pL,en,0p) are omitted for the ini-
tial runs (Tables 1 and 6) because the parameters are constant for these
tables. They are (J.,%4,69) = (0°,180°,11.25°) and (pL,pn,0p) =
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(0°,360°,22.5°).

e The Enin column gives the minimum value of the error computed directly
using the FOE/C technique (i.e. the correlation matches).

e The column with the header (A¥,Ap) (not (6¥,6p) !) gives deviations
from the correct translational axes, of the translational axis determined by
the algorithm (i.e., the position of the minimum of the error surface). A¥ =
P min—1 is the deviation of the angle ¥, ( obtained from the error minimum)
from the correct value (given in the first column). Similarly, A = min — @
is a deviation for (.

o The column with the header Af) contains the quantity AQ = \/AY? + Ap?

(in degrees) which is a measure of the total discrepancy of the position of
the translational axis from the correct position.

e Other columns represent results with smoothing of the error surface. The
superscript CG stands for the values obtained after the conjugate gradient
method is used to smooth the error surfaces.

e The total number of the correlation matches (window correlations) between
the features in two images of the motions sequence is given at the bottom of
the table. These numbers have the same meaning as the numbers given at
the bottom of tables in Appendix A.
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Table 1: Coarse Resolution Global Sampling of Error Surface.

Results of the runs with 16 feature points. The error surface is computed over the
entire parameter range, i.e., ¥ € [0°, 180°], §¢ = 11.25°%; € [0°, 360°], §p = 22.5°.
After that the error surface is smoothed using the conjugate gradient method from
Chapter 3. The first major column stands for exact axis of translation, the second
major column are data for unsmoothed error surface and the third major column
are data for smoothed error surface. For details of notation see the introduction to
this appendix. The regularization parameter is § = 1.

Correct Error Surface Smoothed Error Surface
(¢, ©) Eoin (AY, Ap) AN ECS (AY, Ap)©© AQCC
(0, 0) 0.1427 | (0.0,%) 0.0 | 0.1227 (0.0,%) 0.0

(15,90) | 0.2931 | (-3.8,0.0) | 3.8 | 0.3826 (7.5,00) | 1.5

(30,90) | 0.2734 | (3.8,0.0) | 3.8 | 0.4017 | (3.8, 0.0) 3.8

(45, 90) 0.1979 (0.0, 0.0) 0.0 0.4744 (0.0, 0.0) 0.0

(60,90) | 0.3001 | (7.5,00) | 7.5 | 0.6503 (7.5, 0.0) 7.5

(75,90) | 0.3207 | (3.8,0.0) | 3.8 | 0.7309 | (15.0,0.0) 15.0

(90,90) | 0.2323 | (11.3,0.0) | 11.3 | 0.7031 | (11.3,0.0) 11.3

(150, 90) 0.3200 (7.5, 0.0) 7.5 0.4149 (-3.8, 0.0) 3.8

(62.4,64.8) | 0.4422 | (-6.2,2.7) | 6.8 | 0.7368 | (-6.2,2.7) 6.8

* o is arbitrary
Total number of correlation matches 20,480.
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Table 2: Very Fine Resolution Error Surface around the Minimum.

Results for 16 feature points, near the error surface minima from Table 1. The
regularization parameter is # = 1. The resolution of the smoothed error surface
is equal twice the resolution of the unsmoothed error surface. For example, the
unsmoothed error surface for translation (15°, 90°), i.e., 15° off the line of sight, is
computed over the parameter range ¢ € [5°, 21°|, 64 = 1°; p € [82°, 98°], 6 = 1°.
The smoothed error surface is computed for the same parameter range, but with
the angular resolution 69 = §p = 0.5°. These numbers can be seen in the second
row.

Correct Parameter space Error Surface | Smoothed Surface
(19’ 90) (I,La 01{, 60) (‘pLa PH, 6@) E A E,C;:f;; ANCC
(0, 0) 0, 16, 1) (0,16,1) |0.1347| 2.0 [0.1350 2.0

(15, 90) (5,21, 1) (82,98,1) |0.2125| 2.2 |0.2124 1.8

(30, 90) (22, 38, 1) (82,98,1) |0.2680| 2.2 |0.2683 1.8
(45, 90) (30, 62, 2) (82,98,1) |0.1980| 0.5 |0.1983 0.5
(60,90) | (44, 76, 2) (82,98,1) |0.2090| 8.1 |0.2996 8.1
(75,90) | (60,124,4) | (74,106,2) |0.3297| 5.0 |0.3265| 11.2
(90,90) | (60,124,4) | (74,106,2) |0.2149| 2.8 |0.2110 4.5
(150,90) | 134,166,2) | (82,98,1) |0.2880| 7.2 |0.2874 8.3
(62.4, 64.8) | (40, 104,4) | (40, 104,4) |0.3468| 10.7 |0.3674 6.1

Total number of correlation matches 23,120.
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Table 3: Fine Resolution Error Surface around the Minimum from
Table 1.

Results for 16 feature points, near the error surface minima from Table 1. The reso-
lution of the smoothed error surface is four times the resolution of the unsmoothed

error surface. The regularization parameter is # = 0.1.

Correct Parameter space Error Surface | Smoothed Surface
('9, (P) (19L7 1’1{, 60) (‘pln YH, 6‘P) Emin AQ E’C';G; AQCC
(0,0) (0,16, 2) (0,16,2) |0.1347| 2.0 |0.1366 2.0

(15, 90) (5, 21, 2) (82,98,2) |0.2135| 2.0 |0.2153 1.6

(30, 90) (22, 38, 2) (82,98,2) |0.2687| 2.0 |0.2709 1.6

(45, 90) (30, 62, 4) (82,98,2) |(0.1983| 1.0 |0.2011 1.1

(60,90) | (44,76,4) | (82,98,2) |0.3009| 8.2 [0.3032 0.5

(75, 90) (60, 124, 8) (74, 106, 4) [0.3295| 9.0 |0.3321 7.1

(90,90) | (60, 124,8) | (74,106,4) |0.2238| 7.2 |0.2213 9.1

(150, 90) | 134,166,4) | (82,98,2) |0.2806| 8.9 |0.2944 4.5

(62.4, 64.8) | (40, 104, 8) (40, 104, 8) {0.3782| 1.8 |0.3918 12.5

Total number of correlation matches 12,960.
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Table 4: Coarse Resolution Error Surface around the Minimum from
Table 1.

Results for 16 feature points, near the error surface minima from Table 1. The
regularization parameter is § = 0.1. The resolution of the smoothed error surface
is eight times the resolution of the unsmoothed error surface. For example, the
unsmoothed error surface for translation (62.4°, 64.8°), i.e.,62.4° off the line of sight,
is computed over the parameter range ¥ € [40°, 104°], ¥ = 16°; € [40°, 104°],
6y = 16°. The smoothed error surface is given for the same parameter ranges, but
with the angular resolution equal 9 = 6y = 2°. These numbers can be seen in the

last row.

Correct Parameter space Error Surface | Smoothed Surface
(01 (P) (ﬂln 19H’ 619) (‘pLs YH, 6‘p) Emin A E,C,if;;, AQCG
(0,0) (0, 16, 4) (0,16,4) |0.1427| 0.0 |0.1383 1.5

(15, 90) (5, 21, 4) (82,98,4) |0.2135| 2.0 [0.2212 1.5

(30, 90) (22, 38, 4) (82, 98,4) |0.2703| 5.7 |0.2739 2.9

(45, 90) (30, 62, 8) (82, 98, 4) 0.1983 1.0 0.2109 0.5

(60,90) | (44,76,8) | (82,98,4) |0.3089| 0.0 |0.3157 7.1

(75,90) | (60, 124, 16) | (74,106,8) [0.3334| 1.0 [0.3701 5.1

(90,90) | (60, 124, 16) | (74,106, 8) [0.22904| 2.0 |0.2766 6.3

(150, 90) | (134, 166,8) | (82,98,4) |0.2896| 8.9 |0.3088 6.1

(62.4, 64.8) | (40, 104, 16) | (40, 104, 16) |0.4412| 13.0 |0.4746 10.0

Total number of correlation matches 4,000.
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Table 5: Very Coarse Resolution Error Surface around the Minimum
from Table 1.

Results for 16 feature points, near the error surface minima from Table 1. The
regularization parameter is # = 0.1. The resolution of the smoothed error surface
is sixteen times the resolution of the unsmoothed error surface.

Correct Parameter space Error Surface | Smoothed Surface
(1,a (P) (0L) 1’Ha 60) (‘pLa OH, 6@) Ein A Egﬁ. AQCC
(0,0) (4,30,13) | (4,30,13) [0.1523| 4.0 [0.1522 0.0

(15, 90) (5, 21, 8) (82,98,8) |0.2508| 2.0 |0.2508 1.1

(30,90) | (18,34,8) | (78,94,8) |0.2703| 5.7 |0.2764 5.0

(45,90) | (20,52,16) | (80,96,8) |0.2218 7.3 |0.2394 7.3

(60,90) | (48,80,16) | (80,96,8) |0.3088| 4.5 |0.3342| 6.2

(75,90) | (60, 124, 32) | (80, 112, 16) |0.3999| 16.2 |0.4556|  15.8

(90,90) | (70, 134, 32) | (80, 112, 16) |0.4154 | 13.4 |0.4407| 13.4
(150, 90) | (140, 172, 16) | (78,94,8) |0.2880| 7.2 [0.3086 3.6
(62.4, 64.8) | (40, 104, 32) | (40, 104, 32) |0.6096| 12.0 |0.7213 9.2

Total number of correlation matches 1440.
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Table 6: Coarse Resolution Global Sampling of Error Surface (8
features).

Results of the runs with eight feature points. The error surface is computed over the
entire parameter range, i.e., ¢ € [0°, 180°], §¢ = 11.25°%; p € 0°, 360°, 6 = 22.5°.
The regularization parameter is § = 0.1. The results of smoothing are shown here to
emphasize the dependence of the results on 3 (here they are bad). More appropriate
choice would be § =~ 1. In general, 8 features is performing worse.

Correct Error Surface Smoothed Error Surface

(9, ») E . (Ad, Ap) A ECS (A9, Ap)cC AQCC
(0, 0) 0.0717 (0.0, 0.0) 0.0 0.0172 (0.0, 0.0) 0.0

(15,90) | 0.0964 | (7.5,00) | 7.5 | 0.1455 | (30.0, 0.0) 30.0

(30,90) | 0.0872 | (3.8,0.0) | 3.8 | 0.1597 | (20.6,-11.2) | 23.4
(45,90) | 0.0645 | (11.3,0.0) | 11.3 | 0.2422 | (11.3,-11.2) | 15.9
(60,90) | 0.1245 | (-3.8,0.0) | 3.8 | 0.3370 | (-3.8,-11.2) | 11.8
(75,90) | 0.1014 | (26.3,0.0) | 26.3 | 0.3381 | (48.8,-11.2) | 50.0
(90,90) | 0.0846 | (0.0,0.0) | 0.0 | 0.4162 | (33.8,-11.2) | 35.6
(150,90) | 0.1124 | (-3.8,0.0) | 3.8 | 0.1404 | (-20.6,0.0) 20.6
(62.4,64.8) | 0.1420 | (-6.2,2.7) | 6.8 | 0.2416 | (-11.8,2.7) 12.1

Total number of correlation matches 10,240.
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Table 7: Very Fine Resolution Error Surface around the Minimum
from Table 6 (8 features).

Results for eight feature points, near the error surface minima from Table 6. The
regularization parameter is # = 0.1. The resolution of the smoothed error surface
is equal twice the resolution of the unsmoothed error surface. Here, # is smaller
than needed, but it does not influence the smoothing as much as in Table 6 due to
the lower curvature of the surface.

Correct Parameter space Error Surface | Smoothed Surface
(0) (P) (014, 1’”: 619) (SoLy PH, 6@) Emin AQ E,C,;,C;‘; AQCG
(0, 0) (0, 16, 1) (0,16,1) |0.0696| 1.0 |0.0681 0.5

(15, 90) (5, 21, 1) (82,98,1) |0.0705| 4.1 [0.0730| 6.2

(30, 90) (22, 38, 1) (82,98,1) |0.0823| 4.5 |0.0825 4.3
(45, 90) (30, 62, 2) (82,98,1) |0.0576| 11.2 [0.0582| 10.2
(60, 90) (44, 76, 2) (82,98,1) |0.1060| 85 [0.1073| 10.4
(75,90) | (60,124,4) | (74,106,2) |0.0958| 21.1 |0.0986| 31.1
(90,90) | (60,124,4) | (74,106,2) |0.0813| 10.2 |0.0786 4.1
(150, 90) | (134,166,2) | (82,98,1) [0.1041| 6.7 |0.1050 7.5
(62.4, 64.8) | (40, 104,4) | (40, 104,4) |0.1154| 10.7 |0.1323 3.7

Total number of correlation matches 11,560.




APPENDIX C - Conjugate Gradient Method

In this appendix we present in more detail the conjugate gradient method,
without proofs of equations, but with enough rigor to help the reader understand the
basic concepts and steps. For further details, the reader is referred to the Hestenes

[HESS0].

Fundamental Concepts

The problem with which we are concerned here is the minimization of the

positive-definite quadratic functional

f(z) = %:z:"Aa: —-h'z 4+ C. (C.1)

z is an n-dimensional vector of unknown values, A is an n x n positive-definite
matrix, and h is a vector of given data. The symbol * denotes the transposition
of matrices and vectors. C is an arbitrary scalar. The solution of the problem z,

satisfies the equation

Az, —h=0. (C.2)

To find the minimum of f(z) in Eq. (C.1), one has to solve the set of
linear equations, Eq. (C.2). ‘When the matrix A is sparse (i.e., it has only few

elements) the conjugate gradient methods are the best choice. From the previous

94
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two equations it follows that

f(z) = f(z.) + 3z~ z.) Az - z.). (c3)

In the last equation we recognize the generalization of a simple quadratic equation
to n dimensions. For n = 1 the solution can be obtained, for example, by Newton’s
iterative method. Given z; as a guess for the solution z,, a better guess for the

solution is
zen = oo — £/ f" (=) (k=0,1,... (C.4)

For n > 1 the equations are similar, and only a generalization of the functional

derivatives has to be introduced.
Equal level surfaces in Eq. (C.3)
f(z) = Const, (C.5)

are (n — 1)-dimensional ellipsoids having z., as their center. The derivatives f'(z)

and f"(z) become gradient and Hessian in n dimensions, respectively
f'(z) - (8]’(.@)/81:") (t=1,2,...,n), (C.6)
f"(z) = (8°f(z)/8z'0z7) (3,5 =1,2,...,1n). (C.7)
The Taylor formula becomes
fle+2) = f(z) + ['a)' = + 52 /"(z) 2 + Rz, 2), (c.8)

where the function R(z,z) is the remainder.
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An important step toward the generalization to n dimensions is the use of
the concept of minimization of f along a line L through a point 3 in the direction

of a non-zero vector p:

L: =I + ap, (C.g)

where a is a parameter. Thus, we search for an « such that the function

¢(a) = f(z1 + ap) (C.10)
has the minimum. « is found as a value for which z, = z; + a;p satisfies
¢'(e) = f'(z2)'p=0 - (cay)
and
¢"(e) = p"f"(z2) p > 0. (C.12)

xz, is called the critical point and we see from Eq. (C.11) that the gradient at that

point is orthogonal to the line L. Another way of writing the solution is

Z, = T + 04D, (C.14q)
where
o = 3; c=p'r; d=p'Ap (C.14b)
and
r = —f'(z1) = h — Az;. (C.14c¢)

ry is called the residual (negative gradient) of f at the point z; and points in the

direction of the steepest descent.
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Starting from a point z, in the direction — f'(z;) the minimum of f(z) on line L is
found to be z. Vector Ap is normal on the hyperplane #, ;. Search continues in
the hyperplane #,,_, starting from the point z; in the new direction q.

Figure 1: Search for the minimum z,.

The equation
p'(Az—h)=0 (C.15)

is one constraint on a set of n values of z and defines an (n — 1)-dimensional
hyperplane #,-;. The hyperplane #,_; passes through the solution z, and the

vector A p is normal to it. The situation is depicted in Figure 1.
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Another way of specifying the normality of Ap on the hyperplane #,-1 is by

requiring that for

Vg, q€ ftp-r: p"Aq=0. (C.16)

p is said to be conjugate (A-orthogonal) to #,~;. Observe that if A is the identity

matrix the conjugacy becomes the usual orthogonality of vectors.

By finding the minimum of f along the line through z; the dimensionality
of the problem is reduced by one. The search can now continue from the point
Zy € #n_1, since the solution z, is somewhere in that hyperplane. In what direction
should the search for z; proceed from z3, i.e., what is a good choice for ¢ (See Figure
1)? If such a g is found, then starting from z; one finds the minimum z3 along the
line specified by ¢ and reduces the problem to the search for z, in the hyperplane
fin_2, and so on. The conjugate gradient method specifies that the new direction
should be along the vector ¢ = p; which is conjugate to all previous directions of

the steepest descent:

P Ap; =0 i=1,2,...,(k—1). (ca7)

It can be shown that the residual r.4; is orthogonal (in the common sense of the

word) to the direction vectors py,...,pk, signifying that zp,; minimizes f on the

k-plane

Tk z=2z1+apr + - + 0kPk-

All these conclusions lead to the following CG-Algorithm.




“
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Initial Step. Select a point x, and compute
pp=r=—f"(z)) = h - Az,. (C.184q)

Iterative steps. Having obtained z\,r, and pp compute Tpy1,7141, and pryy by the

formulas

Ck . .
G = de = P APr, €k = PyTi, (C.18b)
Tk+1 = Tk + QkDrs  Tkt1 = Tk — Gk A Pi, (C.18c)

= —pt _ e

b = —pyArkpr/dx, or b= T (C.184d)

k
Pk+1 = Tke1 + bipr. (C.18e)

Termination. Terminate the m-th step tf rmy1 = 0. Then m < n and Tpi1 = To,

the minimum point of f.

The termination step is, according to the last statement, guaranteed to be
reached by the n—th step (n being the dimensionality of the problem). The mag-
nitude of the residual |ri| is not necessarily monotonically decreasing toward zero,
thus it is never known how far away the solution is. Round-off error can cause
|rx| # O for all k < n. This is the problem of great importance for ill-conditioned
matrices (for which the ratio of the largest and the smallest eigenvalue is a large
number) where the convergence is slow. To avoid such problems, take the following
steps:

e Extend the computation just one more step (n +1). This gives much better
- accuracy [HES80] with no significant increase in the computational cost.
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paper.

Compute the initial approximation for the solution by fitting planar patches
between the sparse data (done through bilinear interpolation). The sparse
data are assumed to be known on a regular grid of a lower level of resolution.
A good initial guess assures faster convergence and fewer problems with
round-off error.

If the norm of the residual after n + 1 steps (exit condition for this itera-
tive procedure) is not satisfactorily small, repeat the computation with the
initial approximation for the solution being the previously found ”solution”.
Starting with an approximation so close to the solution guarantees success.

This completes our exposition of the conjugate gradient method used in this
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