[t

DESIGN OF A .
DISTRIBUTED DIAGNOSIS SYSTEM

>
T -

- Eva Hudlickd, Victor Lesser, Jasmina Pavlin,

o=t 2o -and Anil Rewari. .
T SRR s RS
COINS Technical Report 86-63 .. -
December 1986

.-

ABSTRACT

We describe an architecture of a Distributed Diagnosis Module (DDM) designed to work in con-
junction with a distributed problem-solving system to diagnose inappropriate system behavior. The
problem-solving system being diagnosed is the Distributed Vehicle Monitoring Testbed (DVMT),
an interpretation system based on the Hearsay-II architecture. The work described here is the con-
tinuation of our work on a centralized Diagnosis Module (DM), which has been implemented and
is used to identify faults in the DVMT, such as sensor failures or inappropriate control parameter
settings. In the centralized configuration, we assume that one diagnostic node is responsible for
diagnosing the symptoms at all problem-solving nodes. We briefly describe the architecture of the
centralized DM and illustrate its diagnosis via causal pathway construction. We then focus on the
issues in distributing the centralized DM and on the changes necessary to make the DM function
in a distributed environment; primarily more flexible local control. We discuss cases where the
diagnosis results in two or more fault candidates and evidential reasoning, through interaction with
other diagnosis modules, is necessary to disambiguate these. The evidence necessary for this comes
from redundancy in the DVMT system. We propose an architecture where each problem-solving
node has its own Diagnosis Module and these modules then interact in constructing the causal
pathways necessary to explain the inappropriate DVMT behavior. We conclude with an example
of a distributed diagnostic session which illustrates how the individual Diagnosis Modules interact
to cooperatively solve the diagnosis problem.

This research was sponsored, in part, by GTE under Contract GTE# 851024 A, by the National Science
Foundation under Grants NSF# DCR-8500332 and NSF# DCR-8318776 and by the Defense Advanced
Rescarch Projects Agency (DOD) monitored by the Office of Naval Research under Contract NG0014-79-C-
0439,

Contents

1.

2.

6.

Introduction

Background Information: The DVMT and Diagnosis Systems

2.1
2.2

3.1
3.2

The DVMT Problem-Solving System
The Centralized Diagnosis Module

. Distributing a Centralized Diagnosis Module

Issues in Distributed Problem-Solving
Architecture of the Distributed DM

Making Local Control of Diagnosis More Flexible

. Resolving Ambiguous Situations

5.1 Introduction to Dempster-Shafer Theory e e e e e e e e
5.2 Formulating the Ambiguous Diagnostic Problem
5.3 Combining Fault Information
5.4 Communication of Diagnostic Information

5.4.1 An Example of a Communication Decision Tree
Conclusion

A. Example of Local Processing at a Diagnostic Node

B. Example Of Determining Credibilities of Competing Hypotheses

C. Example of Diagnosis: Missing Communication Knowledge Sources

List of Figures

QO ~J O Ut & W N

Architecture of a Fully Fault Tolerant Problem-Solving System
A Centralized Diagnosis Module
Distributed Diagnostic Architecture
DVMT Node Architecture
The Model Clusters Representing the DVMT Behavior.
Architecture of A Distributed Diagnosis Module
The Belief Intervals.
A Portion Of The Decision Tree For Three Relevant Nodes, A, B and C. . .

11
11
12

15

19
20
22
24
25
27

30

33

39

41

10
11
12
13
14

Agenda-Based Best First Search 33

A Detailed Example of Local Processing 35
Progressive Construction of the Causal Pathways 36
Scenario for Example 42
The Domains of Interest for Example I 43

A Cycle by Cycle Depiction of the Causal Pathways Traced by the 4 Nodes. 51

ii

1. Introduction

An important issue in the design of the next generation of large, complex, and au-
tonomous distributed systems is how to make these systems robust in the face of dy-
namically changing task and hardware characteristics. Our approach to achieving this
robustness is not to go to a replicated component approach, but rather to have the system
be able to reorganize itself (organization self-design) based on the changed task charac-
teristics and the available hardware resources. This capability for organization self-design
requires the system to be able to detect symptoms which indicate that current assumptions
about task and hardware characteristics are invalid and then to diagnose these symptoms
to ascertain their causes. (See Figure 1).

fautt
DETECTION | ————3f 0IAGNOSIS |—— 3 CORRECTION

PROBLEM-SOLUING SVSTEM

T I

INPUT ouTPUT

Figure 1: Architecture of a Fully Fault Tolerant Problem-Solving System
A fully fault tolerant problem-solving system would contain a detection, a diagnosis, and
a correction component. The detection component would monitor the problem-solving
system behavior and would detect any deviations from expected behavior. The diagnosis
component would receive reports of such misbehaviors and would identify the faults which
caused them. The correction component would correct the faults in the problem-solving
system.

In our previous work on the Distributed Vehicle Monitoring Testbed (DVMT) we have
developed such a diagnosis component that attempts to locate problem-solving control
failures and certain hardware failures. The aim of the Diagnosis Module (DM) is to
explain some observed inappropriate behavior of the DVMT in terms of “primitive faults”.
A primitive fault is either a hardware failure, such as a sensor or a communication channel

1. Introduction 2

failure, or, more often, an inappropriate setting of one of the numerous control parameters
(control parameters relate not to task characteristics but organizational design) in the
DVMT. The diagnosis is based on a causal model of the DVMT system’s possible behaviors.
The DM diagnoses the DVMT problems by constructing a causal pathway that links the
observed symptom with one or more primitive faults. The causal pathway is constructed
by determining how the system reached each state in the chain of events that lead up to
the symptom. The reconstruction of the DVMT behavior is done by examining the DVMT
data structures where the intermediate results are stored.

Since the initial emphasis was on first constructing the causal diagnostic model, the
system complexity was reduced by building it as a centralized diagnosis model. The
DM resides in a separate node (see Figure 2) and has access to all the DVMT nodes’
data structures. Thus a single diagnostic node is responsible for diagnosing all DVMT
nodes. Such centralized organization is simple but requires much communication since all
necessary data must be transmitted back and forth between the individual DVMT nodes
and the diagnostic node. A centralized organization is also subject to a catastrophic failure;
when the single diagnostic node fails the system is left with no diagnostic capabilities.

For these reasons we would like to explore an alternative system organization for the
diagnosis process, one which would be integrated naturally with the underlying distributed
problem-solving system. In a distributed diagnosis system each DVMT problem-solving
node (PSN) would have its own Diagnosis Module which would be responsible for diagnos-
ing only the behavior of that PSN. Any time the local diagnosis would require information
about another node’s behavior, for example in determining why a node did not receive
some expected message from another node, the Diagnosis Module would have to request
this information from the DM at the other PSN. Such requests would be done in the form
of sending a symptom to the other node and waiting for a reply that would consist of the
result of diagnosing that symptom. The system organization is shown in Figure 3.

Distributing the Centralized DM In this paper we focus on the changes that must
be made to the centralized DM to enable it to function in a distributed setting. These
changes fall into three major categories:

1. Communication policies among the individual Diagnosis Modules. Such policies de-
fine the organizational structure of the Distributed Diagnosis System.

2. Flexible Local Control. In order for the individual Diagnosis Modules to attend to
diagnosis requests from other nodes, as well as to assimilate information arriving
from these nodes, the local diagnosis control must be made more flexible. The DM
must be able to suspend its current processing and resume it at a later time. It must

1. Introduction 3
S
o~ /4

Figure 2: A Centralized Diagnosis Module

In a centralized approach to diagnosis, the Diagnosis Module occupies a single node. This
node is separate from the nodes of the underlying distributed problem-solving system.
The DM has access to all problem-solving nodes’ data structures and it is from these
data structures that the past problem-solving behavior is reconstructed. In a centralized
organization much communication is required to transmit the necessary data among the
individual DVMT nodes and the single DM. This type of organization is also subject to
catastrophic failures; when the single diagnostic node fails, the system looses its entire
diagnostic capabilities.

Diagnostic Monitor

o

DVMT Nodes

also be able to rate the different possible causal pathways and at any time pursue
the most promising one.

3. Resolving ambiguous situations based on combining evidence from multiple nodes.

Since it is impossible to predict fixed control and communication strategies among the dis-
tributed diagnostic nodes, the Distributed Diagnosis System must be highly parameterized
to allow for empirical adjustment of both local control and the internode communication
policies.

Before we begin, let us make clear the assumptions we make about the DVMT and
the Diagnosis Modules: A diagnostic node is assumed to work correctly, the model of
the DVMT system is assumed to be correct (if possibly incomplete), and the channels
transmitting the diagnostic messages are assumed to be error-free. As a result, we need
not worry about diagnosing the diagnostic system. However, in the future, we could apply
the same diagnostic techniques to the Diagnosis Module as we are applying to the DVMT

1. Introduction _ 4

O o O

Distributed DM

DVMT

O___[+0O

O

OO OO OO O

Sensors

Figure 3: Distributed Diagnostic Architecture
The system organization here assumes a Diagnosis Module in each of the DVMT problem-
solving system nodes. Each Diagnosis Module has access only to its own problem-solving
node’s data structures. When information is needed from other problem-solving nodes,
the Diagnosis Module must request this information via messages to appropriate diagnosis
modules.

system. This would then lead to a layered architecture. At some point, however, we would
still have to assume that the highest level diagnostic system is correct.

Reader’s Guide. Section 2 describes the distributed problem-solving system whose be-
havior we want to diagnose, the Distributed Vehicle Monitoring Testbed (DVMT). Section
2 also describes the existing centralized Diagnosis Module. Section 3 discusses the changes
necessary to the centralized DM to make it capable of functioning in a distributed envi-
ronment. Section 4 discusses issues related to making the local control in each node more
flexible. Section 5 discusses our approach for handling situations where reasoning with
uncertainty is required because no single fault hypothesis can be derived by the causal-
model based diagnosis. Section 6 concludes with a summary of this paper. Appendix A
gives an example of local processing in the distributed diagnosis system. Appendix B
outlines an example of how an ambiguous situation is resolved using the type of reasoning
describe in section 5. Appendix C outlines the simulation of a distributed run of a 4
node diagnosis scenario.

2. The DVMT and Diagnosis Systems 5

2. Background Information: The DVMT and Diagnosis Systems
2.1 The DVMT Problem-Solving System

The problem-solving system we model and diagnose is the Distributed Vehicle Mon-
itoring Testbed (DVMT). The DVMT is a distributed problem-solving system where a
number of processors cooperate to interpret acoustic signals. The goal of the system is to
construct a high—level map of vehicle movement in the sensed environment. The data is
sensed at discrete time locations at the signal level. The final answer is a pattern track
describing the path of a group of one or more vehicles, moving as a unit in some fixed
pattern formation. In order to derive the final pattern track from the individual signal
locations the data undergoes two types of transformation. The individual locations must
be aggregated to form longer tracks, and both the tracks and the locations must be driven
up several levels of abstraction, from the signal level, through the group and vehicle levels,
up to the pattern level.

Each processor in the DVMT system is based on an extended Hearsay-II architecture
where data-directed and goal-directed control are integrated [2]. The problem-solving cy-
cle at each processor consists of creating a hypothesis that represents the position of a
vehicle (See Figure 4). Hypotheses generate goals that represent predictions about how
the existing hypotheses can be extended by incorporating more of the sensed data. A
hypothesis together with a goal triggers the scheduling of a knowledge source (knowledge
source instantiation) whose execution will satisfy the goal by producing a more encom-
passing hypothesis (one which includes more information about the vehicle motion). This
process begins with the input data and repeats until a complete map of the environment
is generated or until there are no more knowledge source instantiations to invoke.

2.2 The Centralized Diagnosis Module

The system behavior in the DVMT is modeled as a series of events. Each event results
in the creation of an object (e.g., hypothesis, goal, or knowledge source instantiation) or the
modification of the attributes of some existing object. The states in the model represent
the results of such events in the DVMT system. Depending on what we want to model,
a state may represent simply whether some event has occurred or it may represent some
finer aspect of the event’s outcome.!

Based on this model of system behavior, we have developed the System Behavior
Model (SBM), which consists of three major components:

!There are two types of states in the model. Predicate states, which represent whether an event has
occurred or not, and relationship states, which represent the relationship among two objects in the DVMT.

2. The DVMT and Diagnosis Systems

QS At <<= - R

3

@hedul@

3

Knowledge

Source
Instances

" Goal) _Sub- i Goal Data Knowledge
Processor / goals Blackboard Blackboard Sources

——

|

Communi-
Goal — % . cation
KS Table Goals \ /Events Hardware
AN

T 'Blackboard.>

Monitor
Goal — :
Subgoal _W_J
Table Event — Data +————
e Goal -

Control <+ — — —

Figure 4: DVMT Node Architecture

2. The DVMT and Diagnosis Systems 7

HIERARCHICAL STATE TRANSITION DIAGRAMS which represent the pos-
sible system behaviors at various levels of detail. The causal relationships among
events in the system are represented as sequences of states in the model.

ABSTRACTED OBJECTS which represent individual objects (i.e., data structures)
or classes of objects in the DVMT system.

CONSTRAINT EXPRESSIONS among the different attributes of the abstracted ob-
jects which represent the relationships among the objects.

States are linked to other states through an AND/OR graph. If an event is influenced
independently by a number of preceding events, then the states representing these events
will be ORed. If the outcome of an event is influenced by a number of preceding events
acting together, then the states representing these events will be ANDed.

The states are linked to the abstracted objects which describe characteristics of objects
in the problem-solving system record; if objects exist that match these characteristics then
the desired event that is specified by the state has occurred. The objects are represented as
separate entities for efficiency reasons, to avoid the duplicate representation of similar sets
of object attributes since several states may need to refer to the same object. An abstracted
object may represent an individual object or it may represent a whole class of objects. An
abstracted object representing a class of objects is called an underconstrained object.

The state transition diagram representing the system behavior is organized into small
clusters for manageability (See Figure 5). These clusters are then organized into a hierar-
chy corresponding to increasingly detailed views of the system. Thus a high-level cluster
represents selected events as contiguous states while a more detailed cluster represents
other events which occur in between these states. Such a hierarchical representation al-
lows reasoning at different levels of abstraction. This is useful during diagnosis because it
allows the system to focus quickly on the problem by postponing a more detailed analysis
until it is necessary. A subset of the states, designated as primitive, represents reportable
faults during diagnosis.

Reasoning about DVMT behavior consists of instantiating the part of the SBM that
represents the system behavior relevant to the situation being analyzed. The aim of all the
different reasoning strategies is to explore the causes, or the effects, of an initial situation
provided as input to the DM.? This situation is represented by an instantiated state and
its abstracted object; that is, a state and object whose attributes have been evaluated. The
DM propagates these known values through the SBM, using the constraint expressions

2Currently this is done by hand. In a fully fault tolerant system the input would come from a detection
component.

2. The DVMT and Diagnosis Systems

sensor ok

dato enists

ANSWER DERIVATION CLUSTER

KSi KSsi

“.":‘;’ws GOAL CREATED SCHEDULED EHECUTED

NECESSARY HYP

KS! RRTING KS1 RATING
oK MAH

KS! SCHEDULING CLUSTER

Figure 5: The Model Clusters

2. The DVMT and Diagnosis Systems

processor boundary

MESSAGE

MESSAGE MESSAGE MESSAGE
ERISTS SENT RECEIVED ACCEPTED
#2
Processor #1 CHANngL-ox Frocessor £2

COMMUNICATION CLUSTER

£OMM KSi
SCHEDULED

Comm Ks)
ERECUTED

e

COMM XS
ENISTS COMMKSI

RATED
(o) (e
CoOMM KSI coMM KSI

RATING RATING
MAN

COMMUNICATION KSI SCHEDUL ING CLUSTER

KS!I RATING

‘b AND

GOAL
compP.

KS
A
GOOONESS (paen.

=

HYP RATING

SENSEOD UALUE
AATING

SENSGR
WEIGHT

ORTR
SIGNAL

KS1 RATING DERIVATION CLUSTER

Figure 5: The Model Clusters Representing the DVMT Behavior.
This figure shows the diagrams of the five model clusters used in the diagnosis model.
At the highest level are the Answer Derivation Cluster and the Communication Cluster.
The Ksi Scheduling and Communication Ksi Scheduling Clusters represent the events that
take place in between the states at the higher level models. The Ksi Rating Derivation
Cluster represents the additional knowledge about value relationships among the rating
components of the various objects. The circles represent the states, with the name of the
state above or below them. The states with a P indicate a primitive state. The state
with S in the communication cluster indicates a state where the intermediate symptom
is a primitive state so far as that pode is concerned, and it needs to communicate that
intermediate symptom to the connecting node. The states with C indicate states where

Comparative Reasoning is used.

2. The DVMT and Diagnosis Systems 10

among the abstracted objects, and thereby instantiates a sequence of states causally
related to the initial situation. We call such a sequence a causal pathway.

When the initial situation represents some desirable event in the DVMT that never
occurred, we call it a symptom. A symptom represents an object that was never cre-
ated by the DVMT, usually a hypothesis.®> Upon receiving a symptom, the DM traces
back through the SBM in order to find out at which point the DVMT stopped working
“correctly”. This is done by comparing the behavior necessary for the desired situation
to occur, as represented by the instantiated model, with what actually did occur in the
problem-solving system, as determined from the DVMT data structures. The aim is to
construct a path from the symptom state to some false primitive states which caused it
and explain, in terms of these primitive causes, why the DVMT system did not behave as
expected. This type of diagnosis consists of backward chaining through the SBM. Since it
constructs a causal pathway linking the initial symptom to the faults that caused it, we
call this type of reasoning Backward Causal Tracing (BCT).

The BCT search stops when all pathways relevant to the situation being analyzed
have been explored. For example, in order to determine why some hypothesis was not
constructed, the DM must examine all possible ways in which it could have been generated:
via several pathways within a node, from locally available data, or from data received from
other nodes. The analysis is done exhaustively by a depth-first search.

In addition to symptoms, initial situations may represent arbitrary events in the DVMT
whose effect on the DVMT behavior needs to be simulated. This is the case, for example,
when the DM needs to see what effects some identified fault, such as a faulty parameter
setting or a failed hardware component, has on the DVMT system. This type of simulation
thus consists of forward chaining through the SBM. Here the DM constructs a causal
pathway which links the initial situation to all situations caused by it. We call this type
of reasoning Forward Causal Tracing (FCT). FCT uses underconstrained objects to
reason about the class of problems caused by the fault, rather than just the individual
cases.

Both BCT and FCT are more complex than simple backward and forward chaining
because the model is hierarchical and the interpreter must decide when to change the level
of resolution, for instance, when to reason at different levels of abstraction. It must also
deal with reasoning about classes of situations. We have also found the need for a new
type of diagnostic reasoning that we call Comparative Reasoning. It deals with cases
where no absolute standard for correct behavior is available. In such cases the diagnosis
system selects its own "correct behavior criteria” from objects within the problem-solving
system which did achieve some desired situation.

3 A symptom could also represent a class of objects, such as all hypotheses at some blackboard level. This
would be done using underconstrained objects.

3. Distributing a Centralized Diagnosis Module 11

3. Distributing a Centralized Diagnosis Module

3.1 Issues in Distributed Problem-Solving
When dealing with distributed problem-solving we must address the following points:

1. How to divide the problem into tasks which can then be solved by the individual
agents.

2. How to allocate these tasks among the individual agents.
3. How to control the interaction among these agents.

4. And, finally, how to integrate the results of the agents into an overall solution to the
original problem.

Dividing and Allocating Diagnostic Tasks. The study of a complex system often en-
tails dividing it into subsystems that can be guided separately without constant attention
to their interactions. In the case of diagnosing a distributed problem solving system like the
DVMT this division naturally falls on the individual problem-solving nodes’ boundaries.
Each problem solving node (PSN), thus, has an associated diagnosis module that diagnoses
only its behavior and that can directly access only its data structures. Whenever infor-
mation is necessary from another DVMT node, it must be obtained by an explicit request
to the Diagnosis Module (DM) of that node. For example, if DM in PSN 1 is diagnosing
a missing PT (pattern-track) hypothesis symptom and reaches a MESSAGE-RECEIVED
state which is false, it must send this intermediate symptom to the PSN that should have
sent the desired message, say PSN 2. The DM at PSN 2 will then perform the necessary
diagnosis and send the result back to PSN 1. PSN 1 can then make the final conclusions
about the symptom, that is, whether faults were identified that account for it or whether
it is unexplained.

Another form of task division occurs as a result of the causal model, where, due to the
tree like structure of the model, there may be a number of alternative states, or a conjunc-
tion of states, that account for a given symptom. Thus, the initial problem is broken up
into a number of subproblems. Frequently, it turns out that some of these subproblems are
related, and that some of them have already been worked upon in a different context. It
is important to recognize such situations for several reasons. First of all, it may save a lot
of effort, since the diagnostic module can simply merge the current state with a previously
investigated state if both represent the same situation. In such cases, the merged state
inherits the causal pathway and pathvalues already traced out for the previously inves-
tigated state. Secondly, related subproblems might indicate interactions amongst several

3. Distributing a Centralized Diagnosis Module 12

causal pathways. When interactions can be anticipated, they can guide the prioritizing of
the various subproblems.

Another issue in the division and allocation of tasks is that of redundancy. It is im-
portant to recognize both when to avoid it, and when to exploit it. One situation where it
might be useful is when the same conclusion is arrived at from two different causal path-
ways, but both paths have low confidences. In such a situation this conclusion will get its
confidence level boosted and the diagnosis will probably finish sooner.

On the other hand, redundancy would have a negative impact if pathways are needlessly
being traced. For instance, when a particular state in a particular pathway has already been
investigated in another context and does not need reaffirmation, it would be useful simply
to merge it with that former one and let it inherit the previously calculated pathvalues,
rather than tracing out the primitive fault along that pathway once again.

Coordination Among the Diagnosis Modules. The internode communication pro-
tocols control who talks with whom, how often, what type of messages they transmit, and
how strongly each is affected by the other’s messages. What this means in the distributed
diagnosis context is which nodes send symptoms for diagnosis to which other nodes and
how local processing is impacted by incoming symptoms or diagnostic results. These issues

are similar to communication of partial results during the problem-solving process among
the DVMT nodes.

Integrating the Results from Individual Nodes into an Overall Diagnosis. This
is the problem of coherence in a distributed system. Given individual pieces of diagnosis
from the distributed Diagnosis Modules, how do we combine them into an overall picture
of the state of the DVMT’s problem-solving? For instance, given an ambiguous situation,
evidence or hypotheses from various nodes can collectively be weighed and used to make
an overall diagnosis. Section 5 explains how such ambiguous situations are dealt with.

3.2 Architecture of the Distributed DM

The architecture of a distributed DM is shown in Figure 6. Each Distributed Diagnostic
Module consists of the following components:

COMMUNICATION MODULES. These are the reception and transmission modules
that are responsible for receiving and sending messages from/to other nodes in the
form of symptoms to be diagnosed or diagnostic results to be integrated into the
locally instantiated model. A local scheduling mechanism in each of these processors
rates the pending messages and decides which to execute next.

3. Distributing a Centralized Diagnosis Module

Intermediate

GLOBAL SCHEDULER

13

Requests To
Nodes

T L
l]
RECEPTION LOCAL TRANSHISSION
PROCESSING
MODULE ___4D MODULE ____D MODULE
fDlagnTs{lc
ving)
[: .
DIAGNOSTIC SYSTEM INSTANTIATED
INTEREST BEHAVIOR PORTION OF
AREA MODEL MODEL

DVMT INTERFACE

DVHT
NODE

Figure 6: Architecture of A Distributed Diagnosis Module

3. Distributing a Centralized Diagnosis Module 14

LOCAL DIAGNOSTIC MODULE. This is the diagnostic inference mechanism that
instantiates the causal model and constructs the causal pathways for the local symp-
tom diagnosis. A local scheduling mechanism assigns a numeric rating to each par-
tially expanded pathway.

GLOBAL SCHEDULER. The global scheduler’s function is to decide which of the
three possible primitive tasks (sending, receiving, or local diagnosis) will occur next.
Depending on the number of independent processors one, two , or three tasks may
be executed.

DVMT INTERFACE. This component controls all access to the DVMT data struc-
tures: the blackboards and the scheduling queues. In some cases direct probes into
another node’s data structures may be allowed (in addition to or instead of requests
for diagnosis). In such cases these probes will go to the DVMT interface.

DATA STRUCTURES:

e DIAGNOSTIC INTEREST AREA. This data structure contains the informa-
tion that enables the module to recognize those areas where it has priority in
diagnosis. These areas are specified in terms of data type, location, and time.

e SYSTEM BEHAVIOR MODEL. This is the data structure that contains the
uninstantiated causal model.

o INSTANTIATED PORTION OF MODEL. This data structure contains the
instantiated version of the causal model that is valid for the current situation.

4. Local Control of Diagnosis 15

4. Making Local Control of Diagnosis More Flexible

Why Make Flexible Local Control? The major impact of distribution on local diag-
nosis is the need to make the diagnosis more efficient and its control more flexible. This
flexibility is necessary so that the node can improve integrating its own local diagnosis with
information coming from other diagnostic nodes. This information is either in the form
of requests for diagnosis or in the form of identified faults. Currently, the centralized DM
does an exhaustive depth-first search of the instantiated model. In a distributed setting
this will no longer be appropriate since symptoms and identified faults from other nodes
will have to be attended to and integrated into local processing.

There are various reasons that call for cooperation among nodes. First of all, the model
itself might extend across node boundaries, for instance, in the case of the communication
cluster which models the communication of messages among two DVMT nodes. In that
case, once a node is tracing the cause of a symptom using Backward Causal Trace it will
reach a point where the model continues across the node boundaries to the connecting
node with whom the communication is supposed to have taken place. Thus the node will
find it convenient to transfer the information over to that other node, let the other node
continue with the BCT, and wait for the reply.

Secondly, a node might need to acquire some missing information from another node
before it can continue with its diagnosis. For instance, consider again the case where the
model continues across node boundaries. If the diagnostic node #1 had only this symptom
to process, whereas diagnostic node #2 was already busy, it would be better (for load
balancing purposes) for node #1 simply to request the raw data regarding the performance
of the DVMT node #2 from diagnostic node #2, and then to continue diagnosing on its
own.

Finally, a node will need to communicate with other nodes to resolve ambiguous sit-
uations. It will need to gather evidence from other nodes so as to arrive at a plausible
explanation despite the ambiguity. (As outlined in Section 5). The Diagnosis Module will
therefore have to be able to suspend a local task, to integrate new information into its
current processing, and to make decisions as to which task to process next.

By executing the most highly rated task on a queue, the diagnostic reasoning will
change from a depth-first search to a best-first search. In order to implement this flexible
scheduling we must develop criteria for rating the primitive tasks. This amounts to rating
each partially expanded causal pathway. Hence, it is important to determine the factors
that influence the ratings of these tasks.

Factors Affecting the Rating of Causal Pathways. There are a number of factors
affecting the promise of a causal pathway. Below is a list of some of these factors.

4. Local Control of Diagnosis 16

1. A fixed rating associated with a specific state. This would allow to spec-
ify preferences for examining certain states before others. For examnple, given the
three back neighbors of the PT state: shorter PT segments, VT, and MESSAGE-
ACCEPTED states, we could prefer to examine them in different orders. This would
allow us, for example, to perform the diagnosis at one level of the model hierarchy
before going on to a lower level.

2. Diagnostic interest areas control specific areas where diagnosis should have pri-
ority. These areas are specified in terms of data type, location, and time.

3. In addition to this generalized interest area, a more specific factor can influence
the rating of some causal pathway: the initial symptom rating. All states that
descend from this initial symptom state are influenced by its rating since it indicates
the importance of investigating this pathway relative to others. If, for instance, it is
found that this initial symptom is explained while investigating some other symptom,
then obviously it is no longer necessary to continue tracing out its back neighbors.
This is made possible by reducing the initial symptom rating so that states that
lie along this causal pathway have their ratings decreased correspondingly. This is
analogous to the subgoaling activity in the DVMT |[2].

4. In some cases where states are related by an AND, false states should be pursued
with a higher priority, since the cause is most likely along the false state path.

5. Causal pathway reinforcement resulting from merged states. If two or more
causal pathways unite at some state that state should get a higher priority because
that means that two symptoms require diagnosis along the same path.

6. The rating of symptoms transmitted among diaghostic nodes is influenced by the
following factors.

(a) the reception rating which is a function of
i. rating at sending node
ii. sending node authority factor
iii. degree of similarity to local processing

(b) the transmission rating which is a function of

i. local rating

ii. the number of other symptoms being sent out (the idea here is to give more
importance to a given symptom if there are only few being sent — since this
would indicate that there is less ”confusion” about the possible diagnosis).

4. Local Control of Diagnosis 17

iii. receiving node factor

7. A symptom may represent either a specific situation which is being diagnosed or a
number of situations. In the latter case we would represent this set of situations by
a underconstrained object. Such symptoms, called abstracted symptoms, should
have a rating that reflects the number and importance of each of their constituent
individual symptoms.

8. Length of the partially constructed causal pathway. Here we see the horizon
effect, also exemplified by the familiar graduate school dilemma: “If I've spent this
much time on this, shouldn’t I spend a little more and get the degree?” In this case
the dilemma is whether the system should continue along this path and find the fault
or should it abandon it.

Appendix C covers an example which uses the hest-first strategy and some of the
factors listed above that are valid for the situation. The example simulates the distributed
diagnosis of a four node scenario that was actually run and solved by the centralized
diagnostic monitor [10]. The example shows several ways in which distributed problem
solving and flexible local control help in exploiting the parallelism in hardware, and yet at
the same time, save in the amount of communication among nodes.

First of all, it helps to prioritize the causal pathways to be expanded next. In this
example, the main factor is the concept of spatial " neighborness”. The greater the prox-
imity or overlap of a node to another, the more of a spatial neighbor it is to that node.
Since pattern tracks normally extend over the node boundaries, it is more likely that a
node receives a message from a closer node (one that is nearer or overlaps more) about a
partial pt or vt hypothesis than from other nodes further away. Hence, it is better to start
out examining those nodes that are nearer first, since it is most likely that it is from those
nodes that messages might indeed have been received.

Secondly, on receiving an intermediate symptom to investigate, the node may sense
that it would be advantageous to suspend its own local diagnosis and look into the other
node’s intermediate symptom first in the hope of finding out a fault that explains its other
pending intermediate states or symptoms in its local queue. This happens in the example
when a node realizes that the intermediate symptom that it receives from another node
may be a related subproblem and, further, that it can be diagnosed with little effort. (In
the example this occurs, for instance, in cycle #11 in the local diagnosis by node #1.)

Thirdly, the diagnosis by a node frequently explains not only the current symptom being
investigated, but also other pending intermediate symptoms that other nodes are asking
it to investigate as well. It thus expedites the overall diagnosis greatly in such situations.
In the exaraple this occurs frequently, when there are numerous MESSAGE-SENT states

4. Local Control of Diagnosis 18

concerning hypotheses of various types of pattern and vehicle tracks waiting to be traced
out. On expanding any one if it is found out. that the node lacks communication knowledge
sources then on simulating the effects of such a fault (using FCT), it is found out that any
MESSAGE-SENT state (represented by an underconstrained state in the FCT) is false
as well. Thus the rest of the MESSAGE-SENT states are explained as false. It is not
necessary to individually investigate all of those states anymore, and the replies to the
respective nodes can be sent at this stage.

5. Resolving Ambiguous Situations 19

5. Resolving Ambiguous Situations

Ambiguous situations occur when an individual Diagnosis Module cannot decide on
a fault because the values of some instantiated states cannot be determined simply by
examining the DVMT data structures. Such situations are typical in the case of a suspected
fault of a piece of hardware (e.g., sensor, communication channel) which cannot be probed
directly to determine whether it is functioning.

For example, if there are no input hypotheses in a DVMT node, or if all hypotheses have
very low beliefs, then a sensor fault is suspected. There are three possible combinations of
events that can cause this situation:

¢ Sensor failed and there are vehicles in the environment.
e Sensor failed and there are no vehicles.

¢ Sensor did not fail and there are no vehicles.

Sensor failure can be further classified due to its type:

Full vs. partial sensor failure. In case of partial failure, the sensor’s functionality can be
impaired in a portion of its geographical range, or in a portion of its signal range
(where it fails to detect or distorts only some types of signals). A partial failure can
also be transient (a failure occurring only at a certain time).

Environmental irregularities. This occurs when a subset of the sensors is affected by
features of the environment, for example a mountain that echoes some signals. This
is a very difficult case to detect since the affected sensors do function correctly and
yet disagree with their neighbors: the neighbors do not lie in the same position
relative to the irregularity to be affected.

There are two ways to approach the ambiguous fault problem:

* by comparing the symptoms against some ezternal criteria. The simplest external cri-
terion is the correct result of the problem solving process. In general, however, the
correct result is not available to the system, and we have to resort to less exact
methods. One such method is a model of an ideal sensor with which a suspected
sensor is compared to decide whether it is faulty or not.

* by relying on internal consistency and exploiting redundancy within the DVMT system.
Thus, if the DM cannot determine based on local information whether there are any
vehicles in the environment, it can examine the hypotheses at all nodes which had
access to data. If none of them have any hypotheses, then it can assume that there
are no vehicles.

5. Resolving Ambiguous Situations 20

We will concentrate on the means of exploiting redundancy in the system to disam-
biguate the fault. Redundancy can be both local (if more than one sensor receiving same
or similar data report to the same node) and global (if nodes work on similar tasks). We
call nodes working on similar problem solving tasks behavioral neighbors. These are
the nodes which work with overlapping and/or contiguous data. Thus, some portions of
their domains of interest (DOIs) either overlap or are adjacent.

Redundant information can be used to distinguish between the case where there are
vehicles and the case where there are no vehicles in the observed part of the environment.
If there are no vehicles, then there is still a question whether the sensor is faulty or
not. However, the combination no vehicles and a faulty sensor is in general much less
likely then the case of no vehicles and a good sensor; also, these two situations cannot
be disambiguated by exploiting redundancy in the system, which is our primary interest.
Thus, we will consider here only the mechanisms for disambiguating vehicles /no vehicles
situation.

A node which detects the potential fault (we call it the host) starts off the disambigua-
tion process by defining the two diagnostic hypotheses (one corresponding to no vehicles
and the other corresponding to existing vehicles), and proceeds by assigning some mea-
sure of belief to each of them. The formalism we use for reasoning with uncertainty is
Dempster-Shafer Theory. The theory is introduced in the next subsection, while Subsec-
tion 5.2 presents the formulation of the ambiguous diagnostic problem. In some cases,
there will be enough information to disambiguate the situation locally. For example, if
the host has no input hypotheses, and it has multiple sensors covering its DOI, then the
host can be quite confident that there are no vehicles. More often than not, however, local
information would not be decisive enough to make the “case closed”, and communication
will be necessary. Then, the host must make some communication decisions. Communi-
cation is examined in detail in Subsection 5.4. When the information from other nodes
is received, the host must combine it with local information in a new attempt to disam-
biguate the situation. The mechanism for combining the information from different sources
is described in Subsection 5.3.

5.1 Introduction to Dempster—Shafer Theory

Dempster-Shafer (DS) Theory provides a uniform framework for assigning and combin-
ing beliefs in a system which must deal with uncertain information. DS Theory generalizes
Bayesian Probability Theory. Both theories model the world as a set of mutually exclu-
sive and exhaustive propositions. However, in Bayesian Theory there is no distinction
between conflicting evidence and the lack of evidence (in both cases, the probability of a
proposition would be the same as the probability of its negation). DS Theory solves this

5. Resolving Ambiguous Situations 21

problem by introducing the concept of ignorance (lack of evidence). Its basic terminology
and mechanisms are introduced below.

In order to emphasize the mutual exclusiveness and exhaustiveness of propositions of
interest, it is convenient to think of these propositions as a finite set of answers to some
question, where only one answer is the correct one. This set is denoted by © and called a
frame of discernment. Each subset P C © can be interpreted as a proposition which states
“The correct answer is in P”.

A source of evidence distributes beliefs among the subsets of © by defining 2 mass
function. It is a function

m:2° - (0,1]

so that

and

Y m(A) =1.

ACe
If complete information is available, then masses are assigned to singletons in the frame,
just like probabilities in Bayesian theory. However, an evidential source can also represent a
lack of evidence by attributing masses to multi-element subsets in the frame of discernment.
The price paid for this generality is a greater computational complexity.

If multiple sources of evidence supply evidence about the propositions in the same frame
of discernment, then the combined mass function can be obtained using Dempster’s rule.
For two sources of evidence with mass functions m; and m, respectively, Dempster’s rule
defines the combined mass function to be

L ans=c M1(A) - my(B)
B C'] % (1)

m(C) = m; @ mg =

where
K = x ml(A) mz(B)
AnB=0

K is a measure of conflict between the two sources. If K # O then either an evidence
source is in error, or the representation is incorrect (e.g., maybe a proposition is missing
from ©). ‘

Belief in a proposition A C O is the extent to which the evidence tends to support the
proposition: ‘

bel(A) = 3" m(X). (2)

XCA

5. Resolving Ambiguous Situations 22

bel igr dbt.

| (D | B
0 1

Figure 7: The Belief Intervals.

Dubiety of a proposition A C © is the extent to which the evidence tends to refute
the proposition:
dbt(A) - }_: m(X). (3)
XCA
Plausibility of a proposition A ¢ @ is the extent to which the evidence fails to refute
the proposition:

pls(A) =1 - dbt(A). (4)

Ignorance of a proposition A C © is the extent to which the evidence‘ about the
proposition is lacking:
igr(A) = pls(A) - bel(A). (5)

The relation between belief, plausibility, dubiety and ignorance is depicted in Figure 7.
Note that 0 < bel(A) < pls(A) < 1.

Once the masses have been assigned to the propositions in the frame of discernment, it
must be decided which proposition is most likely true. We introduced a decision measure,
credibility, which is a function of belief, plausibility and ignorance. Credibility of a
proposition A C O is defined as:

erd(A) - b-‘-’-’v(-’-‘lgl’fs-(f‘) (1 - igr(A)). (6)
Credibility of a proposition is high when the belief interval is narrow (low ignorance) and
its middle is close to 1. Thus, if enough information has been gathered about a proposition,
and the information tends to support it, then this proposition is credible.
The following subsection describes the actions that a DM must take when it detects an
ambiguous diagnostic problem.

5.2 Formulating the Ambiguous Diagnostic Problem

As noted earlier, a DM detects an ambiguous fault situation when it finds either that
there are no input hypotheses in some part of its DOI or that all input hypotheses have
very low belief. We will call this area the diagnostic area (DA).

5. Resolving Ambiguous Situations 23

After detecting the problem, the host forms a diagnostic frame of discernment, © :
© = {h,h}

where
h = There are vehiclesin DA

and _ _
h = There are no vehiclesin DA.

If the host has no data in the DA then true indicates a sensor fault (missing data)
while true % indicates no fault. The fault is total if the DA covers the whole sensor range,
and partial if the DA covers a portion of the sensor range. On the other hand, if the host
suspects a fault because all local data have low belief, then true k indicates a sensor fault
(ghost data).

After defining O, the host assigns masses to its propositions based on local information.
This distribution is based on a priori likelihoods of data being present, on data beliefs if
there are data, and on the reliability of the sensors covering the DA. This information can
favor one of the propositions, for example in the case of a reliable sensor or multiple sensors
providing the same data. In the case of a single sensor, however, the information would
not be decisive enough, so the host will need to find other nodes which have evidence to
support or refute these propositions. When the host decides which nodes to communicate
with (how to make this decision is the subject of the Subsection 5.4) it asks each node to
supply the best partial solution correlating with data in the DA. Three classes of situations
can arise:

Nodes send no data and the host has no data in the DA. The resulting mass distribution
would make the host almost certain that k is the right answer, and the diagnostic
process can stop.

One or more nodes send a very credible partial solution. This would make the host
almost certain that h is the right answer, and the diagnostic process can stop also.

Only a low belief partial solution is received, or no data are received but the host has
the low belief data. In this case, more information is needed before a decision about
the fault can be made, and more communication with neighbors is necessary.

The next subsection describes an extension of DS Theory and its use in combining
received information.

5. Resolving Ambiguous Situations 24

5.3 Combining Fault Information

Once the information from neighbors is received, it should be combined with local
information. The weight given to evidence from a node depends on node’s reliability and
the relation between its DOI and the host’s DA. To account for this weight, we consider
the evidence from another node to be about propositions in the evidence space, E, while
the host’s fault frame, © is the hypothests space [2¢]. Thus, the mass attributed to a subset
Q C © as a result of evidence €; from node i has two components: conditional probability
of the hypotheses in @ given the evidence e;, p(Qle;), and the probability of the evidence,
ple:):

mi(Q) = Z: p(Qles) - ples). (7)

The conditional probability defines the strength with which the evidence implies hy-
potheses in Q. In the fault domain, this probability is determined by two factors: the
relation between node’s DOI and the DA and reliability of the node. For a perfectly
reliable node ¢ whose DOI completely overlaps the DA, p(Qle:) = 1.

Masses m;(Q) for different nodes ¢ cannot be combined directly using Dempster’s rule,
since this would result in overweighing the prior probabilities p(Q), as shown in [YEN86).
Instead, a mass m;(Q) must be converted into a certainty value, ¢;(Q), which discounts
the priors:

m,-(Q)
(@) = . "ha) (8)

2.4ce 3(A)

Certainty values can be combined using Dempster’s rule (equation 1 in Section 5.1)
which can be converted back to a mass function using the equation:

m(Q) = = C(Q) -p(Q) (9)

If the best hypothesis in © is considered to be the one with the greatest credibility
value, then the next step in uncertainty calculation would be to calculate credibility from
belief, plausibility and ignorance for each singleton subset @, using the equations 2,4,5
and 6 defined in Section 5.1. Appendix B describes an example of this calculation.

In this subsection we have described the means to incorporate received information into
the local diagnosis, but we have not discussed the methods for obtaining the diagnostic
information from other nodes. The next section discusses the issues involved in making
communication decisions, and our approach to communication of diagnostic information.

5. Resolving Ambiguous Situations 25

5.4 Communication of Diagnostic Information

In the distributed diagnosis context, several communication decisions have to be made.
The issues are similar to communication of partial results during the problem solving
process among the DVMT nodes:

Policy: Which nodes communicate? We choose selective rather than broadcast communi-
cation, since only a small subset of nodes can help with the diagnosis of the host’s
symptom, namely, some or all of its behavioral neighbors.

Style: Should communication be incremental or synchronous? In incremental commu-
nication, the host asks the best single node for relevant information, and after the
information is received decides whether to make another round of communication
or not. In synchronous communication the host sends the request for information
to every node in the list of relevant nodes. Incremental communication has a lower
processing cost if there is only one round of communication, since there is less in-
formation to process. However, if additional communication is required, the amount
of information can become as high as for the synchronous case, with an additional
loss of timeliness caused by the delay between communication rounds. Thus, the
incremental style would be appropriate if there is one node with a distinctly high
likelihood for providing the necessary information, making it likely that none or little
additional communication would be required. If this is not the case, then synchronous
communication is preferred.

Content: What types of messages are transmitted? There are three categories of infor-
mation, classified according to the function they perform:

1. requests for diagnosis
2. reply to a previous diagnostic request

3. reception of an unsolicited diagnostic information, i.e., an identified fault at
another node.

Amount: Does each node communicate all of its locally generated symptoms/faults or
only selected categories? For example, some parts of node’s DOI may be more im-
portant than others (e.g., if they contain critical installations). The factors affecting
the importance of a symptom/fault will be combined into a symptom/fault rating
and only those above some threshold will be transmitted.

Reliability: Some nodes may be more reliable than others. A DM prefers to diagnose a
reliable symptom or to integrate newly arrived diagnosis from a reliable node. Also,

5. Resolving Ambiguous Situations 26

a message coming from a reliable node is given more weight than one coming from a
less reliable one, as described in the previous subsection.

Communication policy and style are decided based on the relevance of behavioral neigh-
bors to the potential fault and on the cost of communication. The relevance of a neigh-
boring node is based on the similarity between its problem solving task and the problem
solving task of the host. A neighbor would be most relevant if it had a DOI which is exactly
the same as the DA, since in that case the node would be most likely to provide data that
could determine whether the fault has occurred. A node is also potentially relevant to the
fault problem if its DOI does not overlap but borders the DA. Thus, the following are the
main factors that determine relevance:

Overlap If a node has an area overlapping the DA, its relevance is proportional to the
size of the overlapping area.

Adjacency If a node’s DOI has a common boundary with the DA, its relevance is pro-
portional to the length of the common boundary.

The relevance of a set of nodes is obtained by combining the overlap and adjacency
contributions of each node. Multiple nodes covering the same part of the DA contribute
more than a single node covering that part of the DA. If multiple nodes cover different
parts of the DA, they contribute more then il they cover the same part of the DA.

Unfortunately, the task of finding the best nodes to communicate with cannot be ef-
fectively represented in DS Theory since the propositions of interest are not mutually
exclusive. Namely, if all actions in some set of actions A are equally good, then all propo-
sitions of the form

p = The best actions arein B

are true, where B C A.

Since the Utility Theory [1] is concerned with the problem of deciding what is the best
action to take, we represent the problem of finding the best nodes to communicate with
within a utility model.

Our utility model must be able to express various tradeoffs involved in communication.
The utility of communication is a trade-off between timeliness of information and the cost
to process it; this trade-off is different for incremental and synchronous communication. In
Utility Theory, it is most common to represent various actions and correspording outcomes
by a decision tree. The ezpected utility of an action a, Eu(a), is the sum of the products
of probability and utility for each of its outcomes, o;:

Eu(a) =) _ plo:) - u(o;).

5. Resolving Ambiguous Situations 27

The best course of action is the one which yields the greatest expected utility.

Our goal is to find the best sequence of actions, where each action is communication
with some subset of relevant nodes. Possible outcomes fall in one of the two groups: either
no more communication is required after an action (the host has acquired the necessary
information about the fault), or some additional actions should be taken. The probabili-
ties of various outcomes can be estimated from the relevance of other nodes to the fault
problem.

The following example describes a decision tree and corresponding decisions for three
relevant nodes, A, B and C.

5.4.1 An Example of a Communication Decision Tree

A portion of the decision tree for this problem is shown in 8.

There are two types of nodes in the tree: choice nodes (denoted by diamonds) and
chance nodes (denoted by circles). A choice node has as many branches as there are
possible actions at that stage. Each branch of a choice node is labeled by a corresponding
action. For example, following the communication with node A, two actions are possible:
sending to node B alone (the branch labeled by B) and sending to nodes B and C together
(the branch labeled by B&C).

Each chance node has exactly two branches, one labeled M (more communication is
necessary) and the other labeled M (no more communication is necessary). The parenthe-
sized expression at a leaf of the tree represents the utility of the corresponding outcome,
while the expression below an outcome represents the probability of the outcome. A
combined probability, such as p(A&B) is the probability of the event of getting the de-
sired information from communicating with both nodes (A and B in this case), given the
probability of getting the information from each node separately, p(A) and p(B). This
probability depends on the relation between the DOIs of the two nodes. If the two DOIs
do not overlap, for example, p(A& B) - p(A) + p(B). If DOIs overlap, we can treat these
two events as independent, in which case p(A&B) = p(4) + p(B) - p(A) - p(B).

The utility is defined to be the reciprocal of the total cost. The cost of communication
has three components: the cost to send the message, the cost to process received informa-
tion and the cost of delay while waiting for the reply. In the figure, ¢; denotes the cost
of communication with ¢ nodes at once, and subsumes the cost to send the message and
the cost to process received information. Cost d represents the cost of one communication
cycle delay.

The action that has the best utility is obtained by calculating the utility of each node
(starting from the leaves) and backing up these values through the tree. Calculation of
utility for each type of node is described below.

5. Resolving Ambiguous Situations 28

H —- MORE COMMUNICATION NEEDED
Cj— COST OF COMMUNICATION WITH i NODES
d — COST OF ONE COMMUNICATION CYCLE DELRY

c * e
P(R&B)(zc * 2d
B ... (1
p(ﬂ) c#d
CHOICE _ 1- p(H&B) 3c +3d
1 p(R)
REB n (}
B&C
p(H&B) c+d] ¢ e, +2d
!
] n

| -p(ﬂ&B)[“d]
I nanac('
c*d

Figure 8: A Portion Of The Decision Tree For Three Relevant

Nodes, A, B and C.
Each branch of a choice node is labeled by a corresponding action. Label M on a chance

node indicates that more communication is necessary and label M indicates that no more
communication is necessary. The parenthesized expression at a leaf of the tree represents
the utility of the corresponding outcome, while the expression below an outcome represents
the probability of the outcome.

The utility of a chance node is the product of probabilities and utilities of the two outcomes
(M and M).

The utility of a choice node is the maximum of the utilities of its branches. This value
is backed up as the utility of the corresponding outcome of the higher level chance
node. Thus, for example, if action B&C had higher utility then B, then the utility

: 1
of the M outcome of the action A would be feat2d"

Even for a relatively small number of behavioral neighbors, the size of the decision tree
is considerable and complete evaluation of all nodes is a costly procedure. However, most
of the paths are known not to involve the best action, and they can be cut off without

5. Resolving Ambiguous Situations 29

changing the result of the evaluation. Probabilities of nodes can always be ordered, e.g.,
p(A) > p(B) > p(C). In this case, sending to A first is guaranteed to be better then
sending to any other single node first, and the two branches corresponding to sending to B
and C first can be eliminated. Similarly, sending to A& B first is guaranteed to be better
then sending to any other pair of nodes. In general, instead of all subsets of relevant nodes,
only one subset of each size needs to be considered. Thus, the tree in Figure 8 has all the
nodes that are needed to determine the best action.

When p(A), p(B) and p(C) are all relatively low, then it is best to communicate with
all three nodes at once. As P(A) becomes higher with other two probabilities unchanged,
sending to node A followed by sending to B and C together becomes the best action
sequence. On the other hand, if both p(A) and p(B) are increased relative to p(C), then
the best action sequence is sending to A, followed by sending to B, followed by sending to
C.

In this section, we have dealt with a situation where a DM does not have enough
information to decide whether a fault has occurred, and needs to seek help from other
nodes. We have formulated this ambiguous fault problem within the extended Dempster—
Shafer framework, and shown how a DM can integrate the information about the fault
received from other nodes to achieve more credibility in a proposed explanation of the
diagnostic situation. We have also developed a utility model for deciding which nodes to
communicate with in this situation. The utility of a communication action is a function
of the expected value of received information (relevance of other nodes to the diagnostic
problem) and the cost of communication. The cost of communication is different for
synchronous and incremental communication.

6. Conclusion 30

6. <Conclusion

We have presented a design for a Distributed Diagnosis System and have explored some
of the implications of distributing a diagnosis system. Some of the issues we had to deal
with in the design result from distribution, and are not relevant to the centralized system.
For instance, communication policies among nodes falls into this category. However, an
interesting aspect of this exploration is that many of the changes that we have made to the
centralized diagnosis module in order to distribute it are, in fact, modifications that are
also essential for the centralized system. For instance, the need for flexible control (that
is, an agenda based view of diagnosis) introduced in the distributed system in order to
effectively deal with non--local requests for diagnosis can be used in a centralized system to
do diagnosis more efficiently. Likewise, the extension to the diagnosis system for handling
locally ambiguous situations through evidential reasoning which became apparent when
we thought of a distributed version is also appropriate for a centralized version. The
study so far involves the system design and its hand simulation. The results from hand
simulation are encouraging. They show several ways in which distributed problem solving
and flexible local control help in exploiting the parallelism in hardware, and yet, at the
same time, save in the amount of communication among nodes. However, it is very difficult
to do hand simulation of any problem of real interest. We are currently implementing the
distributed diagnosis system so that we can perform empirical evaluation of our ideas. In
these empirical experiments, we expect to look at issues of global coherence, that is, do
the diagnosis modules really work together or is there a need for high level (meta-level)
control in order to coordinate them. We see this as one of the key issues that we need to
further explore.

We are also excited about the evidential reasoning model which we used for integrating
diagnosis evidence from multiple sources, and we intend to investigate the use of Theory
of Evidence in integrating problem solving results from multiple sources as well.

We have found that the Utility Theory provides an appropriate framework for modeling
tradeoffs involved in making decisions about communicating diagnostic information. Since
communication is but one aspect of the general control problem, the next step in our
investigation is to examine the applicability of the Utility Theory to the problem of making
optimal control decisions.

References 31

REFERENCES

[1] H. Chernoff, Lincoln E. Moses. Elementary Decision Theory. John Wiley
and Sons, New York, 1959.

[2] Daniel D. Corkill, Victor R. Lesser, and Eva Hudlicka. Unifying data-directed
and goal-directed control: An example and experiments. Proceedings of the
Second National Conference on Artificial Intelligence, August 1982,
pp. 143-147

[3] Daniel D. Corkill. A framework for organizational self-design in distributed
problem solving networks. Ph.D. Dissertation, Department of Com-
puter and Information Science, University of Massachusetts, Amherst, Mas-
sachusetts, February 1983.

[4] Stephen E. Cross. An Approach to Plan Justification Using Sensitivity Anal-
ysis. Sigart, No. 93, July 1985, pp. 48-55,

[5] R. Davis, H. Shrobe, W. Hanscher, K. Wieckert, M. Shirley, and S. Polit.
Diagnosis based on descriptions of structure and function. Proceedings of
the Second National Conference on Artificial Intelligence, August
1982, pp. 137-142.

[6] Randall Davis. Diagnostic Reasoning Based on Structure and Behavior. Ar-
tificial Intelligence, Vol. 24, 1985, pp. 347 410.

[7] M. Genesereth. Diagnosis using hierarchical design models. Proceedings
of the National Conference on Artificial Intelligence, August 1982,
pp. 278-283.

[8] J. Gordon, and E. H. Shortliffe. A method for managing evidential reasoning
in a hierarchical hypothesis space. Artificial Intelligence, 26(1985), pp. 323-
357.

[9] Eva Hudlickd and Victor Lesser. Meta-level control through fault detection
and diagnosis. Proceedings of the National Conference on Artificial
Intelligence, August 1984, pp. 153 - 161.

[10] Eva Hudlickd. Diagnosing Problem-Solving System Behavior. Ph.D. Dis-
sertation, Department of Computer and Information Science, University of
Massachusetts, Amherst, Massachusetts, February 1986.

References 32

[11] Van E. Kelly and Louis I. Steinberg. The CRITTER system: Analyzing Dig-
ital Circuits by Propagating Behaviors and Specifications. Proceedings of
the National Conference on Artificial Intelligence, 1982, pp. 284-289.

[12] Victor R. Lesser and Lee D. Krman. Distributed Interpretation: A Model
and an Experiment. IEEE Transactions on Computers, Special Issue on
Distributed Processing Systems, Vol.C-29,No. 12, December 1980, pp. 1144-
1162.

[13] Victor Lesser and Daniel D. Corkill. The Distributed Vehicle Monitoring
Testbed: A tool for investigating distributed problem solving networks. Al
Magazine 4(3):15-33, Fall 1983.

[14] Ronald Loui, J. Feldman, H.G.E Kybung. Interval-based Decisions for
Reasoning Systems.

[15] Drew McDermott and Ruven Brooks. ARBY: Diagnosis with Shallow Causal
Models. Proceedings of the National Conference on Artificial Intel-
ligence, 1982, pp. 370-372.

[16] Ramesh S. Patil, Peter Szolovits, and William B Schwartz. Causal Under-
standing of Patient Illness in Medical Diagnosis. Proceedings of the Sev-
enth International Joint Conference on Artificial Intelligence, Vol. 2,
1981, pp. 893-899.

[17] Chuck Reiger and Milt Grinberg. The Declarative Representation and Proce-
dural Simulation of Causality in Physical Mechanisms. Proceedings of the
Fifth Joint Conference on Artificial Intelligence, Vol. 1, August 1977.

[18] G. Schaffer. A Mathematical Theory of Evidence. Princeton University
Press, Princeton, NJ, 1976.

[19] Sholom M. Weiss, Casimir A. Kulikowski, Saul Amarel, and Aran Safir. A
Model-Based Method for Computer-Aided Medical Decision Making. Artifi-
cial Intelligence, 11:145-172, 1978.

[20] Leonard P. Wesley Evidential Knowledge-based Computer Vision Technical
Note No. 374 SRI International, January 1986.

[21] John Yen. A Reasoning Model Based on an Extended Dempster-Shafer The-
ory. Proceedings of AAAI-86, pp. 125-131.

A. Example: Control of Local Processing 33

A. Example of Local Processing at a Diagnostic Node

This section discusses in detail how the local processing is controlled at a Diagnostic
Node. In order to make local control more flexible, we changed the original exhaustive
depth-first approach of the model instantiation to a best-first. Each instantiated state has
a rating that represents that state’s promise in leading to a successful diagnosis. This
rating is determined as a part of the state instantiation process. Section 3 discusses the
rating determination in detail. The states awaiting expansion (i.e., the leaf states of the
instantiated model that represent partially constructed causal pathways) are in a priority
queue (agenda), ordered by their rating. Figure 9 illustrates this.

O

OH{O Ol [0

P13 PT4

Message-~ Message-
receieedﬁ acceD?edZ

Part A O O

vTe V19

Message-
accen?ed?

Part B

PT3 |PT4 | V19 |Acc 7 VI8 | Recé
50 280 | 1600 | 3000 | 4000 | 5000

Figure 9: Agenda-Based Best First Search
Part A of the figure shows a partially instantiated model. Each leaf state represents an end
of a partial causal pathway. Each instantiated state has a rating representing its diagnostic
promise. Part B shows the priority queue consisting of the leaf states, ordered by their
rating.

Each state includes contextual information that is necessary to resume the diagnosis by
continuing the construction of the causal pathway. This contextual information resides in
the RESTART-INFO attribute of each instantiated state and contains the type of search

A. Example: Control of Local Processing 34

being conducted, the state’s previous state, and, if necessary, the state’s neighbors at a
higher level of the hierarchy.

A local processing system cycle consists of processing a single state. This state is taken
from the priority queue (the highest rated state), and one of several actions is performed:

1. The construction of the causal pathway continues as before and the appropri-
ate neighbors of the state are instantiated, along with their objects. (Function
instantiate-neighbor-list).

2. The construction of a causal pathway cannot continue or a transition in the diagnosis
occurs and some special handling must be done. Situations where this occurs are:

e A primitive node in the model has been reached or the model cannot be ex-
panded any further. In these cases a failure may be reported and the path value
is propagated back through the model.

" o A node transition state has been reached and must be sent to the appropriate
node for diagnosis. In that case the path value cannot be assigned and the local
processing must wait until the symptom is diagnosed at the other node.

e The reasoning must be suspended in order to perform another type of reasoning.
This occurs in the case of Forward Causal Tracing where for each instantiated
state its path value must be determined by Backward Causal Tracing before the
construction of the forward pathway can continue.

In order to make clear the exact nature of local processing, we will “walk through” a
simple example. Consider the model in Figure 10.

In this example we will begin with the arrival of the symptom A1, and its associated
object ob-AB1. The state Al is false and diagnosis will therefore begin by expanding the
back neighbors of this state, until eventually the primitive states are reached. At that
point, Forward Causal Tracing (FCT) will be invoked and the effect of the identified faults
will be propagated forward in order to account for any pending symptoms. We will show
in detail what occurs at each system cycle, how the agenda changes, how FCT is initiated,
and how the path values are propagated through the constructed causal pathways.

System Cycle #1. At the beginning of cycle 1 the agenda is empty and the symptom
arrives, resulting in the instantiation of state A into Al, and object ob-AB into ob-AB1
(see Figure 11, Part A). State Al has a rating of 5000, and is inserted into the agenda
when it is instantiated. A1l is false and the contents of its restart-info attribute are:

B1 nil nil nil

A. Example: Control of Local Processing 35

Figure 10: A Detailed Example of Local Processing
The model represents a series of situations, beginning with the primitive state D and its
associated object ob-D. This state should be followed by state B, which should be followed
by state A. Both state A and B refer to the same object, ob-AB. State A can also be
achieved through another pathway, that beginning with the primitive state C, and its
associated object ob-C.,

indicating that the search currently active is B1 (a Backward Causal Tracing type
search), and the PREVIOUS-STATE, UPPER-FRONT-NEIGHBOR, and UPPER-BACK-
NEIGHBOR are all nil, since this is the initial symptom state. This information will allow
the diagnosis to continue when the state is selected for expansion at some later point.

System Cycle #2. A new cycle begins with the selection of the highest rated state on
the agenda for expansion. Al is the only state so it is selected. The Diagnosis Module
(DM) first checks whether model expansion can continue, by checking to see whether
any terminating conditions, such as primitive state, non-expandable state etc., have been
reached. They have not, so the expansion continues. Based on the search type currently
active (B1) and the state value (false), one of the state’s neighbors is sélected for further
expansion. In this case it is the back neighbor (b-n). The b-n neighbor list for state A is
(OR (OR B) (OR C)). The Diagnosis Module must therefore instantiate both states B and
C. This results in the model and agenda shown in Part B of Figure 11. Notice that since
both A and B refer to the same object, ob-AB, both states A1 and B2 point to object
ob-AB1. State C3 has its own object, ob-C2. The state A1, having been expanded, is
removed from the agenda, and the new states are added, ordered by their rating. The b-n
of state Al is set to its instantiated version, which is (OR (OR B B2) (OR C C3)).

A. Example: Control of Local Processing 36

Part A: End of cycle 1 c3 O

O Al ob-CZL&

o « OO0
A° ~] ob-D3 N W‘m

3000

Cc3 | D4
2000 4030

Part C: End of cycle 3

(::) c3
Part B: End of
TS;’ OR cycle 2
ob-c2 O A1 e @
N, O
ob-c2

A « [©—0 ”?No "
Lwe Ko

04 | C3
1Seo | 2eeo

Ao\ vob-D3

Part D: End of cycle 4

Figure 11: Progressive Construction of the Causal Pathways
The instantiated state A and its object ob-AB in Part A represent the initial symptom.
The other parts show the subsequent expansion of the causal pathways, cycle by cycle.

System Cycle #3. Since B2 is higher rated, it is selected for expansion first. Since
it is false and B1 type search is active, the DM again selects the back neighbors for
instantiation. The b-n of state B is (OR (OR D)). State D is instantiated resulting in the
model and agenda shown in Part C of Figure 11. The instantiated b-n of state B2 is now

(OR (OR D D4)).

A. Example: Control of Local Processing 37

System Cycle #4. The highest rated state in the agenda is the primitive false state
D4. This state cannot be expanded any further, because it is a primitive state. The DM
therefore begins the special handling procedures for primitive states. First, the path value
for this state is assigned. For primitive states the path value is the same as the state value,
in this case False. This is inserted in the path-value attribute of the state D4. Since a
false primitive state represents a fault, a fault is reported (a message is printed). If the
state had been true, no fault would have been identified, and a message indicating this
would have been printed. The next step is to perform the operations indicated in the
upon-completion attribute of the state D4. A state is considered “completed” when its
path value has been assigned. This indicates that it has been “explained” in terms of some
set of primitive states and that a diagnostic result can be reported. In this case, D4 has
an empty upon-completion attribute.

Forward Simulation of the Identified Fault. However, whenever a false primitive
state is encountered, the identified fault represented by that state may be propagated
forward, subject to that type of reasoning being allowed by the current DM system param-
eters. (In this case this is the *p:reasoning-types parameter.) The DM therefore checks
this parameter to see whether FCT can be initiated. If it can, then an underconstrained
object corresponding to the ob-D3 is created along with an instantiation of the D state.
This results in the instantiated model and agenda shown in Part D of Figure 11. The dif-
ference between the underconstrained object uob-D3 and the fully constrained (sometimes
also called regular) object ob-D3is the lack of values for some attributes in the under-
constrained object. The LTM (Long Term Memory) definition of each abstracted object
contains an attribute called fl-attributes. This attribute lists the names of attributes
which should have values in the underconstrained version of the object. This allows ig-
noring certain details about an object and thus represent an entire class of objects by just
one instantiation of an underconstrained object. For example, an underconstrained object
corresponding to a certain type of knowledge source instantiation represents the class of all
knowledge source instantiations with KSs of the same type, regardless of the specific data
the knowledge source is to work with. This underconstrained object does not include any
of the KSI attributes dealing with specific data. In this case, FCT can indeed be initiated
and the corresponding states and objects are instantiated. The restart-info attribute of
the state D4 now looks like this: F1 nil nil nil; indicating that the type of search being done
is F1 (FCT type search), and that the previous, front-upper-level, and back-upper-level
states are all nil. FCT will be resumed whenever the state D4 is expanded. One last thing
needs to be done to process a primitive state: the state’s path value must be propagated
backwards as far as possible in the causal pathway. This is done as follows.

A. Example: Control of Local Processing 38

Backward-Propagation of a Path Value. First, the previous state of the fault state
must be found. This is obtained from the restart-info attribute of the fault state D4.
The contents of this attribute are: B1 B2 nil nil, corresponding to the current search
type, previous state, front-upper-level, and back-upper-level states respectively. Next, the
neighbor relation between the states D4 and B2 is determined to be b-n; i.e., D4 is a back
neighbor of B2 and we therefore need to calculate the b-n path value of state B2, using
the instantiated b-n neighbor list of B2.

Calculating Path Value. A path value for a given neighbor type is calculated by
evaluating the instantiated neighbor expression for that neighbor, substituting the overall
path values for each instantiated state in that neighbor expression. In this case, the
instantiated b-n of state B2 is: (OR (OR D D4)). If we substitute the states’ path values
for each instantiated state in this expression and if we remove the marker state D, we
obtain the following expression: (OR (OR F)), which of course evaluates to False. The
b-n path value for state B2 is thus F, and this information is inserted into the path value
attribute of B2, resulting in the following: nil F nil nil nil nil.

The propagation of the path value continues. Again, the previous state of B2 is de-
termined from its restart-info and this is state Al. The relation between states B2 and
Al is again b-n, so we repeat the process. This time we need to evaluate the instantiated
b-n of state A1, which is (OR (OR B B2) (OR C C3)) . Substituting the path values for
"all instantiated states and removing the marker states we obtain: (OR (OR F) (OR 7)).
The reason for the ? is that the path value of state C3 has not yet been determined, since
that state is still awaiting expansion on the agenda. Although some expressions could be
evaluated without the value for each term (take (AND F ?), for example), our expression
cannot be evaluated. The calculation of the path value must therefore stop at this point.
It will resume when the path value of state C3 is calculated. This completes cycle number
4, :

System Cycle #5. The next state to expand is C3. This again, is a primitive state and
similar type of processing results as in cycle # 4. When the path value of C3 is propagated
back, the instantiated b-n of Al can be evaluated, resulting in the path value F for state Al. .
This means that one or more faults were identified that caused the symptom represented
by Al.

B. Example: Determining Credibilities of Hypotheses 39

B. Example Of Determining Credibilities of Competing Hy-
potheses
Let us consider © = {h,h} where h is the hypothesis
h = There are vehicles in host's DAI
and h is the hypothesis
h = There are no vehicles in host's DAI

with prior probabilities p(h) = 0.7 and p(k) == 0.3. One type of evidence, e,, is a track on
the host’s blackboard. This evidence, when present, strongly supports k and disproves h:

p(kle;) = 0.8 p(®ley) - 0.2 p(hley) :- 0.
When the evidence is not present the probabilities are divided between h and ©:
p(hler) = 0 p(hler) - 0.5 p(Oles) -~ 0.5.

The host has a very weak evidence of a track: p(e;) = 0.2 and p(&) =: 0.8. The host’s
mass distribution is obtained using equation 7:

ml(h) - p(hICI)p(Cl) | p(h|e|)p(f’|) -0.8x0.240x0.8 =0.16.
my(h) = p(h|e1)p(er) + p(hlei)p(é) = 0 > 0.8 + 0.5 x 0.8 = 0.40.
my(©) = p(Ole;)p(er) + p(Olé)pler) - 0.2 x 0.2 + 0.5 x 0.8 = 0.44.

Credibilities of ~ and h are calculated using the equations 2, 4, 5 and 6 from Section
5.1 ¢ crdy(h) = 0.2 and crd, (k) = 0.24.

Since both hypotheses have low credibility, the host seeks evidence, ez, from a fully
reliable node whose DOI overlaps the DA. When this evidence is present with certainty,
h is true. Thus, p(h|ez) = 1 and p(hle;) - 0. The absence of e; in this node strongly
supports h and leaves © in part unknown:

p(hlez) = 0.8 p(hles) = 0 p(Olez) - 0.2.

There is no track on this node’s blackboard, so p(e;) - 0 and p(é;) - 1. Using equation 7
we get the following mass distribution for this node:

ma(h) - p(hlez)p(ez) + p(hlex)plez) - 10 10 x 1 -0,

“In the interest of <implicity, {A} and {2} have been replaced by b and b respectively.

B. Example: Determining Credibilities of Hypotheses

mq(R) = p(h|es)p(ez) + p(hlez)p(€z) =0 x 0+ 0.8 x 1:= 0.8,
m,(0) = p(©lez)p(ez) 1 p(Oléz)pler) =0 x0+0.2 x 1= 0.2

Using the equation 8 the certainty assignments for the two nodes become:

RO L
R A AL
- saan ?’%1'"674 10.23/2.00 = 0.11,
o(h) -) _040/03 138

mi(k) (R | m(8) T 200 2.00
n(h) T ek T p(®)

mi(©)/p(©) 0.44/(0.7 1-0.3)

c(0) = = = 0.44/2.00 = 0.22.
2.00 2.00
and
ma(h 0
(h) 0.7
eg(h) = —oimek = TR 0T
'“';Z%,h '%(%) + ";'('g? or + 03t orros
e e 0 R 0 - O
T 0+08/03+02 286
malh) 0.8/03 2.66
h R (O B Lol 2 0.93.
calh) = 1omalk) | ma(€) T 286 2.86
p(h) (k) p(©)
©)/p(®) _ 0.2/(0.7+ 0.
ey(0) - M2O)n(O) 02/(0.7+03) 02 _ .
2.86 2.86 2 86
respectively.

The combined certainty values are obtained using Dempster’s rule (equation 1). For
illustrative purposes, the intersection table [8] is a helpful device. Each entry contains two
items: a subset and a parenthesized value. The first row and the first column contain the
subsets and the values assigned by ¢; and c¢; respectively. The subset in entry ¢, in the
table is the intersection of subsets in row 7 and column j. The parenthesized value next
to the subset is the product of ¢; and ¢,. From the intersection table for our example

ei\ez h,0 h,093 ©,0.07

h,0.11 h,0 ©,0.1023 £,0.0077
h,0.67 0,0 h,0.6231 h,0.0469
0,0.22 h,0 h,0.2046 ©,0.0154

B. Example: Determining Credibilities of Hypotheses 41

we get the normalization constant

1-0.1023 - 0.8977

and
c(h) = 0.0077/0.8977 = 0.01,

c(h) = (0.6231 + 0.2046 + 0.0469)/0.8977 = 0.97,
¢(©) = 0.0154/0.8977 = 0.02.

The combined mass function becomes (using equation 9):

m(h) = e(h)ph) 0.01x0.7
"~ c(h)p(h) + c(h)p(R) + ¢(©)p(©) 0.01 X 0.7 { 0.97 x 0.3 + 0.02 x 1
= ,_M_,~-9'_°_9._7_.... - 090_'_7 -.0.02,
0.007 + 0.291 + 0.02 0.318
_ c(h)p(h) ~0.291

m(h) = - 0.92,

c(h)p(h) + c(R)p(h) +c(®)p(®) ~ 0318

c(®)p(®) 0.02
@) = P U0 .06
m(®) = “oais T 0378

Credibilities of hypotheses are now crd(h) - 0.04 and erd(h) - 0.89. The credibility of h

has been reduced and the credibility of 2 has been greatly improved by incorporating the
received information. The host can now conclude that, in fact, there are no vehicles in its

DOL

C. Example: Model Use in Diagnosis 42

C. Example of Diagnosis: Missing Communication Knowledge
Sources

This section discusses an experiment illustrating how the Distributed Diagnosis Module
(DDM) identifies the faults in the DVMT system responsible for the system’s inability to
derive the correct result. The scenario for this example is a four node system (Figure 12).

Four sensors are distributed over the environment such that each node receives data
from the sensor in its quadrant. The data are the signals generated by a moving vehicle.
There are 8 time frames containing the signals. The signals will therefore be referred to
as signals 1 through 8. The goal of the system is to integrate these signals into a pattern
‘track describing the motion of the vehicle. Since no node receives all the data necessary to
construct the final answer hypothesis, communication among nodes is necessary. Node #1
receives no signals locally. Node #2 receives signals 5 through 8. Node #3 receives signals
1 through 4. Node #4 receives signals 3 and 6. The local domain of interest (DOI) and the
knowledge sources allow the nodes to process its local data up to the vehicle track level, by
following the sl -+ gl —» vl — vt derivation path. The locations are integrated into tracks
at the vt level. Since Node #1 has no local data, its local interest area parameters have
been set so that it does not work atl levels sl, gl, or vl. (This was done only to simplify
the example presentation.) The communication interest area parameters allow the nodes
to communicate at the vt level. Partial results are thus transmitted in the form of vehicle
track hypotheses. Each node works only in its own area up to the vt level but can work in
the entire system area at the vt and pt levels, provided it has received the necessary data
from the other nodes. Any node could therefore in principle derive the final answer. The
domains of interest are shown in Figure 13.

The symptom that initiates the diagnosis is the lack of a spanning pt hypothesis at any
of the nodes, i.e., a pattern track hypothesis integrating all eight sensed locations. In order
to derive it, the nodes must communicate. However, due to faulty parameter setting, the
Communication Knowledge Sources (CKSs) responsible for sending the hypotheses among
the nodes at the vehicle track level, are missing. There are two CKSs which can transmit
vehicle track hypotheses amongst nodes, hyp-send:vt and hyp-reply:vt, and thus there are
two faults responsible for the lack of communication among the nodes.

As described earlier, each cycle for each node involves activities by 3 processors run-
ning concurrently: the Reception Processor that receives messages from other nodes, and
integrates these messages into the current nodes diagnosis processing; the Local Diagnosis
Processor that does the diagnosis based on a modified DM; and the Transmission Processor
that transmits request/reply messages to other nodes.

The Local Diagnosis processor functions as follows:

C. Example: Model Use in Diagnosis

v NOGE 2
8
T @
s__0
s @
-8
s @
2 | @

7 @

® oot 3| NQOE 4

o 7 &
?
, §0° Yol
2 So . So
1 O } o
o° o°
NOOE 1 NGOE 2
8
6 5C
s O
2 3 o 2
1]
L‘a"/. Lo

NODE 3 NOOE 4

Figure 12: Scenario for Example
The upper part of the figure shows the overall view of the four nodes and the data. The
lower part shows the pattern track segments derived at each of the individual nodes.

Step 1: The initial symptom is mapped on to a state and associated object in the
causal model. This state, its associated object, and appropriate links are instantiated.
Since the initial symptom usually represents some incorrect behavior of the monitored
system, this initial symptom state is evaluated as false, and is placed at the head of the
queue.

Step 2: The highest rated state (representing the most promising path to be explored

C. Example: Model Use in Diagnosis

NODE 1 NODE 2 NCDE 3 NCOE 4
PL 4] PL PY A PL (4] A PL PY ~
(7 uy I un T UL utT UL 1 3
6L (11 6L 67 GL 67 6L 6T
sL 1) st ST st ST SL ST
INPUT INPUT INPUT INPUT
OATA OATA OATA ORTA
S.6.7.0 1,234 3,456

Figure 13: The Domains of Interest for Example I
This figure illustrates the answer derivation pathways allowed by the DOI in the four
nodes. In addition to the pathways shown, there are communication links among the four
nodes at the vehicle track level.

is considered next. (It is the state at the head of the queue). Expand the relevant set of its
neighboring states. Initially, since most symptom states are false predicate states, diagnosis
begins by expanding the back neighbors of the symptom state, in order to determine what
predecessor states could have led up to it (Backward Causal Tracing). Subsequently,
exactly which set of state-object pairs is instantiated next depends upon both the types
of reasoning currently active and what the state value is; that is, whether the situation
represented by the state occurred in the DVMT system. Only the parts of the model
relevant to the situation being analyzed are instantiated. The unique state names, objects,
and associated links are created.

Step 3: Evaluate the states in this set of neighboring states. In other words, determine
whether these states have been reached by the DVMT system. This is done by either
looking at the DVMT system data structures, or by looking at the surrounding states.
If a state that is represented as a primitive state is evaluated as false, a fault has been
found, and the effect of the fault is found by tagging Forward Causal Tracing to it as the
reasoning type to be invoked when subsequently expanding that state. If, on the other
hand, the state is found to have already been evaluated along another causal pathway, this
state is merged with the corresponding state in the other causal pathway, and inherits its
path value. It is not put on the queue, since its value is known.

Step 4: Rate these newly evaluated states. The ratings are derived using the applicable
factors listed in section 3. These states are then placed appropriately on the queue.

C. Example: Model Use in Diagnosis 45

Step 5: Go to step 2 for the next cycle, as long as there are states still in the queue.

This example is meant to illustrate 1) the communication of messages and their effects
in the distributed diagnosis, and 2) how the determination of ratings and the best first
strategy is used in expanding states.

The convention for naming the states is as follows:

State(Node#.Cycle#)/special information if necessary

Here, State refers to the state type, such as PT for pattern-track or MS for Message-
sent; the Node# refers to the node involved in instantiating this state; the Cycle# refers to
the particular cycle in which this state was instantiated; the special information is needed
for certain states and not for others. In most cases the special information simply refers
to the pt or vt tracks being considered. In the case of MS and MA states the Node-
from# is needed as well to indicate the node from which the message is communicated as
well. Thus, VT(1.9)/vt 1-4 indicates the VT state instantiated in cycle #9 by node #1,
and pertaining to a vt I--4 hypothesis. Similarly, MS(1.8)/3vt I-4 refers to the MS state
instantiated during cycle 8 by node #1, and referring to a communication from node #3
of a vt 1-4 hypothesis.

NODE #1

Node #1, in the upper left corner of the environment, receives no input data. Since it
does not have any locally sensed data, this node relies on communication at the vt level
to receive all its data, in the form of partial results generated by the other nodes in the
system. The interest areas are set such that this node can only begin working on data at
the vt level. Due to the missing CKSs however, this node never receives any hypotheses
and therefore does not produce any results. Figure 14 shows a trace of the simulation.

Cycle 1: The initial symptom is, thus, the lack of a spanning pattern track (PT)
hypothesis. This is mapped onto the pt state in the Answer Derivation Cluster. Therefore,
diagnosis begins with the false state PT(1,1)/ pt I 8, representing the desired answer
pattern track integrating locations 1 through 8 (pt 1-8). The DM initiates diagnosis with
BCT by expanding the back neighbors of this state.

Cycle 2: The back neighbors of PT are PT (since all track states are reflexive), PL,
and VT states in the Answer Derivation Cluster, and MESSAGE-ACCEPTED state in
the Communication cluster. In this case, no shorter pt segments are found, so no PT
states are instantiated. Normally the PL states would be tried next, but since pl is not
within the DOI, they will not be considered. This is also the case with the MESSAGE-
ACCEPTED states, since the communication DOI allow communication only at the vt
level. The remaining possibility is the state VT. The object which would normally lead to
the derivation of the pt I -8 hypothesis is a vt -8 hypothesis. The DM therefore creates
its corresponding state, VT(1.2)/ vt 1 8. Since a vehicle track 1-8 does not exist in the

C. Example: Model Use in Diagnosis 46

DVMT system, this state is false. This is the only back neighbor of the initial symptom
state.

Cycle 3: The back neighbors of the false VT state are expanded next. The back neigh-
bors of a VT state are VT, VL, and GT in the Answer Derivation Cluster, and MESSAGE-
ACCEPTED in the Communication Cluster. Hence, the choices are shorter vt segments,
vehicle locations, and, since vt is a communication level, messages received and accepted
from the other three nodes in the system. Since no shorter vt segments exist, no VT
back neighbors are instantiated. The VL state is found to be non-expandable because the
corresponding vl objects lie outside the node’s DOI. This non-expandable VL state thus
provides a false path value that is propagated back up through the model. When the path
values of the other back neighbors of the VT state become known, they will be combined
using the OR logical operator which links the back neighbors of the VT state, to determine
the overall VT path value. ‘

The MESSAGE-ACCEPTED back neighbor of the VT state is expanded into 3 separate
states, each representing messages from one of the other three nodes. These are the
states MA(1.3)/2 vt 1-8, MA(1.3)/3 vt 1-8, and MA(1.3)/4 vt 1-8, representing messages
accepted from node #2, node #3, and node #4 respectively. These states are determined
to be false since no vt 1- 8 hypothesis exists in node #1 that was received by from either
of the three other nodes. The three MA states are rated. At this stage the factor that
influences the ratings the most is the extent to which the other nodes are spatial neighbors
to node #1. Since node #3 overlaps the most with node #1, state MA(1.3)/3 vt 1-8 is
rated highest, followed by MA(1.3)/2 vt 1-8, followed by MA(1.3)/4 vt 1-8.

Cycle 4: Diagnosis continues with the MA(1.3)/3 vt 1-8 state which represents the
vt 1-8 hypothesis expected from node #3. Since it is false, its back neighbor, the state
MESSAGE-RECEIVED, is expanded, resulting in the creation of the state MR(1.4)/3 vt
1--8. This state is determined to be false.

Cycle 5: The back neighbors of the state MR(1.4)/3 vt 1-8 are expanded, resulting in
the instantiation of the states MS(1,5)/3 vt 1 8 and CHANNEL-OK(1.5)/3. These states
represent the sending of the message from another node and the state of the communication
channel linking the two nodes respectively. CHANNEL-OK(1.5)/3 is found to be functioning
and thustrue.

The diagnosis for this path ends here because the state MS(1,5)/3 vt 1-8 is to be
transmitted as an intermediate symptom to node #3 for further diagnosis, since its back
neighbor lies across the nodes boundaries.

Cycle 6-9: The local diagnosis proceeds as above in cycles 4-5 except this time first
the back neighbors of the state MA(1.3)/2 vt 1-8 are expanded, representing communica-
tion between node #1 and #2; and then the back neighbors of state MA(1.3)/4 vt 1-8,
representing the communication between nodes #1 and #4.

C. Example: Model Use in Diagnosis 47

During cycle 6 the transmission processor transmits the intermediate symptom
MS(1.5)/3 vt 1-8 to node #3. Similarly, during cycle 8 the intermediate symptom
MS(1.7)/2 vt 1-8 is transmitted to node #2.

Cycles 10 - 11: The local diagnosis processor has no other states in its queue, and
waits for the results of the intermediate symptoms that it has sent.

The transmission processor transmits the intermediate symptom MS(1,9)/4 vt 1-8 to
node #4.

Cycle 12: The reception processor for node #1 receives an intermediate symptom,
MS(2.10)/1 vt 1-4 to be diagnosed from node #2. This message represents the communi-
cation of a vt I1-4 hypothesis from node #1 to node #2.

Cycle 13: The local diagnosis processor evaluates MS(2.10)/1 vt 1-4 to false by exam-
ining the executed knowledge sources at node #1 and seeing that no CKS’s executed.

Cycle 14: Diagnosis continues by expanding the back neighbor of MS(2,10)/1 vt 1-4.
This is the state MESSAGE-EXISTS(1.14)/ vt 1-4. This state is found to be false since no
message is found to exist corresponding to the vt I 4 hypothesis.

Cycle 15: Diagnosis continues by trying to find out whether a vt 1-4 hypothesis that
should have been sent exists or not. Thus, the hback neighbor of the MESSAGE-EXISTS
state is VT(1.15)/ vt 1-4. This state is found to be false by looking at the DVMT data
structures.

Cycles 15-21: The processing during these cycles is similar to that during cycles 2-10,
except that here it is the vt 1 4 hypothesis that we are concerned with, as opposed to the
vt 1-8 hypothesis.

During cycle 20, the reception processor receives the result of an intermediate symptom,
MS(1.5)/3 vt 1-8, that it had transmitted to node {3 to diagnose in cycle 6. It concerns
the communication by node #3 of the vt 1-8 hypothesis. Node #3 diagnosed and identified
the fault causing this false MS state - it was missing the communication knowledge sources.
Hence, because an underconstrained MS state was sent back as confirmed false, all pending
and future MS states concerning communication from node #3 to node #1 are accounted
for, and a false path value can be propagated back from all such states.

During cycle 21 the reception processor similarly receives a reply from node #3 re-
garding the diagnosis of the intermediate symptom MS(1,18)/3 vt 1-4 representing the
communication of a vt 1-4 hypothesis from node //3 to node #1. For the same reason as
above, node #3 returns a false path value associated with this state. Node #1 propagates
this value backwards.

During this cycle, the reception processor also receives a request from node #4 to
diagnose the intermediate symptom MS(4,19)/1 vt 7-8 regarding the communication of a
vl 7-8 hypothesis from node #1 to node ff4.

Cycle 22: The local diagnosis processor now starts diagnosing the only state in the

C. Example: Model Use in Diagnosis 48

queue, MS(4.19)/1 vt 7-8. This is found to be false because no executed communication
knowledge source is found.

During this cycle the reception processor receives a request from node #3 to diagnose
the intermediate symptom MS(3.20)/1 vt 5-8, representing the communication of a vt 5-8
hypothesis by node #1 to node #3. 1t places this symptom in its queue, but with a lesser
rating than the current state being diagnosed.

It also receives a result from node #2 regarding the intermediate symptom MS(1.7)/2
vt 1-8. As in the case of node #3, node #2 finds that it is missing the communication
knowledge sources, and sends back an underconstrained MS state with a false path value.
Thus, all MS states representing communication from node #2 to node #1 are accounted
for, and false pathvalues are propagated backwards.

Cycles 23-29: similar to cycles 13 to 21 except that here it is the vt 7-8 hypothesis
that is being investigated.

Any MS states corresponding to communication from nodes #2 and #3 are accounted
for as false because of the false value for the underconstrained MS sent to node #1 from
these two nodes. The only pending states whose truth values are yet to be assigned are the
MS requests that node #1 has made to node #4. A few cycles later, when node #4 replies
with a value of false for an underconstrained MS object, all these pending values will be
determined, and an overall false pathvalue will be propagated upwards towards PT(1.1)/
pt 1-8, accounting for the detection of no pattern tracks at this node. Diagnosis for

Node #2

Node #2 is in the upper right corner of the environment and receives signals in locations
5 through 8 as its input data. It generates a pattern track integrating these signals but,
due to the lack of communication, does not receive the vt hypotheses that would allow it
to extend its 5-8 track to the full spanning pt 1 8 hypothesis and thus derive the final
pattern track answer.

Cycle 1: As in Node #1, diagnosis begins with the lack of the spanning pt 1-8 hy-
pothesis. As before, since PT(2.1)/ pt 1-8 is false, its back neighbors are expanded.

Cycle 2: This is analogous to the second step of diagnosis in Node #1, but this time
there are shorter pt tracks, so some PT states are created. Specifically, one true and
one false state, with the attached objects representing the existing pt segment 5-8 (state
PT(2.2)/ pt 5-8) and the missing pt 1-4 segment (state PT(2.2)/ pt 1-4). As before,
a VT state is instantiated with its associated abstracted object representing the desired
vt 1-8 hypothesis. Diagnosis continues in a hest-first manner, with the expansion of the
back neighbors of the highest rated state. In the centralized DM it has been empirically
determined that for this cluster, for three nodes linked by an AND connection, it is better
to proceed along the false-false path rather than the false-true path. This is one of the

C. Example: Model Use in Diagnosis 49

factors determining the ratings of states to expand at this point. Thus, the PT(2.2)/ pt
1-4 state has the highest rating, followed by the PT(2.2)/ pt 5-8 state, followed by the
VT(2.2)/ vt 1-8 state.

Cycle 3-10: The back neighbor of the PT(2.2)/ pt 1- 4 state is expanded. This is the
state VT(2,3)/ vt 1-4. Diagnosis proceeds as in cycles 2-9 in node #1, except that here it
is a vt 1-4 hypothesis that is being considered.

During cycle 9 the reception processor receives a request from node #1 to diagnose the
causal pathway arising from the intermediate symptom MS(1,7)/2 vt 1-8, representing the
communication of a vt 1-8 hypothesis by node #2 to node #1. Similarly, in cycle 10 the
reception processor receives requests from nodes #3 and #4, to diagnose the intermedi-
ate symptoms MS(3.8)/2(vt 5-8) and MS(4.8)/2 vt I-2 respectively. These intermediate
symptom states are rated and placed in the queue.

Cycle 11: At this stage node #2 finds it advantageous to suspend its current explo-
ration, and proceed with diagnosing the intermediate symptom MS(3.8)/2 vt 5-8 that it
received from node #3. The factor that mainly contributes to this decision is that on
receiving this request this processor had made a preliminary evaluation of the relevance
of this request and found that it pertained to a vt 5 8 hypothesis, which it knew to be
a related problem to its own investigation since it had already confirmed this as existing
earlier. It knows that a fairly low level of effort might locate the fault, since it lies in some
lower cluster between the true and the false states.

Cycle 12: During BCT it is found that the state MESSAGE-EXISTS(2.12)/ vt 5-8,
corresponding to the object vt 5-8, is in lact true. This leads to tracing the states in
between these two false and true states, and the lower Communication Ksi Scheduling
cluster is therefore instantiated next.

Cycle 13: The front lower neighbor of the true state, MESSAGE-EXISTS(2.12)/ vt 5-8,
is COMM-KSI-RATED(2.13). This is expanded next. It is found to be false.

Cycle 14: The back neighbor of the state COMM-KSI-RATED(2.13), the state COMM-
KS-EXISTS(2.14) is expanded. This is a primitive state and represents the identified
failure: the missing communication knowledge sources hyp-send:vt and hyp-reply:vi.

At this point FCT is invoked to simulate the effects of the identified failures on system
behavior and thereby account for both pending and luture symptoms caused by this failure.
Such future symptoms are any states that are in some way elfected by the false COMM-
KS-EXISTS(2.14) state. In terms of the system hehavior, these are any events in some
way dependent on the existence of these two CKS’s. [n this case, these would be any
events regarding the scheduling or execution of these CKS’s and any messages relying on
these CKS’s for transmission. The affected states are any states forward of the COMM-KS-
EXISTS(2.14) state, where forward means both at the same level in the model hierarchy
and at any higher levels.

C. Example: Model Use in Diagnosis

FCT works by propagating forward an underconstrained abstracted object which rep-
resents the whole class of objects affected by the fault. At each step in the diagnostic cycle
any abstracted objects associated with pending symptoms are checked to see whether they
overlap with the newly created underconstrained object. If so, then their pending symptom
has been successfully explained by the identified fault and need no longer be diagnosed.
Now let’s get back to the example.

Cycles 15-20: The FCT first constructs underconstrained objects representing the
missing communication knowledge sources. The corresponding state is then created,
COMM-KS-EXISTS(2.15). (In the diagrams, the states attached to underconstrained ob-
jects are represented by two concentric circles, instead of the single circle). FCT continues
simulating the fault’s effect on the DVMT by expanding the front neighbors of this state.
This goes on until in cycle 19, the underconstrained MS(2,19)/ vt state is found to be
false. The resulting underconstrained object represents the class of objects affected by the
missing CKS’s, namely all message hypotheses at the vt level. This time the undercon-
strained MESSAGE-OBJECT does overlap with the MESSAGE-OBJECTS associated with
the various pending MESSAGE-SENT symptoms. As a result, all these pending MS symp-
toms are accounted for by the identified faults, the missing CKS’s, and the results can
now be transmitted back to the other nodes who had requested node #2 to diagnose those
intermediate MS symptoms.

During cycle #20 the reception processor receives the result of an intermediate symp-
tom, MS(2.6)/3 vt 1-4. It concerns the communication by node #3 of the vt 1-8 hy-
pothesis. Node #3 diagnosed and identified the fault causing this false MS state - it was
missing the CKSs. Hence, because an underconstrained MS object was sent back as false,
all pending and future MS states concerning communication from node #3 to node #2 are
accounted for, and a false pathvalue can be propagated back from all such states.

Cycles 21-25: Node #2 sends out all the pending MS symptoms back to the nodes
that had sent them to be diagnosed by node #2. All of them have confirmed false path
values.

The local diagnosis processor continues processing the highest rated state in the queue,
PT(2.2)/ pt 5-8, which represents the pt 5-8 object that does exist. When a true state
is encountered during BCT, the DM must look for the problem in between the true and
the false states, at a lower cluster of the model, which represents the states occurring in
between the true and the false state. In this case the DM must find out why the the pt 5-8
hypothesis was not extended to the pt 1-8 hypothesis. The DM expands the lower cluster,
the Ksi Scheduling Cluster, and finds that the reason the pt 5-8 hyp was not extended is
due to the missing pt 1-4 hyp. The diagnostic pathways merge at this point at the state
PT(2.2)/ pt 1-4, which represents the missing pt I 4 segment. This state was already
diagnosed earlier.

C. Example: Model Use in Diagnosis

Cycle 26-27: The highest rated state on the queue is VT(2.2)/ vt 1-8, which is ex-
panded next. The back neighbors are VT(2,27)/ vt 1-4 representing the vt 1-4 object,
which is merged with the existing state VT(2.3)/ vt 1-4 already expanded in cycle 3; the
state VT(2.27)/ vt 5-8 representing the vt 5-8 hyp, which does exist at this node; and
the three MA states representing possible communication received from the other three
nodes. Since VT(2.27)/ vt 1-4 has merged with VT(2.3)/ vt 1-4, the highest rated state
is VT(2.27)/ vt 5-8.

Cycles 28 onwards: the processing continues similarly for a few more cycles.

After some more cycles, node #2 receives replies from nodes #1 and #4 regarding the
MS intermediate symptoms that it sent to them to be diagnosed. It then has the values
of all the requested symptoms, and it propagates all the false values upwards. Thus, the
initial symptom PT(2.1)/ pt I-8 does receive a false pathvalue propagated upwards to it,
and the missing spanning PT hyp is accounted for.

Diagnosis for Node #3

Node #3 is in the lower left corner of the environment and receives data from locations 1
through 4 from its sensor. It therefore generates a pattern track integrating these locations
but cannot produce the final answer because it is missing the track integrating locations 5
through 8. The diagnosis for this node is similar to the diagnosis for Node #2. The same
parts of the model are instantiated and same types of failures are identified. The difference
is that here it is the track 5-8 that is missing, not 1-4 as was the case in Node #2.

Diagnosis for Node #4

Node #4 is in the lower right corner of the environment and receives data in locations
3 through 6. It integrates these locations into a pattern track linking times 3 through 6
but does not produce the overall answer because it never receives the track segments 1-2
and 7-8. Diagnosis proceeds as before, generating an explanation in terms of the missing
local data in locations 1-2 and 7-8, and producing a number of false MESSAGE-SENT
symptoms which are sent to other nodes for diagnosis.

At the end of a few dozen cycles, all the missing spanning pattern tracks are accounted
for. The cause of the problem has been identifed as the missing CKSs at each node.

" SIpou iy

sy K9 pasey skomypy (osavD oy je u"!f’-"{’d appk= Aq Ak hl 9y

§-124 /(1) Sw
&/(6*1) Yo-pavoy>

h-1241f (vz)xu%

L P34 1/t6%) vu}é L1l ImE] .5:44:«:?7?3.—:'!7?"
' Z/(8m)sH ssuysgsw d 'i/adsﬂs' PN d:g-134 :/ﬁ'%?i_"
$-$537 YRt 8/Ce' T)No- q>,
P-4 3RS | FEDN-pri ¥ e g-124 b (8'1Y3M
/(8 h) No-Puvvy> (? R é: mdf’ﬁ' W L
8-5M 4/(3'5) SW é:f winfere)su Fg.,# o
/130 5/(¥T) 3N 9128 2L DSH
4134 2/(£'h) YN [2 Lo alewcerem : L Z/(£1)Xo-PwOY>
Kotn)sw j:n-:'wb/&c)sn 2: fe13 KIT)SW
Y's) So-rwwoe g, LFIAHGITH ?—m /')
F 134 €/ (9MISN #ye)sw €/(2'2) No-[3uvdy>
3/(3'%) wo-Puvoy> /(ey 9-1347/(34) aN
a0 €)ts NS
g-122 €/(s)sw
Z-134 E/(s'M) U 8524 45 QYW h-134 €/(s'2)¥ €/tan)o-pwoy> n
9—:3&";/3;: o//vz"ﬁw .)
21241/ Cheh] viv . . B34 1/ YI
2 2AT R YN . Mf ¥o'e) Fratrsne h-132 €/(h'T) YN * (n'7)1A
2-12as/(yn) vW [@ [B] (3] (] v h124 B/ (e v [0 o] [gz s/(h41) W]

2-€27/(z)14
7-439)(Ty) 14 ¢
134 (T LA

¢-137/¢1h)Ld (2]

by #IPN

s3d | yad
-Y/em)Ld g-124/2%6) _Me ’;/(z'ﬂu"./,(f")id

[o]

\9-1 24 /(') vw
g-1 2a sftenvm _ M(E
h-1[(€T)LA[e] #ran bty v 2] (2] (5]

¢-539 /DL btetfenrs) 14

g-134/ & T)LA[E] o] g-1 70/(x1) 1A [0]

g-12¢/0'z) 14 [e]

2 9PN

(prepver) bl OId T

8% 3 : 2-12A /(OIS , . - Feyy s
L -\Qtvvaxmu u.. ?\v.«\eiwm: ® &.ﬁu&.e.ﬂw @ n\g.c.x..?zoav ¢/(a1r)sw g
I-dm &~ by : 9434 6/(S'1) SW
: 2 fbim)sw e Sk
LM T (ki s SW o say SpinazzY (176) PHAPITT - 150~ ee,

h-134€/R11) ¥ £l

Tf(k1'b) No-paunny> (417€) 495-9Bvssopn]
b1 A TKADIVM -
(5172) Potwa= 15y -we> - ﬁ«“\aﬂsvsm.u l.... \W:r A y
g »e/(n
8-£2%/(21%) ui ?.;u...ﬁawwnw (@] . 7,

- 0
8-£ 24 §/(SV'y) v @/S% W-ﬂ M (s1'c) Vwﬁﬂu:...-v.u.t s H@ h-1 34 J(S14) 4 [o] gl
-SM &SP o
(v EPDVR_ LA ?.; ore) /7)) SjS1%3-0y - sy
—iy-wuo) H@M (1) syorxa -2beswae [0] hi
(€1€) N@ 3@,3!-&.&!0
“ t619) LA 2] 1X9-$3) -0 w0p
8-T34 \ #v 3te. h-13A ~\A°-sﬂvwz [0 | ¢l
) sfsma- obvssape [o] O e [@) (z1r2)spsixa-Bvrron ”
Ly
i1 y(a)sw Y
§oMHgsm - @or E.EEQB n..wt 2/(8's)SW 8] Livm n
S ifrsn L2l s ew oY pargmm AN3dsas
ot 30 1/COF v%.:le_ R)w
Z-134 tCAY) S y @Osgmsoboson \aﬂsvsouﬁﬂvnﬁu hige? .Qanﬂl 1 LivMm ol
P @ By it . it
XY (8 T) SW &t W # 247k
Yy IpoN S #3F°N Z £ IPN T #pN

° ¢

Cyclest Node#! Nedle#2
MS(hW18)/3vir~: P
' : 2,19)
1 s versfia] T msm Message-scnt (24
: MR (1,19
(N 'J:l/_l/ ="
ot fovall § ends ns(::)bvtm.-;
mMSs S;M;PM atf Noal-‘fl .
20 M3(5,8)/2 v¢ S5-8:
[?7) channel-ok (1, 20)/4 Ms(49)/2 ve IR L
MS(6203/0 vepg uq'_&%?m.-ﬁ Ms(nya vt FT
S vt T A s CaTY/2 ‘
2! AIT M5 rt1~y:? PT(2.2)/pt5-8
Ms(hfﬂ)/’ vily :F T (frem cycle #2)
L stimks-hyp(2/21)
22— SMSCLB/2 v l-E F
usu_‘.'z:) } 'CIMs(h9)fivee-8 Goal-created (2,3%)
23 reMessage- eais s (123 o) Ksi-rated (2 123),1
0] Kai-radec (2.23) 3-
24] vr(h24)/vt 7-8 [0 Necessary-hop (2120) {pei=4)
KS-exiss (3/3‘0
25 ; merge with PT(3,2)/pt1-4
viL(125) MA U28))Y e 78 Expand Ksi-rafed (2,23),2
MA (1)25)/3 v¢ -8 Ksi-rajed
= (2,23), y
26 Akccmrj-é;’() :,.g:, ;f’d o
[2JMR(1,26)/3 vt 7-8
[GAYT(3,3)/vt1-8 (Tis etatc hom
AP <ycleot 2 is at
o T8 Qg et
~
P (7] aﬁamel—ok(bu)/o

T(2,29)/re.
2&’7" (2,29)/res-8

e A6 1Y (condinmed) .

Node #3 Noded#4
Ms(4 ;)/; wrp:F
?&AX‘? ‘;"&J‘) de’""‘@ x channcl—oi (4,19)/1

[o]ur (s, 19) /" #s-s Mpﬂk; MS (4 10)AvE S
T M

ﬁéj‘gbvtl-uF

usla9)/ivt794.

T
m cb.ud-ak(h“)/l vT ("")M‘.‘
Ms(320five 5-8 CHop of agenda)
PTONSLF ¥
4 h;z:lﬂ'*) stimlus-byp 4.2})
o+ #(3' 2 Ms(hro)femt-y: 7
mSa v F
. G-al-malul (4;3&)

[0) Ksi-rated (4,28),!

Ksi-rated (312302 y
[5) Ks (- rafed(425),2-

Wecessary-hyp (3 24)
(6] [Necessary {;t(-t}
h“ll‘ﬁ*’(’ll‘) /

135) /158
o "E(l’!

MERGE with @] merge-with VT Ca)t -8
w
PTCd2) /P15 %

[E]Necessery-lgp erge

€ Ksi-rated (3/29),2-)
M:t;:d Necessary-hyp (3:24) [0 /a4 (z.’n‘q.)r/a.;i;:d‘ N
Wik above. [oIMRLA,26) /! 5%
73 ml f_’tnl‘) F ’
AN 5] channcl-ok (4, 27)!
2] O B ns(aD1vtSE: 7
"o‘t ¢ 59

3?{ TNk A MAGADy

