-

A REPORT ON ARCADIA

A Presentation to the
ACM-SIGAda Future APSE 86 Workshop

Alexander L. Wolf

COINS Technical Report 86-59
December 1986

Software Development Laboratory
Computer and Information Science Department
University of Massachusetts
Ambherst, Massachusetts 01003

A version of this report to appear in
Proceedings ACM-SIGAda Future APSE ’86 Workshop

This work supported in part by the following grants: Rome Air Development Corpo-
ration, No. SCEEE-PDP/85-0037; National Science Foundation, No. DCR--84-04217 and
No. DCR-84-08143; and Control Data Corporation, No. 84-M103.



ABSTRACT

Arcadia is a research project aimed at the discovery and development
of both architectural principles and software tools for software develop-
ment environments. The principles are intended to enable the construction
of environments that are both integrated and extensible, while the tools
are intended to support the description and analysis of software systems
throughout their lifetimes, from initial conception through maintenance. A
major goal of the Arcadia project is to create a research platform that can
be used to experiment with new principles and new tools. This platform
will initially be used to build Arcadia-1, a first prototype of the sort of next-
generation environment that we believe can better support the development
and maintenance of large, complex software systems.

The Arcadia project is organized as a consortium of academic and in-
dustrial researchers. The principal members are from the University of
California at Irvine, the University of Colorado at Boulder, the University
of Massachusetts at Ambherst, Stanford University, Incremental Systems
Corporation, TRW, and The Aerospace Corporation. In addition to their
research contributions, the industrial members are expected to act as con-
duits of the technology that emerges from the Arcadia project.

This paper provides a brief report on the research directions being ex-
plored by members of the Arcadia project in the areas of architectural
principles and software tools, and describes our plans for Arcadia-1. The

report was originally presented by the author at the ACM-SIGAda Future
APSE ’86 Workshop.



1. Introduction

Arcadia is a research project aimed at the discovery and development of
both architectural principles and software tools for software development
environments. The principles are intended to enable the construction of
environments that are integrated and extensible—integrated in that there
is synergy in the underlying operation of the environment’s tools as well
as uniformity in the user interfaces to those tools, and extensible in that it
is relatively easy to absorb new capabilities into the environment without
changes to the fundamental architecture. The emphasis in the tools area is
on supporting the description and analysis of software systems throughout
their lifetimes, from initial conception through maintenance. This emphasis
should benefit both engineers and managers, providing them with meaning-
ful information about, and control over, the evolution of software systems.

A major goal of the Arcadia project is to create a research platform
that can be used to experiment with new principles and new ‘tools. This
platform will initially be used to build Arcadia-1, a first prototype of the
sort of next-generation environment that we believe can better support the
development and maintenance of large, complex software systems. Some of
the more significant features of Arcadia-1 will be:

e mechanisms to formally describe and automatically support/enforce
multiple software process models;

¢ mechanisms to organize and manage the diverse set of objects as-
sociated with a software system, such as requirements documents,
management reports, source code, and test data;

e mechanisms to organize, manage, and integrate the diverse set of tools
populating the environment;

e mechanisms to manage and integrate user interfaces;
e various analysis tools; and
e various tool-generation tools (“meta-tools”).

Included as a component of Arcadia-1 will be a set of tools appropriately
-viewed as a software development environment for Ada. In fact, Arcadia-1



is being implemented in Ada; the Ada-oriented tools in Arcadia-1 will be
used to aid in the prototype’s own, incremental development.

The Arcadia project is organized as a consortium of academic and in-
dustrial researchers. The principal members are from the University of
California at Irvine, the University of Colorado at Boulder, the University
of Massachusetts at Ambherst, Stanford University, Incremental Systems
Corporation, TRW, and The Aerospace Corporation. In addition to their
research contributions, the industrial members are expected to act as con-
duits of the technology that emerges from the Arcadia project. They will
be responsible for producing and maintaining production-quality versions
of architectural components and tools. Other organizations, whose primary
charter is technology transfer, may also become involved in this process.

The remainder of this paper provides a brief report on the research
directions being explored by members of the Arcadia project in the areas
of architectural principles and software tools. A more detailed overview of
the Arcadia project can be found in [14] and [15].

2. Architecture Issues

The Arcadia project is addressing the needs of an extremely difficult
application domain: the development and maintenance of long-lived, large-
scale, possibly concurrent/distributed /real-time software systems by teams
of engineers and managers working on a network of distributed worksta-
tions. This domain forces us to rethink many long-held beliefs about soft-
ware and its construction.

“Software” in this domain is much more than simply the code that runs
the hardware. It includes requirements, specification, and design docu-
ments, test plans, test data, and test results, management guidelines and
management reports, user documentation and user reports; in sum, it is the
entire collection of artifacts or objects, whether manually or automatically
produced, pertaining to the development, maintenance, management, and
use of a software system.

Correspondingly, “software development and maintenance” are much
more than simply the writing or altering of the code that runs the hard-
ware. They are the production of all the diverse objects mentioned above as



well as the establishment of relationships among those objects, such as, for
example, consistency between test data and test results or between require-
ments and design documents. It is the responsibility of the environment
to provide and integrate the tools that automatically support these activi-
ties. The tools can be seen as transformers that operate upon the objects,
producing new objects from old objects, such as a compiler that transforms
source objects into target objects or a productivity monitor that transforms
source objects into productivity-report objects.

Our approach to supporting this domain is further affected by a recog-
nition that the development, maintenance, and management of a large soft-
ware system involves complex combinations of various kinds of activities or
software processes.! Researchers have sought to understand and charac-
terize software processes using so-called software process models (16]. An
example of a software process is regression testing, while an example of a
software process model is the Spiral Model [4]. From the perspective of
an environment, a given software process can be viewed as the orderly (al-
though sometimes nondeterministic) application of a certain set of tools to
a certain set of objects. The environment should support the description of
software processes and, to the extent that they can be automated, support
their execution. Some software processes, such as “recompilation of source
code”, are fairly well understood and are easily automated. Others, such as
“update of specification documents to reflect changes in design documents”,
while not as easily comprehended or described, are just as important to the
successful production or enhancement of a large software system and thus
deserve equal treatment by the environment.

In sum, the issues facing environment architects fall into three broad
categories: object management, tool management, and software process
management. The next three sections outline the approaches being taken
in the Arcadia project to resolve the issues in each of these categories.

!The concept of a software process should not be confused with the operating-system
concept of a process; we are not concerned here with such things as process control blocks,
program counters, and registers, but rather with the activities of engineers and managers,
such as editing, testing, and project planning.



2.1 Object Management

The number and variety of objects associated with a large software
system and the complexity of the interactions among those objects provide
strong impetus for intimately involving the environment in the production
and management of the objects. We are developing the notion of an object
base as the foundation of object management. The object base reflects the
following characteristics of objects.

e Objects are instances of (abstract data) types. Type information is
used both to control which tools can operate on which objects (e.g., to
prevent a text editor from operating on an executable image) and how
those tools can manipulate those objects (e.g., to prevent a Petri-net
graph node from being placed into an abstract syntax tree).

e Objects may be persistent—that is, the lifetime of an object may
extend beyond activation of tools that manipulate the object.

e Objects may be arbitrarily large or small. Examples of objects include
source code, object code, symbol tables, lexical tokens, graph nodes,
graph edges, test data, test results, text (e.g., documentation), and
bit-map display frames.

e Software process descriptions are objects, as are the types (i.e., de-
scriptions) of all objects and the input/output specifications (i.e.,
descriptions) of all tools. The significance of maintaining these as
objects in an environment is explained in Section 2.3.

The object base is further characterized by the fact that it is extensible—
that is, new types of objects can be incorporated into the object base to
account for new tools in the environment—and that it is distributed. More-
over, the object base contains explicit representations of tool and object
relationships. Examples of some classes of relationships include hierarchy
(e.g., tool activation sequences, composite objects), consistency (e.g., re-
sults of analyses), and derivation (e.g., subtyping, versioning).



2.2 Tool Management

The view of tools being taken in the Arcadia project emphasizes small,
reusable building blocks. In particular, tools may be composed of a set
of tool fragments allied for the purpose of performing some task; these
alliances may possibly involve concurrency and may possibly be dynamic
and short-lived. The tool-fragment structure, however, is kept invisible to
users of a tool. An example of a tool seen as a set of tool fragments is a
pretty printer composed from a scanner, a parser, and a formatter. Notice
that the same scanner and the same parser can also be fragments of other
tools, such as a compiler.

The application of tools to objects is realized through (possibly remote)
procedure calls and may be statically or dynamically determined. Dynamic
applications may be data driven or event driven. Moreover, some tools may
be “self-motivated”—that is, they essentially determine their own activa-
tions.

Conceptually, all communication among tools is through the object base;
the output objects of one tool serve as the input objects to other tools. In
some cases, this conceptual view may be abandoned at lower levels of imple-
mentation to improve efficiency. Nonetheless, the tools—and in particular
the tool writers—should be unaware of whether communication is “loose”
(i.e., objects are shared through the object base) or “tight” (i.e., objects
are shared through primary memory). In fact, different approaches may be
used with a tool during different activations of that tool.

While we have chosen to consider tool management as a separate cat-
egory of architecture issues, the tools themselves are actually treated as
objects; these objects and their relationships happen to be of particular
interest to developers of environments. For instance, the tool-fragment
structure is describable as a set of relationships (hierarchy) over a set of
objects (tool fragments). This unified view of objects and tools has signifi-
cant advantages for software process management.

2.3 Software Process Management

Software process management is the glue that holds a project together.
At a high level, it organizes and coordinates the activities of the project’s



engineers and managers. This is reflected at a lower level in the organization
and coordination of the application of tools to objects. Unfortunately,
software process management is today enforced only by convention and
so can easily be circumvented, whether intentionally or unintentionally.
Moreover, the models under which software processes operate are not well
understood, nor can they easily be experimented with.

A major reason for the current shortcomings in software process man-
agement is the lack of a satisfactory medium for the rigorous description
of software processes and software process models. Thus, we have begun
the development of a software process programming language [12|. The
(primitive) operators in this language are an environment’s tools and the
operands are an environment’s objects. Programs in this language realize
software processes. Execution of these programs amounts to an automa-
tion and concomitant enforcement of software process models. Although
the definition of this language is in its early stages, certain properties of
the language can already be identified.

e The language will have a type structure rich enough to describe any
object that can reside in the object base.

e The language will allow the definition and maintenance of relation-
ships among the objects in the object base.

o The language will allow the specification of the input/output behavior
of tools.

e The language will have facilities for expressing control flow and pro-
cedural abstraction, including facilities for expressing concurrent ex-
ecution.

Given the existence of machine-readable descriptions of software pro-
cesses, software process management takes on a broader meaning. In par-
ticular, software process programs, just like application programs, have
associated with them development and maintenance activities (i.e., soft-
ware processes) and so can profit from being treated as genuine objects in
the environment. Moreover, software process management must account



for changes in the software processes and the software process models un-

der its purview, propagating the effects of those changes throughout the
system.

2.4 User Interfaces

While the Arcadia project’s approaches to object, tool, and soft-
ware process management are the primary contributions to environment-
architecture research, there is another important area, namely user inter-
faces, in which Arcadia research is providing interesting results [18]. The
remainder of this section briefly sketches this work.

The Arcadia project assumes that next-generation environments will be
hosted primarily on powerful workstations that provide bit-mapped graph-
lcs and pointing devices, making extensive use of multiple windows and
multiple, simultaneous (operating system) processes. Within this setting,
any object is given the opportunity of being “viewed”, but maintenance of
a depiction of an object is logically separated from manipulation of that ob-
ject by tools. This separation is realized by drawing a distinction between
an object and its abstract depiction, and between an abstract depiction
and a concrete depiction on a particular graphics device. Tools manipu-
late only the object, while so-called artists are responsible for mapping the
object into an abstract depiction. The final step, mapping the abstract
depiction into a concrete depiction, is handled by yet another environment ‘
component, hiding the low-level details of managing a device from all other
components. To maintain the integrity of the type structure of the environ-
ment’s object base, operations that are used to “graphically” manipulate
an object form part of the type of thai object. In fact, an artist can be
viewed simply as an extension of the operations associated with an object.

Given the diversity of tools we envision will populate an environment,
a particularly difficult challenge is formulating a framework for user inter-
faces that promotes a feeling of integration among those tools. We believe
that such a feeling enhances the usability of an environment. Our approach
is based on separating out the two, orthogonal components of a tool’s user
interface, namely the inherent conceptual or semantic model of how a user
interacts with the tool and the specific syntax of commands. User input
is mapped into abstract commands appropriate to a conceptual model; ab-



stract commands are independent of the particular command syntax visible
to the user. Uniformity of user interfaces is then achieved through identi-
fication of classes of tools, such as the class “editor” or the class “report
generator”, within which there is a significant sharing of some fundamental
concepts. Presentation of shared concepts in the form of commands should
be made consistent across the tools in a class. Of course, classes are not
necessarily disjoint. Rather, they form a hierarchy in which classes at lower
levels in the hierarchy inherit commands from higher levels, which is simi-
lar in some respects to the way methods are inherited in a Smalltalk class
structure. So, for example, it would make sense for the tool class at the
highest level of the hierarchy to have a “terminate session” command asso-

ciated with it and for that command to be shared uniformly (i.e., inherited)
by tools in all other classes.

3. Software Tools

As mentioned in the introduction, the Arcadia project is committed to
advancing the capabilities of software tools as much as it is involved in
providing a suitable infrastructure into which those tools can be placed.
Our work in this area, which to date has been somewhat focused by the
needs of the Ada-oriented component of Arcadia-1, is aimed at developing
three kinds of tools: meta-tools to support the building of tools; basic
capabilities to support the primitive programming needs of Ada projects;
and extended capabilities to support sophisticated description and analysis
techniques throughout the lifetime of a software system. This section briefly
outlines our work on these tools.

3.1 Meta-Tools

It is not uncommon to find subsets of tools within an environment that
have similar underlying control and/or data structures. For example, the
various languages used in an environment, such as specification, design, and
implementation languages, all require some sort of language processor. It
is also not uncommon to find subsets of tools that share particular kinds of
objects, such as several analysis tools that examine the same representation
of a program. Furthermore, as tools and objects undergo development,



they undergo change. Meta-tools are intended to ease the effort involved in
developing an environment’s tools and objects by automating the (re)coding
of major components of those tools and the (re)coding of interfaces to those
objects. To date, the Arcadia project has produced three such meta-tools:
ALEX, AYACC, and GRAPHITE, all written in Ada.

ALEX and AYACC are, respectively, a scanner generator and a parser
generator for language processors. While the specifications that are the
inputs to these tools bear strong resemblance to the inputs to the Unix
tools LEX and YACC, ALEX and AYAcCC differ from their Unix counter-
parts in two significant ways. First, they are based on somewhat different
algorithms and second, they produce scanners and parsers that are coded
in Ada.

GRAPHITE is intended to foster the development of objects that are
attributed graphs [8]. It is becoming clear that such graphs are major
building blocks of an environment. For example, Arcadia-1 uses attributed
graphs to represent programs written in Ada and Ada-like languages (see
Section 3.2). GRAPHITE consists of a language, called GDL, for specifying
classes of attributed graphs and a processor for automatically generating
abstract data types in Ada that are implementations of the specified classes.
One of the significant contributions of GRAPHITE is its innovative method
for supporting rapid prototyping within a statically-typed language such
as Ada. In particular, GRAPHITE makes it possible for different engineers
to experiment with definitions of attributed-graph objects without forcing
the recoding or, in most cases, even the recompilation of tools that access
the redefined object but do not explicitly use the changed information.

3.2 Basic Capabilities

Because Arcadia-1 is to contain tools suitable for an Ada software de-
velopment environment, we have spent some effort in designing and build-
ing a basic set of capabilities for handling programs written in Ada and
Ada-like languages. (An example of an Ada-like language is PIC/ADL,
which is a design language based on Ada and intended for use in Ada envi-
ronments [17].) These basic capabilities include compiler/interpreter front



ends, static semantic analyzers, and pretty printers.? Moreover, they in-
clude a unifying internal representation for programs written in Ada and
Ada-like languages, called IRIS [13].

IRIS is a class of attributed graphs (specified using GDL) that contains
information gained from static semantic analysis—static semantic analyzers
transform the output of the front ends into IRIS graphs. IRIS is charac-
terized by a consistent conceptual model, which results in a remarkable
minimization of special-case processing by tools. The conceptual model is
that of applying operators to operands. All user-defined program entities
are described in this manner, as are all the primitive features of Ada. For
example, Ada’s if-statement is treated as an operator on four operands; the
operands represent the conditional expression, the then-part statement, a
list of else-if branches, and the else-part statement. Each operand is in
- turn an operator applied to a set of operands. The nodes in an IRIS graph
reflect the consistency of the conceptual model by having a uniform struc-
ture; they all have an attribute representing an operator and some number
of attributes representing operands. These attributes are actually refer-
ences to other nodes; the nodes represent the declarations of the operator
and operands, providing the semantics for the program entity being repre-
sented. IRIS graphs “bottom out” at so-called literal nodes, which represent
such things as identifiers and string literals. It should be noted that the
consistency of this model is in strong contrast to that of DIANA, which is
another proposed internal representation for Ada programs. DIANA graphs
are built from a large number of special-purpose nodes, which leads to sig-
nificant complications in the code of tools that manipulate those graphs.
The approach taken in IRIS avoids such complications by effectively reduc-
ing the kinds of nodes needed to represent an Ada program to two.

In formulating these basic capabilities for Ada, we have learned some
important lessons about how to build flexible representations that admit
to a variety of analyses and flexible tools that can be applied to programs
written in a variety of languages. This experience will be put to good use
as Arcadia prototypes are extended into other domains.

2We do not plan to develop our own editors and code generators, but rather to import
and integrate existing ones into the environment.

10



3.3 Extended Capabilities

From the perspective of the engineers and managers that will use the
results of the Arcadia project in building actual systems, the most impor-
tant tools are those that constitute the extended capabilities. These tools
are centered around the notion that the key to successful development and
maintenance of large, complex software systems is the ability to obtain ac-
curate, detailed, timely, and meaningful information about the state of the
project—the correctness of its software and the productivity of its work
force—throughout the lifetime of that project.

The members of the Arcadia consortium are working on a wide variety

of such analysis tools. Following is only a partial list of current research
efforts; detailed information about them can be found in the cited papers.

o Formal specification techniques [10]

o Formal design techniques for concurrent systems (1]
o Precise module-interface control [17]

e Static analysis of sequencing constraints [11]

e Static analysis of concurrent programs [19]

¢ Rigorous and systematic testing (7]

e Flexible interpretation (9] |

¢ High-level debugging of distributed systems (3]

o Debugging of concurrent programs [6] |

e Software metrics [2]

e Software productivity [5]

It is important to reiterate that a major goal of the Arcadia project
is to develop a research platform flexible enough to “capture” new and
diverse environment capabilities. These capabilities include not only the
tools resulting from our own research efforts, but those formulated by others

11



as well. Once this platform reaches a reasonably stable state, we plan to
actively solicit contributions from outside the consortium. We believe that
the diversity of tools already being put forth by members of the Arcadia
project will lead us to build a platform that can truly satisfy that goal.

Acknowledgements

The principal academic and industrial members of the Arcadia project
are Richard Taylor (UCI), Leon Osterweil (CU), Lori Clarke and Jack
Wileden (UMass), David Luckham (SU), David Fisher (ISC), Frank Belz
(TRW), and Fredrick Cowan (TAC).

Many people associated with the consortium’s institutions have con-
tributed considerably to the Arcadia project. From UCI: R. Selby,
C. Snider, C. Kelly, I. Shy, S. Sykes, R. Schmalz, T. Nguyen. From CU:
D. Heimbigner, K. Olender, S. Sutton. From UMass: S. Zeil, D. Richard-
son, G. Barbanis, M. Burdick, E. Epp, P. Tarr. From SU: W. Tracz. From
ISC: D. Baker. From TRW: B. Boehm, M. Penedo. From TAC: A. Brindle,
C. LeDoux, D. Martin.

The Arcadia project has also benefited from the ongoing guidance and
encouragement of Stephen Squires.

12



REFERENCES

[1] G.S. Avrunin, L.K. Dillon, J.C. Wileden, and W.E. Riddle, Con-
strained Expressions: Adding Analysis Capabilities to Design Methods
for Concurrent Software Systems, IEEE Trans. on Software Engi-
neering, SE-12, no. 2, February 1986, pp. 278-292.

[2] V.R. Basili, R.W. Selby, and D.H. Hutchens, Experimentation in Soft-

ware Engineering, IEEE Trans. on Software Engineering (to ap-
pear), 1986.

(3] P. Bates and J.C. Wileden, High-level Debugging of Distributed Sys-
tems: The Behavioral Abstraction Approach, Journal of Systems
and Software, 3, 1983, pp. 255-264.

) [4] B.W. Boehm, A Spiral Model of Software Development and Enhance-
ment, Proc. Inter. Workshop on the Software Process and Software
Environments, appearing in ACM SIGSOFT Software Engineer-
ing Notes, vol. 11, no. 4, August 1986, pp. 14-24.

(5] B.W. Boehm, M. Penedo, E. Stuckle, R. Williams, and A. Pyster,
A Software Development Environment for Improving Productivity,
IEEE Computer, vol 17, no. 6, June 1984, pp. 30-42. ‘

[6] A.F. Brindle, R.N. Taylor, and D.F. Martin, A Debugger for Ada
Tasking, IEEE Trans. on Software Engineering (to appear), 1987.

[7) L.A. Clarke, A. Podgurski, D.J. Richardson, and S.J. Zeil, A Compari-
son of Data Flow Path Selection Criteria, Proc. Eighth Inter. Conf.
on Software Engineering, London, August 1985, pp. 244-251.

[8] L.A. Clarke, J.C. Wileden, and A.L. Wolf, GRAPHITE: A Meta-tool
for Ada Environment Development, Proc. IEEE Computer Society
Second Inter. Conf. on Ada Applications and Environments,
Miami Beach, Florida, IEEE Computer Society Press, April 1986,
pp. 81-90. .

[9] E.C. Epp and S.J. Zeil, Ada Interpretation in a Tool-fragment Environ-
ment, Technical Report 86-57, Computer and Information Science

13



[10]

11)

12]

[13]

[14]

[15]

[16]

Department, University of Massachusetts, Amherst, Massachusetts
(submitted for publication), November 1986.

D.C. Luckham and F.W. von Henke, An Overview of ANNA, A Specifi-
cation Language for Ada, IEEE Software, vol. 2, no. 2, March 1985,
pp. 9-22.

K.M. Olender and L.J. Osterweil, Specification and Static Analysis of
Sequencing Constraints in Software, Proc. Workshop on Software
Testing, Banff, Canada, IEEE Computer Society Press, July 1986,
pp. 14-22.

L.J. Osterweil, Software Process Interpretation and Software Environ-
ments, Technical Report CU-CS-324-86, Department of Com-
puter Science, University of Colorado, Boulder, Colorado, April 1986.

S.D. Sykes, I. Shy, D. Fisher, and R.N. Taylor, IRIS: An Internal Form
for Ada, Arcadia Research Report, Department of Information and
Computer Science, University of California, Irvine, California, 1986.

R.N. Taylor, L.A. Clarke, L.J. Osterweil, J.C. Wileden, and M. Young,
Arcadia: A Software Development Environment Research Project,
Proc. IEEE Computer Society Second Inter. Conf. on Ada
Applications and Environments, Miami Beach, Florida, IEEE
Computer Society Press, April 1986.

R.N. Taylor, L.A. Clarke, L.J. Osterweil, R.W. Selby, J.C. Wileden,
A.L. Wolf, and M. Young, Arcadia: A Software Development Envi-
ronment Research Project, Arcadia Research Report, Department
of Information and Computer Science, University of California, Irvine,
California (in preparation for journal submission), 1986.

J.C. Wileden and M. Dowson (editors), Proc. Inter. Workshop on the
Software Process and Software Environments, appearing in ACM
SIGSOFT Software Engineering Notes, vol. 11, no. 4, Au-
gust 1986. )

14



(17] A.L. Wolf, L.A. Clarke, and J.C. Wileden, The AdaPIC Toolset: Sup-
porting Interface Control and Analysis Throughout the Software De-
velopment Process, IEEE Trans. on Software Engineering (to
appear), 1987.

(18] M. Young and R.N. Taylor, User Interface Facilities for Software En-
vironments, Arcadia Research Report, Department of Information
and Computer Science, University of California, Irvine, California,
April 1986.

[19] M. Young and R.N. Taylor, Combining Static Concurrency Analysis
with Symbolic Execution, Proc. Workshop on Software Testing,
Banff, Canada, IEEE Computer Society Press, July 1986, pp. 170-178.

Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

Unix is a trademark of AT&T.

15



