—

A New Model for Error Detection

Debra J. Richardson
Margaret C. Thompson

COINS Technical Report 86-64
December 1986

Software Development Laboratory
Computer and Information Science Department
University of Massachusetts
Ambherst, Massachusetts 01003

This research was supported in part by the National Science Foundation under grants DCR-83-18776 and DCR-
84-04217 and by the Rome Air Development Center grant F30602-86-C-0008.

Abstract

This paper defines a formal model for error detection. The model proposes conditions on a
set of test data that are necessary and sufficient to guarantee that a fault originates an error that
is transferred through computations and data flow until it is revealed. The model is applied by
choosing a fault classification, instantiating these conditions for the classes of faults, and applying
them to the program being tested. Such an application guarantees the detection of errors caused
by any fault of the chosen classes. The model is applied here to five classes of faults.

AN

1A

1. Introduction

The goal of testing a program is error detection. This is typically done by attttemyptiing tko seliect
test data for which execution of the program produces erroneous results. [= “igondl” thestt diatta
selection criterion is employed and the program executes correctly on the selextimil thestt disttn, then
the tester gains assurance that specific types of errors do not exist.

An error is caused by one or more faults in a module. The IEEE Standied [JHES3]] defimes
test data as “data developed to test a system or system component.” It states iibestt am grxar s “a
discrepancy between a computed, observed, or measured value or condition andl tthe tirms;, sypecified,
or theoretically-correct value or condition,” while a fault is “an accidental coadiifion tibat: commes a
functional unit to fail to perform its required function.” Although these definititms prrosiifie insighs
into the accepted meaning of testing concepts, they are imprecise. This papear imtroduces hasic
terminology concerning programs and execution and then formally defines e muwdidl off exorars zead
error detection within that framework.

A module may be tested at many different levels. The model presented here iis diimartted to-

wards detection of errors in a module known to be close to correct and thus swames

functional testing has already been successfully completed.

Our model of error detection builds upon the work of Morrell [Mor84] amii iis Besed wpam the
selection of test data that guarantee the origination of an erroneous result thatt Smmuffens o sume
point at which an error is revealed. This model provides a method by whith amar dstertion s
applied to a class of faults. The model provides necessary and sufficient comdiitimms tftmt, wihen
satisfied by a test data set, guarantee the detection of an error caused by any Faullt mtﬂmn‘wm -
class. If test data is selected to satisfy these conditions, and no errors are detetiad], tfhs mrograsm
contains no faults in this class. The model is instantiated once the fault class i» e, Bot 25 a
generic model is independent of any particular class of faults.

To demonstrate the effectiveness of the model, we apply it to five classes «ff Fmilim. Fur eadh of
these classes, the necessary and sufficient conditions to guarantee detection of zmy failt i e cizss

are derived and presented here. We believe that the model is widely applicable and are working on
further applications.

Our model of error detection also provides a framework within which the capabilities of other
testing criteria can be evaluated. An analysis of three test data selection criteria that attempt to
detect faults in the five classes to which the model is applied has been performed. This analysis
has shown that none of these criteria is completely effective at guaranteeing error detection for
these fault classes. It is beyond the scope of this paper to present this comparison; that work is
summarized and presented in related papers [RT86b,RT86a).

The next section of this paper introduces a program representation and defines some basic
testing concepts using this terminology. The third section defines our new model of error detection
within this framework. The fourth section applies this model to five classes of faults. Finally, in

section five, we discuss the limitations of the model and some directions for future work.

2. Basic Testing Concepts

A number of test data selection criteria have been proposed throughout the years. These
criteria, however, have been defined imprecisely. Here, we outline a representation of programs,
execution, and testing, which provides a framework within which test data selection criteria can
be formally defined. This formality results in greater precision and consistency in the definition of
the criteria. This representation is complete in [RT86b], where a wide variety of testing criteria
are also defined. This representation also provides the foundation for the model of error detection

that is introduced in the next section.

2.1 Program Representation

We consider the testing of a module, where a module is a procedure or function with a single
entry point. A module M implements some function Fjs, which maps elements in a domain Xj,

to elements in a range Zps, Fas : Xps — Zpg. Thus, for any z € Xjy, execution of M produces

]

a unique z = M(z) € Zy. An input to a module is a vector z whose elements are values in a
designated order for the values of input parameters, imported global variables, and objects of input
statements. The elements of an output vector z are values of output par#metem, exported global
variables, and objects of output statements.

A module implementation can be represented by a directed graph that describes the possible
flow of control through the module. A control flow graph G, of a module M is a directed graph,
which may be represented by a tuple (N, E), where N is a (finite) set of nodes and EC N x N is
the set of edges. N contains four special nodes which are added to the graph to facilitate analysis
and have no effect on evaluation of the module: 1,4,¢, the start node; nyin,, the final node; n;,, the
input node where parameter and global variable values are imported from the external environment
or calling module; and noy¢, the output node where parameter and global values are exported to
the external environment or calling module. Each other node in N represents a simple statement,
a group of statements, or the predicate of a conditional statement in M.! Each node is represented
as an abstract syntax tree, where the leaf nodes represent data objects and the interral nodes
represent computational operators. This computation tree describes the statement’s hierarchical
structure. For each pair of distinct nodes m and n in N, where control may pass directly from
the (group of) statement(s) represented by m to that represented by n, there is an edge (m,n) in
E. Associated with each edge, (m,n), is a branch predicate, bp(m,n), which is the condition that
must hold to allow control to pass directly from node m to node 5. If a node has a single successor
node, then the branch predicate associated with the edge leaving the node is simply true.

The control flow graph defines the paths within a module. A subpath in a control flow graph
Gu = (N, E) is a finite, possibly empty, sequence of edges p = [(n1,n2), ..., (1], Blp}41)] such that
for all ¢, 1 < ¢ < |p|, (ni,ni41) € E. The last node fypl41 is termed the open node, which has
been selected by virtue of its inclusion in the last edge but is not visited in the subpath traversal.

Given two subpaths p = [..., (m,n)] and g = [(n,n’), ...], there exists a subpath [.... (m,), (n,n"),..]

!This restriction on the form of a control flow graph facilitates the current discussion and is only temporary.

formed by their concatenation and denoted p-q. An initial subpath p is a subpath whose first node
is the start node, n,¢p¢. For any node n € N, the set INIT(n) contains all initial subpaths in Gas
whose open node is n. A path P 2 is an initial subpath whose open node is the final node, ny;nai-
The set of all paths in G is denoted by PATHS(Gnr). Note that PATHS(Gag) =INIT (nsinat)-
The graph G is well-formed if and only if every node in N occurs along some path in PATHS(G p);
in this paper, we consider only modules with well-formed control flow graphs.

An initial subpath p may be executed on some input z; this execution is denoted p(z). Asso-
ciated with such execution is a context Cp(;), which defines the state of the computation. Cp(,)
contains the values of all variables after execution of p(z). Suppose that some initial subpath
p = ...,(m,n) has been executed. Execution is continued by the evaluation of an edge, (n,n') € E.
This evaluation includes execution of the node n, selection of the new open node n’, and evaluation
of the branch predicate bp(n,n’), but does not include execution of the open node n'. If n includes
an assignment statement, the value(s) of some variable(s) in the context may change. If n includes
an input statement, the input vector is extended by the values input to provide z’. If n ends with a
conditional statement, evaluation of the condition determines the open node on the extended path
— that is, the successor node n' that is selected. This execution provides the updated context for
execution of the extended subpath p' = p - (n,n') on input z' — Cp(n,1)(»)*

A context is also defined for entry to and exit from a module M. C.npy(s), Where en-
try=[(netart,nin), (nin,m)] and m is the entry node, is the context on entry to the module and
contains a defined value for all input parameters and imported globai variables and is undefined
for all other variables; Cp(s) is the context on exit from the module after evaluation of P on z and
contains values of all variables at the end of execution of P, including the values for all output

~ parameters and exported global variables.

2Where the distinction between a subpath and a path is important, we will use an upper case letter (P) to signify
a path and a lower case letter (p) for a subpath (or initial subpath).

3where 2’ = z if no input occurs.

2.2 Test Data Selection

A test datum ¢ for a module M with control flow graph Gps = (N, E) is a sequence of values
input along some initial subpath — that is, ¢ = [t,,...,tm]). The domaln of an initial subpath p,
denoted dom(p), is the set of test data ¢ for which p may be executed. For any node n in Gay,
the set DOMAIN(n) is the set of test data ¢ for which n may be executed and is the union of the
domains of all initial subpaths in INIT(n); note that DOMAIN (nginat) = Xps. Thus, t € dom(p)
for some n € N and p €INIT(n). Note that a test datum ¢ may be either complete — that is,
3P € PATHS(G) such that t € dom(P) — or an incomplete sequence of input values — that is,
VP € PATHS(Gp) t ¢ dom(P). A test datum ¢ may be incomplete simply because after executing
some initial subpath p, additional input is needed to complete execution of some path. Or, there
may not be any additional data to complete ¢, because the initial input ¢ may cause the module
to terminate abnormally before n7;,q or possibly to never terminate. This allows for testing with
invalid inputs, which are not in the domain of M but for which M may initiate execution. The test
data domain Dy for a module M is the domain of inputs from which test data can be selected,
Dy = {t|3n in Gu,p EINIT(n) : t € dom(p)}. Note that Dy is not merely the domain of M,
since neither invalid input values nor initial test data are in Xjs; in fact, Dpy =DOMAIN (nstart)-

A test data set Tjs for a module M with control flow graph Ga is a finite subset of the test
data domain, Tas C Dps. A test data selection criterion S, or simply a criterion, is a predicate
that assigns a truth value to any pair (Gas,Tis), where G is the control flow graph for a module
M and T is a test data set. A criterion, then, is a set of rules for determining whether a test data

set satisfies selection requirements for a particular module.

2.3 Testing Oracles, Errors, and Correctness

To reveal errors by testing, there is usually some test oracle that specifies correct execution
of the module [Wey82]. A test oracle might be a functional representation, formal specification,

or correct version of the module or simply a tester who knows the module’s correct output. In
P

any case, an oracle O(Xo, Zo) is a relation, O = {(z,2)} C Xo X Zo, where Xp and Zo are
the domain and range, respectively, of the oracle. When (z,z) € O, then we write 2Oz and say
that z is O-related to z, meaning that z is an acceptable output for z. If z € Xo but (z,z) ¢0,
meaning that z is not acceptable for z, we write z(0z. Note that an oracle is a relation; thus, for
any input, an oracle may specify more than one acceptable output. This allows for nondeterminism
and, in particular, for an oracle to specify a “don’t care” case — an input z for which any output is
acceptable — by containing the relations (z, z) for all 2’s.

Although the goal of testing is the detection of errors in a module, it is also important to define
our notion of when a module is “correct”.

Definition: A module M : Xj)s — Z)s is equivalent to an oracle O(Xo, Zp) if and
only if Xps = Xo and Vz € X7, 2OM(z).

Thus, a module is equivalent to an oracle if and only if both are defined over the same domain, and
for each element of that domain, the module computes one of the values satisfied by the oracle.

Equivalence is a very strong property. It is often the case that a module and an oracle do not have
the same domain of definition. Elements of the oracle domain that are not in the module domain
may simply be “as yet unimplemented” cases. Alternatively, the oracle may be a specification
written in a language that provides type constructs for restricting the range of values for an input,
but such restrictions are not allowed in the implementation. In this case, elements of the module
domain will not be in the oracle domain. If the implementation explicitly checks for violations of
these restrictions, its intent is certainly consistent with the sﬁeciﬁcation. On a similar note, the
oracle might be a FORTRAN implementation that is being modernized to an Ada implementation
— these two languages have very different mechanisms for specifying types. In each of these
situations, although the module is not equivalent to the oracle, it is not necessarily inconsistent
with the intended function and hence might not be considered erroneous.

We will work, therefore, with a less strict notion of correctness, called conssstency, which is

concerned only with those inputs for which both the module and the oracle are defined.

1

Definition: A module M : Xjps — Zj¢ is consistent with an oracle O(Xp, Zo) if and
only if Vz € (Xpr N Xo) # ¢, 20M(z).
Consistency holds, therefore, only if the module and the oracle are mutually defined for some
elements and the module computes one of the values satisfied by the oracle for each such element

’

otherwise the module results in an error for some test datum.
Definition: Given a module M with Gy = (N, E) and an oracle O(Xo, Zop), let
z € XM Xo. Execution M(z) reveals an output error if z) M(z).

Both equivalence and consistency are defined above in terms of a “standard” oracle, which
judges the correctness of the module’s output for valid input data. A tester often has a concept
of the “correct® behavior of a module and not just its correct output. Rather than waiting until
output is pfoduced to find errors, the tester might check the computation of the module at some
intermeciiate point. This is similar to the approach taken by run-time debuggers and dynamic
analysis systems [Bal69,Fai75,RH75,5tu73], where the behavior of variables and the flow of control
are monitored in an attempt to locate the source of errors.

This approach to testing can be represented with an oracle that includes information about
intermediate values that should be computed by the module — we call this a contezt oracle since
it defines the acceptable contexts for a module’s execution. A context oracle O¢ is a relation
Oc = {((¢,p), Cp(1))}, that relates a test datum and an initial subpath (¢, p) to one or more contexts
Cy(¢) that are acceptable after execution of p on t. Thus, the domain of a context oracle O is
{(t,p) | t € Dpyt € dom(p)). When (¢,p) is Og-related to Cy(t), we write (¢,p)OcCpp). A
context oracle may derive its intermediate information from some correct module, an axiomatic
specification, run-time traces, or monitoring of assertions.

The availability of a context oracle enables a different notion of correctness, which is often more
useful in testing. A module is contezt-consistent with a context oracle if and only if for all test

data, each context produced by execution on that test data is acceptable.

Definition: A module M is context-consistent to a context oracle Oc if and only
if V¢ € Dy, Vip : t €dom(p) | (t,p) OcCh(y-

‘w’“ 3

This notion of correctness enables error detection for partial execution on initial data, analysis of
whether the module behaves robustly on invalid data, as well as testing of non-terminating modules.

Definition: Given a module M with Gyy = (N, E) and a context oracle Og¢, let
n € N, p € INIT(n), and t € dom(p). Execution M(t) reveals a context error at n if

(t,2) PcCp-(nnr) 1)
Thus, execution of a module that is not context-consistent results in a context error for some test

datum.

3. A Model of Fault and Error Detection

In the testing theory introduced by Morrell [MH81,Mor84], an error is “created” when an
incorrect state is introduced at some location, and it is “propagated” if it persists to the output.
We refine this theory by more precisely defining the notion of when an error is introduced and
by differentiating between the persistence of an error through computations and its persistence
through data flow operations. We define similar concepts, origination and transfer,® as the first
erroneous evaluation and the persistence of that erroneous evaluation, respectively.

Depending on one’s approach to testing, an error is detected either by revealing an incorrect
output or by stopping execution and detecting an incorrect context. An error is caused by some syn-
tactic discrepancy, or fault, between the module and some hypothetically-correct module. Testers
seldom know what, if anything, is wrong with a module, however, and it is often difficult to select
data without any particular error in mind. Another way to test is to select test data aimed at
uncovering particular types of faults. The testing scenario might be one in which the tester asks
“what if ... 77 — e.g., “what if this expression is wrong and should be like that?” — and attempts

to determine the effects of such a transformation. The goal here is either to reveal that the trans-

‘We have chosen the term “originate” rather than “create” or “introduce”, because we feel it better connotes the
first location at which an erroneous evaluation occurs and does not imply the mistake a programmer makes while
coding. We have chosen the term “transfer” over “propagate” so as to avoid the connotation of an “increase in
numbers” and instead of “persist” so as not to conflict with Glass’s notion [Gla81], where an error is persistent if it
escapes detection until late in development.

formation is in fact faulty (and thus the original statement is okay) or to reveal that the original
module is faulty. This can be accomplished by selecting test data that distinguishes between the
original module and the alternate produced by the transformation. This approach has been taken
by several testing methods [Bud81,Bud83,Ham77,Zei83] and has been called “error-based testing”
[Mor84,Wey81]. Because of the formal distinction we make between faults and errors, we call it
Jault-based testing.

Our model of error detection formalizes this fault-based testing approach. This approach relies
on an assumption that the module being tested bears a strong resemblance to some hypothetically-
correct module. Such a module need not actually exist, but we assume that the tester is capable of
producing a correct module from the given module and knowledge of the faults and errors detected.
With such a concept of the correct module, the tester should be able to identify the location at
which a fault first originates an erroneous result and monitor the way in which that error transfers
through the module until it is revealed.

In this section, we present a formal model for error detection that is geared toward the detection
of faults by guaranteeing the origination and transfer of errors. As currently formulated, the model
is limited to the detection of errors resulting from a single fault in one node — that is, a fault may
involve more than one statement, but must be wholly contained in one node. We first define faults
and errors in the framework provided in Section 2. 'fhen, we present the concepts of origination

and transfer and define conditions whose satisfaction guarantees the detection of an error for a

specific fault.

3.1 A View of Errors and Faults

An error in a module is caused by one or more faults in that module. Both errors and faults can
be defined in terms of discrepancies between the tested module and some hypothetically-correct

module. Given an oracle O and a context oracle O¢, let M* be a hypothetically-correct module,

which is consistent with O and context-consistent with O¢.

Definition: Given a module M with Gy = (N, E) and a hypothetically-correct mod-
ule M* with Gpge = (N*, E*), a potential fault f, at node n € N is a transformation
on some node n* € N* such that f(n*) =n.

Definition: Given a module M with Gpy = (N, E) and a hypothetically-correct
module M* with Gae = (N*,E*), let EXP be an expression at some node n € N,
EXP* be the corresponding expression at n* € N*, and ¢ €DOMAIN(n). Execution
M(t) results in a potential error in EXP if and only if the value of EXP differs from
the value of EXP* for M*(t) — that is, ezp # ezp®. ®

These terms are qualified by “potential®, because an error may not be revealed even though a
node containing a fault is executed for some test datum. This anomaly, which is often referred
to as “coincidental correctness”, may occur because execution of the node does not originate a
potential error or because a potential error is masked out and does not transfer until it is revealed.
In either case, the module appears correct, but just by coincidence of the test data selected. It is
also possible that despite a discrepancy between the tested module and the hypothetically-correct
module, the tested module produces correct output for all input. In this case, the module is not
merely coincidentally correct, it is correct (consistent), and thus the transformation is not a fault.

To detect a potential fault, erroneous results must appear for some test datum as an incorrect
context (context error) or an incorrect output (output error). To reveal a context error, a potential
fault must originate a potential error that transfers through the node after which an incorrect
context results. To reveal an output error, a potential fault must cause a context error that
transfers from node to node until an incorrect output results.

First, let us consider the original occurence of a potentialAerror within a node: Any potential
fault at a node is a transformation at some smallest subexpression of the node. If this subexpression
evaluates incorrectly, a potential error originates.

Definition: Given a module M with Gpy = (N, E) and a hypothetically-correct
module M* with Gpe = (N*,E*), let n € N,n* € N*, and f, be a potential fault in M
such that f,(n*) = n. Let SEXP be the smallest subexpression of n containing fn and

5When an expression EXP is evaluated during execution, the value of the expression is denoted exp (i-e., upper
case refers to a syntactic expression, while lower case refers to the value of an expression).

10

(73

SEXP* be the correct subexpression of n*. Let t EDOMAIN(n), then f, originates
a potential error for execution M(t) if and only if sezp # sezp®.
A potential error may be masked out by subsequent computations performed within the node
or within other nodes on the path. A potential error in some expression fransfers to a “super”—
expression that references the erroneous expression if the evaluation of the “super”-—expression

remains incorrect.

Definition: Given a module M with Gpy = (N, E) and a hypothetically-correct
module M* with Gpse = (N*, E*), let SEXP be a subexpression of some node n € N,
SEXP?® be the correct subexpression of n* € N*, and EXP be an expression in M
that references SEXP. Let t EDOMAIN(n) such that sezp # sezp® for execution M(t),
then the potential error in SEXP transfers to EXP for execution M(t) if and only if
ezp # ezp®.

A poteniial error may transfer in two different ways. Within a simple statement, the potential
error is used in the computation of the statement. To affect evaluation of the entire statement, the

potential error must transfer through all ancestor operators in the statement’s computation tree.

Definition: Given a module M with Gpy = (N, E), and a hypothetically-correct
module M* with Gpe = (N*,E*), let n € N,n* € N*, and f, be a potential fault
in M such that f,(n*) = n. Let op(...,EXP,...) be a subexpression of n and
op(...,EXP*,...) be the correct subexpression of n°*. Let t EDOMAIN(n) such that
exp # exp® for execution M(t), then the potential error in EXP computationally
transfers to the parent expression op(..., EXP,...) for execution M(t) if and only if

op(...,ezp,...) # op(...,exp*,...).
A potential error may also transfer from statement toAstatement, which is termed data flow transfer.
A potential error transfers through data flow if it reaches another statement — that is, if the
potential error is reflected in the value of some variable that is referenced at some other statement
— and the smallest subexpression containing that reference results in a potential error.?
Now, let us examine how a context error is revealed and is transferred along a path to result in

an output error. We say that a potential error at a node transfers to reveal a context error if the

SNote that the limitation to single faults implies that SEXP* differs from SEXP only by the potential fault.
TWe do not define data flow transfer formally here as it is not the focus of this paper.

11

context is unacceptable after execution of the node.

Definition: Given a module M with Gpy = (N, E) and a context oracle Og, let
n € N, p € INIT(n), and t € dom(p). Let EXP be a subexpression of n such that
execution M(t) results in a potential error in EXP. The potential error reveals a
context error at node n for execution M(t) if and only if 3(n,n') € E such that ¢t €

dom(p - (n,n')) and (¢,p) PcCp (n,m)(1)-
A context error is said to transfer to reveal an output error if the context remains incorrect at least
until some incorrect output is produced.

Definition: Given a module M with Gyy = (N, E), a context oracle Oc, and an

oracle O(Xo, Zo), let n € N, p € INIT(n), and z € dom(p) such that (z,p) PcCp(s).

The context error at node n reveals an output error for execution M(z) if and only

if the following property holds: 3¢ : z € dom(p-q), zPM(z) and Vg; : ¢ = ¢; - gj,z €

dom(p - ¢;) such that (z,p) PcCp.q,(z)-

To reveal a context error, evaluation of the potential fault on some test datum must originate

a potential error and transfer that potential error through all ancestor operators to the root of the
node. To reveal an output error, this incorrect context must then transfer through data flow to
other statements on the path, where the potential error that results in each such statement must
transfer through computations in that statement, until some statement produces erroneous output.
Only if an output error is revealed do we know that the module is incorrect (inconsistent).

Definition: Given a module M with G)s = (N, E) and a hypothetically-correct
module M* with Gpre = (N*,E*), let n € N, n®* € N*, and f, be potential fault in M
such that f,(n*) = n. f, is a fault in Gy if and only if 3z € Xps) Xase such that
M(z) reveals a context error that transfers to reveal an output error. Otherwise, n is
equivalent to n°.

Thus, by definition, a potential fault is a fault only if it produces incorrect output for some test
datum.

Figure 1 illustrates the origination of a potential error and its transference throughout a module
and how this provides for the discovery of a fault. To detect a fault, execution of a potential fault
for some test datum must 1) 6riginate a potential error in the smallest containing subexpression;

2) transfer that potential error through each ancestor operator in the node, thereby revealing a

12

output

context
error

error

computational
transfer

data flow
transfer

Figure 1: Origination and Transfer of Errors

context error; and 3) transfer that context error through each node on the path to reveal an output
error. If there is no test datum for which a potential error originates and “total” transfer occurs,
then the potential fault is not a fault, and the node containing the potential fault is equivalent to

some hypothetically-correct node.

3.2 Exami)le

The module in Figure 2 is used in this section to illustrate potential faults and the origination
and transfer of potential errors produced by those faults.

Suppose that the assignment statement at node 4 should be Z := (2 + Y) + A. First, let us
consider a test datum that results in an output error and demonstrates that the module is indeed
incorrect. If node 4 is executed for the test datum (A =1,B= -2, X =2,Y = 4), a potential
error originates — (2 # 4) # (2 + 4). This potential error transfers through the multiplication
operator — (8 #1) # (6 + 1) — and the assignment operator — (Z := 8) # (Z :=6) — thereby
revealing a context error. This context error is not affected by the conditional statement at node

5. Next, the context error transfers through the computation of V at node 6 — (V := (—2)#+8) #

13

(V := (~2)++6), which is output at node 8. Thus, execution of the module for the test datum
(A=1,B=-2,X =2,Y = 4) reveals an output error.

Now, consider the ways in which a potential fault might fail to result in an error. First,
let us consider a context error that does not transfer to an output error. For the test datum
(A=1,B=-1,X=2Y = 4), which follows the same path as that above, a context error is
revealed at node 4 and reaches the reference to Z at node 6, but it is masked out by the computation
of V.— (V := (=1) ##(2+4)) = (V := (—1) ##(2+4)). Thus, the context error does not transfer to
the output. Next, let us consider failure to reveal a context error. An incorrect context may not be
revealed because no potential error originates for the test datum selected. For instance, ifnode 41is -
executed for (A =1, B = —1,X = 2,Y = 2), a potential error does not originate — (2+2) = (2+2).
Finally, a potential error may not transfer to affect evaluation of the node. Consider node 3 and
suppose that the assignment statement should be Z := (2 + X) # A. Execution for the test datum
(A=0,B=-1,X = 4,Y = 2) originates a potential error — (2*4) # (2+ 4) — but it does not
transfer through multiplication by A — (8 +0) = (6 + 0). In fact, this potential fault is not a fault
because any potential error that originates at node 3 does not transfer since A = 0.

In addition to illustrating the variety of faults and errors, this example demonstrates how
coincidental correctness occurs when potential errors are masked out by later computations in a
node or along a path. Although this is a contrived example, coincidental correctness is a common
phenomenon of testing. If coincidental correctness did not occur, a single arbitrary execution of a
node would reveal all faults in that node. Thus, most of the problems associated with test data
selection would be eliminated. A goal of test data selection criteria, therefore, is to minimize the

occurrence of coincidentally correct results by astutely selecting test data aimed at detecting faults,

through the origination and transfer of errors.

14

(netare)

@: input A, B, X, Y)

(224=00)

T ! F

(3: Z:= (2tX)tA) (4: Z = (2sY)sA)

}
(sax>v7)
T |

E

(&vi=Bez) ((T:V:i=Bez)

(8: output V)

(. tina)

Figure 2: Error Origination and Transference Example

15

3.3 Error Detection

Here, we provide ;1 model of error detection whereby test data is selected that originates a
potential error that transfers until that error is detected. This model uses the concepts of origination
and transference to define necessary and sufficient conditions to guarantee that a context error is
revealed.

Given an oracle and a module M with Gas = (N, E) that contains a potential fault f, at node
n € N, a test data selection criterion S is said to guarantee detection of a fault f, if for all test
data sets Ty where (Gas,Tas) satisfies S, there exists ¢ € Tjs such that f;, originates an error for
M(t) that transfers until it is revealed by the oracle. If a context oracle exists, the potential fault
must reveal a context error for some test datum. ’

Definition: Given a context oracle Oc and a module M with Gjpy = (N, E) that
contains a potential fault f, at node n € N, a test data selection criterion S guarantees
detection of f, if and only if YTy such that S(Gas,Tar),3p € INIT(n),3(n,n’') €
E,3t € dom(p- (n,n')) N Tas such that (¢,p) OcCp(y) and (,p) PcCp.(n,n)(e)-

If error detection is done by a standard (output) oracle, then a context error revealed by f, must

also transfer to the output for some test datum.

Definition: Given an oracle O(Xp,Zp) and a module M with Gy = (N,E)

that contains a potential fault f, at node n € N, a test data selection criterion

S guarantees detection of f, if and only if VT)s such that S(Gp,Th),3p €

INIT(n),3q,3z € dom(p -)\ Xps such that (¢,p)PcCp), Zp-g PM(z), and Vg; such

that g=g¢; - QJ’(sz) ¢C’Cp-q.(s)
Note that guaranteeing detection of an output error is the same as guaranteeing detection of the
corresponding fault. Guaranteeing detection of a context error is not sufficient, however, because
it is possible that the context error is not transferred to the output.

Let us assume, for the purposes of this paper, that a context oracle exists. We are concerned,

then, with the ability of a test data selection criterion to guarantee the detection of a context error.

Here, we define origination, transfer, and revealing conditions that are necessary and sufficient to

guarantee that a context error is revealed. Sufficient means that if the module is executed on data

16

that satisfies the conditions and the node js faulty, then a context error jg revealed. Necessary, on
the other hand, means that if a context error js revealed then the module must have been executed
on data that satisfies the condition and the node j3 faulty.

These conditions are defined for a potential fault independent of where the node occurs in the
module. The test data selected, however, must execute the node within the context of the entire
module. Thus, for a potential fault at node n, such test data are restricted to DOMAIN(n). If
the conditions are snfeasible within DOMAIN(n), then no context error can be revealed and the
potential fault is not a fault. Although, in general, this is an undecidable problem, it can usually
be solved iq practice.

The origination condition guarantees that the smallest subexpression containing a potential

fault originates a potential error.

Definition: Given a module M with Gpy = (N, E) and a hypothetically-correct
module M* with Gpre = (N*, E*), let n € N,n* € N* and f, be a potential fault in M
such that f,(n*) = n. Let SEXP be the smallest subexpression of n containing f,, and
SEXP* be the correct subexpression of n*, then the origination condition for f, is
oc(fn) = (sexzp # sezp®). A test data selection criterion S guarantees origination of
a potential error for f, if and only if VTs such that S(Gpg, Tas), 3t € Ty that satisfies
oc(fn)-
The origination condition is the necessary and sufficient condition that must be satisfied by test
data to guarantee that the smallest subexpression containing a potential fault originates a potential
error. If the origination condition is infeasible, then the potentially faulty expression is equivalent
to the correct one, and no fault exists.

The origination condition, as currently defined, is dependent on knowledge of the correct node.
Not only do testers not know the correct node, they probably do not even know that a particular
node is faulty. Thus, we need a notion of fault detection that is generally applicable, rather than
guided by specific knowledge of the existence of faults. This can be achieved by working under

the assumption that any node, in fact any subexpression of any node, might be incorrect and

considering the potential ways in which that expression might be faulty. These potential faults can

17

be grouped into classes based on some common characteristic of the transformation. For a given
class of potential faults in an expression, our goal is to define conditions that guarantee origination
of a potential error for any potential fault of that class.

A class of potential faults determines a set of alternative expressions that must contain the
correct expression, if the original expression indeed contains a fault of that class.

Definition: Given a module M with Gas = (N, E), let n € N and F, be a class of

potential faults at n. Let SEXP be the smallest subexpression of n contain_i_ng_iny

fa € F,, then the alternate set for F,, ALT(F,), is the set of expressions {SEXP |

3fn € Fy, such that f,(SEXP) = SEXP).
Assuming that we do not know the correct expression, then to guarantee origination of a potential
error, the potentially faulty expression must be distinguished from each expression in the alternate
set.

Consider the expression EXP; + EXP2, for instance. One class of potential faults that may

occur in this expression is the class of arithmeﬁc operator faults. If the operator + is faulty, then the
correct node must be of the form EX P, aop EX P, where a6p is not +. Thus, the alternate set for
the class of arithmetic operator faults in the expression EXP; + EXP; is {EXP, aop EXP; | a6p
is an arithmetic operator other that +}. To guarantee origination of a potential error, test data
must be selected that distinguishes EXP; + EXP; from each alternate in the set.
" Inour model, then, an origination condition is defined for each altemativq expression. Each
such condition guarantees origination of a potential error if the corresponding alternate were indeed
the correct expression. When such an origination condition is infeasible, the alternate is equivalent
to the potentially faulty expression — thus, if this alternate was intended, the potential fault would
not constitute a fault.

To guarantee detection of a fault in a class, we must guarantee that the potentially faulty
expression is distinguished from each nonequivalent expression in the alternate set as any one of
these might be the correct expression. Thus, all feasible origination conditions must be satisfied.

For a fault class, we define a set of conditions, called the origination condition set, that guarantees

18

S

origination of a potential error in an expression, if the expression contains a fault of this class.

Definition: Given a module M with Gas = (N, E), let n € N and F, be a class of
potential faults at n. Let SEXP be the smallest subexpression of n containing any
fa € Fa, then the origination condition set for F, is the set of origination conditions

OC(F,) = {[(sexzp # 5ezp) | SEXP € ALT(F,) such that 3t € DOMAIN(n) that

satisfies (52Zp # sezp)]}. A test data selection criterion S guarantees origination of

a potential error for a fault class F, if and only if S satisfies OC(Fn) — that is, YTy

such that S(Gpr,Tar), Yoc € OC(F,), 3t € Tpy that satisfies oc.
The origination condition set is necessary and sufficient to guarantee that a potential fault of a
given class originates a potential error. ‘

To reveal a context error, a potential error originated at the smallest subexpression containing

a potential fault must transfer to effect evaluation of the entire node. To do so, it must transfer

through all ancestor operators up to and including the operator at the root of the node. The

transfer condition guarantees that a potential error transfers to a parent expression.

Definition: Given a module M with Gy = (N, E) and a hypothetically-correct

module M* with Gpe = (N*,E*), let n € N,n* € N* and f, be a potential fault such

that f,(n*) = n. Let op(..., EXP,...) be a subexpression of n and op(...,EXP*...)

be the correct subexpression of n®. Let ¢t EDOMAIN(n) such that ezp # ezp® for

execution M(t), then the transfer condition for op is tc(op) = op(...,ezp,...) #

op(...,ezp%,...). A test data selection criterion S guarantees transfer of a potential

error in EXP through the operator op if and only if YT, where S(G 'M>Ta), 3t € T

that satisfies tc(op).
The transfer condition is the necessary and sufficient condition that must be satisfied by test data to
guarantee that a potential error in a subexpression transfers to the parent expression. If a transfer
condition for op is infeasible, then no potential error can be. transferred through op to affect
evaluation of the parent expression — thus, op(...,EXP,...) is equivalent to op(...,EXP*,...).

The transfer conditions that must be satisfied for a potential error are determined by the

operators in the node containing the potential error. To guarantee transference of a potential error,
the transfer condition must be satisfied for each operator that is an ancestor of the subexpression

in which the potential error originates. The node transfer condition is the conjunction of all such

transfer conditions and must be satisfied to guarantee transfer through the entire node.

19

a criterion must select a single test datum that satisfies both the origination and node transfer
conditions to guarantee a fault’s detection. The revealing condition for a potential fault f, occurring

in node n is the conjunction of the origination condition and the node transfer condition for f, and

n.

The revealing condition is the necessary and sufficient condition that guarantees that the potential
fault reveals a context error. If the revealing condition is infeasible, then no data exists for which a

context error can be revealed, and the potentially faulty node and the correct node are equivalent.

condition in this set must be satisfied by a test data selection criterion to guarantee that a context

error is revealed for any fault in a particular fault class. The revealing condstion set contains a

Definition: Given a module M with Gy = (N, E) and a hypothetically-correct mod-
ule M* with Gpge = (N*,E®), let n € N,n* € N° and f, be a potent.ial fault su.ch
that f,(n*) = n. Let SEXP be the subexpression in which the potential error orig-
inates, where the node n has the form op,(...,ops(...,0op4(...,SEXP,...),...),...).
The node transfer condition for f, is TC(fn) = Atc;,1 < 1 < t, where ic; is the
transfer condition for the operator op;. A test data selection criterion S guarantees
transfer of a potential error in SEXP through the node n if and only if VT, where
S(Gat, Tar), 3t € Ty that satisfies TC(f,).

Since a potential fault must both originate a potential error and transfer it through the node,
/

Definition: Given a module M with G)s = (N, E) and a hypothetically-correct mod-
ule M* with Gape = (N*,E*), let n € N,n* € N* and f, be a potential fault such that
Ja(n*) = n. Let SEXP be the subexpression in which the potential error originates,
where the node n has the form opg(...,opz(...,0opy(...,SEXP,...),...),...). The
revealing condition for f, and n is rc(fa) = oc(fa) A (Atc;i,1 < § < t), where each
te; is the transfer condition for the operator opj. A test data selection criteria S guar-

antees revelation of a context error for f, if and only if VT such that S(Gur,y Tha),
3t € Ty that satisfies rc(f,).

Again, for a fault class, a revealing condition exists for each alternative expression. Each feasible

revealing condition for each alternate in the alternate set.

Definition: Given a module M with Gy, = (N,E), let n € N and F, be a class of
potential faults at n. Let SEXP be the smallest subexpression of n containing any f, €
Fyn. where the node n has the form opt(...,opz(...,opy(...,SEXP,...),...),...).
The revealing condition set for F, is the set of revealing conditions RC(F,) =

20

{oc A (Ate;,1 i< t) | oc = (sexp # 5ezp), SEXP € ALT(F,) mudl tiry 'is the teeamuffor
condition for the operator opj such that 3t € DOMAIN(n) that sattiifies ({oc A (Attg;, ! €
i < t))}. A test data selection criterion S guarantees revelatiomaff acmntext emmr ftor
a fault class F, if and only if S satisfies RC(F,) — that is, VIas suxth et Si{Ghvg iaer)),
Vrc € RC(F,), 3t € Ty that satisfies re.
The revealing condition set is necessary and sufficient to guarantee tiiutt 2 putiemtiadl ikt of a
particular class reveals a context error.

Our model of error detection is based on the generic revealing condiiiom seits theeti Heoe een
defined. The model is applied by selecting a fault classification and usttamtfing e onigimation
and transfer conditions for the classes of faults. These instances of thre cfimstiom amdl tiransiier
conditions are then evaluated on the nodes in a module’s control flow gragih tiw growidt: the: ol
revealing condition sets that must be satisfied to guarantee the detectinm aff amy ffmikt i thhe dhmeen
classification. The next section provides an instantiation of the model fon ffime clzeses off fEailis amd
then illustrates this instantiation on several nodes of a module.

As noted, the model is currently limited to the detection of contextt emoms. THus, the meweslling
condition set is necessary, but not sufficient for the true detection of a fmilt. THils it hecanse
the context error introduced by satisfaction of these conditions may stfiill b myeslient] onti By etter
computations on the path and thus not transfer to produce an outputi emmr. T diswithe tthe
conditions under which a criterion guarantees the detection of a fault off = grantimitar ollesss tfhwongh
an output error, this condition set must be augmented to include datw fow tnzmifer comditians.
We believe that our model of defining conditions that guarantee the euigititm mudl thandfermmoe
of an error will not require reformulation when extended to include tramsffer fixem mudle tw mode 28
described by data flow transfer conditions.

The model is also limited to detecting errors that result from a single fmilt itn @ modie. When
detecting context errors, this is not a significant limitation. Error detestim sam gumusedl fizmm mode
to node where each node in the module is considered only after all of it preaduessons {(wikh the
exception of loops) have been considered. If a context error is detected att = mudls, tiee potemtiidl Fals

21

is corrected before proceeding to any successor node. This ensures that the context is acceptable
prior to execution of the node under consideration. This limitation may be more of a weakness
when data flow transfer is considered, since we must then be concerned with the interaction between
statements. We intend to recomsider the limitations of this restriction when we extend the model
to data flow transfer conditions.

We believe that our model of error detection is applicable to a wide variety of fault classes.
The model leads to more rigorous results than other criteria that are geared toward detecting these
faults. This is shown in another paper [RT86a], where we use the model to evaluate the capabilities

of three test data selection criteria in relation to the five fault classes illustrated in Section 4..

4. Application of the Model

In this section, we apply the model developed in Section 3 and develop revealing conditions for
context errors for five fault classes. These five classes have been selected because of their relevance
to a number of test data selection criteria, in particular those criteria analyzed in [RT86b).

There are two qualifications of this application that should be noted. First, each class for which
revealing conditions are developed is a class of atomic faults, where a (potential) fault f, is atomic
if the node n differs from the correct node n*® by a single token. Atomic faults may be classified
according to what token in a node is faulty and how it differs from the correct node. Likewise, a class
of atomic potential faults is determined by the class of all semantically-correct replacements for the
token. Second, we represent each simple statement and the predicate of each conditional statement
in a module as a single node in the control flow graph. Thus, the transfer conditions developed
are computational transfer conditions. In sum, the application presented in this section provides
revealing conditions for context error for single statements potentially containing an atomic fault
in one of five classes.

To determine the revealing conditions for a class of potential faults, we must instantiate the

origination condition set for the class as well as the applicable transfer conditions. The transfer

22

conditions through a particular operator, however, do not depend on the fault and are applicable
to many classes of faults. Hence, this section is divided into three.subsections. First, for each class
of faults, we develop the origination condition set. Then, we derive the transfer conditions for four
types of expressions — assignment, booleh, arithmetic, and relational. Finally, we demonstrate
how revealing conditions for context errors are formed by combining and evaluating the origination
conditions for a fault class at a subexpression of a node and the applicable transfer conditions for

an expression.

4.1 Origination Conditions

To develop the origination condition set for a class of faults, we first determine the alternate
set, and then derive the origination condition for each alternate. Each origination condition must
be both sufficient and necessary to guarantee origination of a potential error for the corresponding
alternate. Sufficiency means that if the expression should be the alternate and the module i3
executed on a test datum satisfying the origination condition, then a potential error does originate.
Necessity means that if the expression should be the alternate and the module js pot executed on
a test datum satisfying the origination conditions, then a potential error does not originate.

To guarantee origination of a potential fault in a particular class, the original expression must
be distinguished from each of the nonequivalent alternates. A test datum must be selected that
satisfies each feasible origination condition, thereby satisfying the origination condition set. One
or more origination conditions in the origination condition set may consist of disjunctive condi-
tions that overlap (thus, satisfying the common disjunct serves to satisfy each such origination
condition). When this is the case, we may reduce the origination conditions in the origination
condition set forming a sufficient origination condition set whose satisfaction implies satisfaction
of the origination condition set. This reduction process must ensure that each origination condition
in the origination condition set has a nonempty intersection with some origination condition in the

sufficient origination condition set.

23

variable referenced origination condition set
1% {[T# v |V is a variable other than V
that is type-compatible with V]}

-

Table 1: Origination Condition Set for Variable Reference Fault

4.1.1 Origination of a Variable Reference Fault

A potential error may result when the name of a referenced variable is mistakenly replaced by
another valid variable name. Any variable reference is potentially faulty. Given a reference to a
variable V (a potential access to the value of V), if V is a faulty variable name, then the correct
reference must be in the alternate set {{V | V' is a variable other than V' that is type-compatible
with V1]}.

For a variable reference V, the origination condition for a variable V in the alternate set is
[v # v]. This origination condition is both necessary and sufficient to originate a potential error,
since an expression could reference V for V and not originate a potential error if and only if (v="9)
for all data in a test data set. If this condition is not feasible, then the original and the alternate
variable references are equivalent. The origination condition set contains this origination condition
for each V in the alternate set and therefore is {[# v | V is a variable other than V' that is

type-compatible with V]}. The origination condition set is summarized in Table 1.

4.1.2 Origination of a Variable Definition Fault

A potential error may result when the name of a defined variable is mistakenly replaced by
another valid variable name. Given a definition of a variable V := EXP 8, if V is a faulty variable

name, then the correct definition must be in the alternate set {[V := EXP |V is a variable other

%Here we use the assignment operator := in the general sense to include all types of expressions that may result
in a variable definition (e.g., procedure call).

24

than V that is type-compatible with V]}.

The origination condition for an alternate V distinguishes between the assignments V := EXP
and V := EXP. To distinguish these assignments and originate a potential error, either the two
variables, V and V, must have different values immediately before execution of the assignment or
the value assigned to the variable must differ from its value immediately before execution of the
assignment. The origination condition, therefore, is [(¥ # v) or (ezp # v)).

To demonstrate that this condition is both necessary and sufficient to originate a potential error
see table 2, which enumerates all combinations of the values of pertinent variables and expressions
for both the original and the alternate before and after evaluation of the statement. For cases
i,ii, and iii, the values of V and EXP satisfy the origination condition, and evaluation of the
assignment statement originates a potential error. In cases i and iii, evaluation of the original
expression V := EXP results in V # v, while evaluation of the alternate V = EXP results in
V = v. In cases ii and iii, evaluation of the statement V := EXP results in V # v, while for
V := EXP V = v results. Thus, the origination condition is sufficient to originate a potential
error for a variable definition fault. To see that the condition [(ezp # v) or (¥ # v)] is necessary,
consider case iv for which the origination condition is not satisfied. Evaluation of the original
and the alternate statements result in the same values for the variables; hence no potential error
originates.

The origination condition set for a variable definition fault at the statement V := EXP is
stated in Table 3 — {[(¥ # v) or (ezp # v) | V is a variable other than V that is type-compatible
with V]}.

Note that each origination condition in the origination condition set includes the condition
(exzp # v). If this single condition is satisfied, the origination condition set is satisfied. Thus,
(ezp # v) is sufficient to guarantee origination of a potential error for a variable definition fault,
and the set {[ezp # v]} represents a sufficient origination condition set. When the condition

(ezp # v) is infeasible, however, the the set {[7 # v | V is a variable other than V that is type-

25

Values Values After
Before Assignment Evaluation
Original Alternate
V:=EXP|V:=EXP

i (T#v) V=uv V=v

(ezp = v) V#v V=uv

ii | (v=v) V#vu V=yv

(ezp # v) V= V#v

ii | (T#v) V#vu V=v

(ezp#v)| V= V#v

iv| (v=v) V=uv V=uv

(ezp=v)| V=v V=uv

Table 2: Variable Definition

" assignment | origination condition set ﬂ

V:=EXP | {{(T# v) or (ezp # v) | V is a variable other than V
that is type-compatible with V]}.

Table 8: Origination Condition Set for Variable Definition Fault

26

compatible with V]} must be satisfied to guarantee origination of a potential error for a variable

definition fault.

4.1.3 Origination of a Boolean Operator Fault

A potential error may result when a boolean operator is mistakenly replaced by another boolean
operator. The boolean operators we consider are the binary operators or and and and the unary
operator not.

Consider first a potentially faulty unary boolean operator. Given a boolean expression
bop (EXP,), where the boolean operator is nct or null, if the unary boolean operator bop is
faulty, then the correct expression is equivalent to the expression (not bop (EXP,;)). Hence, the
alternate set is {(not bop(EXP,))}. The origination condition is [ezp, # not ezp,], which is satis-
fied by all values of ezp;. Therefore, we need only guarantee execution of the statement containing
the expression EXP, to guarantee origination of a potential error for this particular fault.

Consider now a potentially faulty binary boolean operator. Given a boolean expression

(EXP; bop EXP;), where bop is and or or, if the binary boolean operator bop is faulty, then

the correct expression must be in the alternate set {(EXP; bop EXP;) | bop is a binary boolean
operator other than bop }. If bop is and, then (EXP; and EXP;) must be distinguished from
(EXP, or EXP,); vice versa, if bop is or. The origination condition for either binary boolean
operator and its alternate is [(exzp; and ezp;) # (ezp; or expz)] or simply [ezp; # ezp;]. Table 4
enumerates all possible cases for this expression, from which it is clear that this condition is both
sufficient and necessary to originate a potential error. In cases ii and iii, the origination condition is
satisfied, and a potential error originates. In cases i and iv the origination condition is not satisfied,
and the original expression and the alternate expression evaluate the same. Thus, a potential error
originates if and only if the origination condition [ezp; # ezp,] is satisfied.

The origination condition set, summarized in Table 5, contains the single condition that [expy #

ezpz], which is satisfied when exactly one operand is true.

27

e
expy | exp2 not (EXP]) (EXP] and EXPz) (EXP[or EXPz) E

i | true | true true true
ii | true | false Jalse true
iti | false' | true true

Jalse

iv | false | false

Table 4: Boolean Operator Evaluation

" operator | origination condition set i

not, null { [true] }
and, or {[ezp) # ezp2]}

Table 5: Origination Conditions for Boolean Operator Fault

4.1.4 Origination of a Relational Operator Fault

A potential error may result when a relational operator is mistakenly replaced with another
relational operator. We consider six relational operators: <,<,=,2,>,#. Given a relational
expression (EXP, rop EXP;), if the relational operator rop is faulty, then the correct expression
must be in the alternate set {(EXP; ¥6p EXPF;) | Fop is a relational operator other than rop }.
Each origination condition depends on both original and alternative relational operators.

For any relational expression, there are three possible relations for which test data may be
selected — (ezp;<ezpz), (ezpy = ezpz), (exp1>expz). Table 6 enumerates the evaluation of any
relational expression with data satisfying these three relations, which is useful in developing the
origination condition set for the class of relational operator faults for each relational operator.
As an example, let us construct the origination condition set for the relational operator <. We
must determine the origination condition that distinguishes (EXP; < EXP;) from each alternate
(EXP,YopEXP;). The operator = is one alternative operator; the origination condition that

distinguishes (EXP; < EXP,) from (EXP; = EXP;) is [(exp1 < ezpz or (ezp) < ezpz)]. As seen

28

e —————————————eeeeeeee e et ———nt

test data relation
expression evaluated | (ezp1<ezpz) | (expy = ezp;) [(ezp;>ezps)

(EXP, < EXP,) true true false
(EXP<EXP,) true Jalse false
(EXP, = EXP,) Jalse true Jalse
(EXP, # EXP,) true Jalse true
(EXP,>EXP;) false false true

i (EXP 2> EXP,) false true true

Table 6: Relational Operator Evaluation

from table 6, for a test datum satisfying either of these two relations, the original and alternative
expressions evaluate differently; this condition is, therefore, sufficient for origination of a potential
error. For a test datum satisfying (ezp; > ezpz), which does not satisfy the origination condition,
the expressions evaluate the same; hence, this condition is necessary for origination of a potential
error. The origination conditions for the other alternative operators are derived similarly. The

origination conditions for relational operator faults are summarized in Table 7.

The origination condition set for the class of relational operator faults for a particular operator
is the set of all origination conditions that distinguish that original operator from some other
alternate. For a less than (<) fault, for instance, the origination condition set is {[ezp) = ezp,],
[(ezp1<ezpz) or (exzpy = exp;)), [ezpr>ezps), [(ezp1<ezps) or (ezpy = ezpz) or (ezpi>ezp2)],
[(ezp1 <ezpz) or (expy>ezp2)]}. The origination condition sets for other relational operator faults
are derived similarly.

For a particular relational operator, a test datum relation may satisfy the origination condition
for more than one alternate. As was done with the origination condition set for variable definition
faults, the origination condition set may be reduced to form a set of origination conditions that is
sufficient for origination of a potential a potential error. When all test data relations are satisfiable,

reduction of the origination condition set for any particular relational operator results in two

29

operators unsimplified origination condition origination condition

<, < [ezp1 = exp2] [ezpr = ezp2]
<,= [(ezp1<ezpz) or (ezpy = ezp)) [ezpy < ezp.]
<, # [ezp1>ezps] [ezp1>ezp]
<2 [(ezp1<ezpz) or (ezpy = ezpz) or (ezpy>ezpe)] [true]
<,> [(ezp1<ezpz) or (ezp1>ezp2)] [ezp1 < ezps]
<,= [ezp1<ezpo) [ezp1<ezp,]
<,# [(ezp1 = ezpz) or (ezp1>ezp2)] [(ezp1 2> ezp,]
<2 [(ezp1<ezpz) or (ezp1>ezp2)) [ezpy # ezps]
<,> [(ezp1<ezpz) or (ezpy = ezp2) or (ezpy>ezp2)) [true]
=,# [(ezpy<ezpz) or (ezp; = ezpz) or (ezp1>ezp2)] [true)
=2 [ezp1>ezp;] [ezp1>ezpo]
=,> {(ezp1 = ezpz) or (ezp1>ezp2)] [ezp1 > ezp,)
#2 [(ezp1<ezps) or (ezp1 = ezps)] [ezp1 < ezpy)
%> [(czp1 <eapz) or (eapy = eaps) [e2p1 < ezpa)
>,> [ezpy = ezpy) [ezpy = ezp.]

Table 7: Origination Conditions for Relational Operator Faults

conditions that must be satisfied. These sufficient origination condition sets are summarized in
Table 8. It is important to remember that when the sufficient origination condition set is infeasible
due to the semantics of the program — that is, at least one of the two conditions cannot be satisfied
due to the domain of the statement containil;g the relational expression — it is possible that an
alternate that is not equivalent to the original expression has not yet been distinguished. If the
third relation is feasible, data that satisfies it must be selected to ensure that all nonequivalent
alternates are distinguished.

Consider for example, the origination condition set for the relational operator <. The sufficient
origination condition set for this operator is {[ezpy = ezpy], [exp1>ezp.]}, since at least one of
the relations in the set satisfies the origination condition for each alternate. Suppose, however,
that (ezpy = ezp;) is infeasible; a single datum satisfying the relation (ezp;>ezp,) is not sufficient

to distinguish (EXPi<EXP,) from (EXP, = EXP,); data for which (ezp1<ezpz) must also

30

operator origination condition set sufficient condition set
< {lezp1 = ezpa), [ezp1>ezps], {lezp1 = ezpq], [ezp1>ezpy]}
[(e2p1<eapz) o (ezpy = ezps)),
[(ezp1<ezpz) or (ezpy>ezp2)),
[(ezp1 <ezpz) or (ezpy = ezpz) or (ezpy>ezp.)]}

{lezp1<ezps), [ezpy = expy]}
{lezp1<ezpe), [ezp1>ezp,]}
{[ezp1<ezpz], [exp1>ezp.]}

{[ezp1 = ezpz], [ezpy>ezp;]}

{[ezp1 <ezpq], [ezp) = ezp,]}

VIV I %IA

Table 8: Origination Condition Set for Relational Operator Fault

be selected to guarantee origination. If (ezp;<ezp:) is also infeasible, then (EXP,<EXP;) and
(EXP, = EXP,) are equivalent.

4.1.5 Origination of an Arithmetic Operator Fault

A potential error may result when an arithmetic operator is mistakenly replaced by another
arithmetic operator. We consider six arithmetic operators: +, —, %, ## (real and integer operands),
/ (real division), and div (integer division), and we assume both operands to be of the same type.
Given an arithmetic expression (EXP, aop EXP,), if the arithmetic operator is faulty, then the
correct expression must be in the alternate set {(EXP, acp EXP,) | a6p is an arithmetic oper-
ator other than aop that is type-compatible with EXP, and EXP,}. Each origination condition
depends on the original and alternative arithmetic operators.

The general form of an origination condition for an alternate is [(ezpy +czpz) # (ezp1ToPezp2)].
For some alternates, it is possible to determine a simpler origination condition by determining the
conditions under which the alternate and the original expressions evaluate equivalently and com-
plementing. For example, consider the origination condition to distinguish between the operator +

and an alternate operator —. The original expression (EXP;+EXP;) and the alternate expression

31

RPRY 7505

(EXP,-EXP,) are indistinguishable only when (ezpz = 0). Thus, the origination condition is the
complement, [ezp2 # 0]. Origination conditions are not, however, always this easy to simplify, so

we report here only the general origination conditions in Table 9.

S —
operators origination conditions

+,- [(ezpr+ezpz) # (ezp1—ezp2)]
+, 4 [(ezpr1+ezpz) # (exprvezp2)|
+,/ [(ezp1+ezpz) # (ezp1/ezpz))

+,div | [(ezp1+ezpz) # (ezpr div ezp2))
+, 44 [(ezp1+ezpz) # (ezprssezps)]
—,* [(ezp1—ezpz) # (ezp1+ezp2)|
-/ [(ezp1—ezpz) # (ezp1/ezp2)]
—,div | [(ezp1—ezp2) # (exzps div ezp2)]
—, * [(ezpy—ezpz) # (ezpr+ezpy))

*/ [(ezpr+ezpz) # (ezp1/ezp2))
+,div [(ezpy*ezp2) # (ezpy div ezpz)]
*, 48 [(ezp1+ezpz) # (ezpr*sezp:)]

, #4 [(ezp1/ezpz) # (expr**ezp2)]
»+ div | [(ezpy#*ezps) # (ezpy div exp2)

l\

Table 9: Origination Conditions for Arithmetic Operator Faults

The origination condition set for the class of arithmetic operator faults for a particular op-
erator is the set of all origination conditions that distinguish that original operator from some
alternate. The origination condition set for a faulty addition (+) operatbr, for example, is
thus {[(ezp1+ezpz) # (ezp1—exp2)), [(ezpr+ezpz) # (exprtezpz)),[(ezpitezpz) # (ezp1/ezpz) or
(ezpy+ezpz) # (expr div exps) ® |, [(ezpr1+ezps) # (ezpr*+ezpz)]}. The origination condition sets

for all arithmetic operator faults of a particular type are derived similarly.

9QOnly one of these conditions is applicable, depending upon the type of the operands.

32

operator origination condition set

+ {[(ezpr+ezpz) # (ezp1—ezp2)],
[(ezp1+ezpz) # (exprrezp:)),
[(ezp1+ezpz) # (exp1/ezps) or
(ezpr+ezpz) # (ezpy div ezp,)),
[(ezps+ezps) # (ezpr*+ezpy)]}.

= .}
* {...}
[{.}
4 {...}

Table 10: Origination Conditions for Arithmetic Operator Fault

4.2 Transfer Conditions

In this section, we develop the computational transfer conditions for four types of operators:
assignment, boolean, relational, arithmetic. Transfer conditions are provided for both unary and
binary operators of these types. The expression tree for any n-ary operator of these types is the
binary translation of the n-ary tree derived using associativity rules.

A computational transfer condition guarantees that a potential error in an operand of an ex-
pression is not masked out by the computation of a parent operator. Thus, given an expression
(EXP, op EXP;), where a potential error exists in EXP;, the transfer condition guarantees that
(EXP, op EXP,) also produces a potential error. ‘More specifically, given EXP; containing a
potential fault and EXP; an alternate, the existence of a potential error in EXP; implies that
EXP, # EXPy, and the transfer condition guarantees that (EXP,op EXP;) # (EXP,opEX P).
The transfer condition is the complement of the conditions under which a potential error is not

transferred.

4.2.1 Transfer through Assignment Operator

When each node contains only a single simple statement, the transfer condition through an
assignment operator guarantee that (V := EXP) # (V := EXP). This condition is trivial since
for assignment V := EXP, any potential error produced by evaluation of EXP is reflected in
the context after assignment to V. Thus, for this application, the transfer condition through an

assignment operator, stated in table 11, is simply (true)

operator expression transfer condition
= V:i=EXP#V:=EXP true

Table 11: Transfer Conditions for Assignment Operator

4.2.2 Transfer through Boolean Operator

For transfer through a boolean operator, we must consider both unary as well as binary boolean
operators.

Consider first transfer through a unary boolean operator. The unary boolean transfer condi-
tions guarantee that not (EXP,) is distinguished from not (EXF;), where EXP; and EXPF; are
distinguished. From Table 12, we see that no additional conditions are necessary for tramsfer of
a potential error in a unary boolean expression because not (ezpy) # mot (eZpy) if and only if
ezpy # €Ipy.

The binary boolean transfer conditions guarantee that an expression (EXP, bop EX P,)
is distinguished from (EXP; bop EXP,) and (EXP, bop EXP,) is distinguished from
(EXP; bop EXPF;), when EXP, and EXP; are distinguished. Since the binary boolean op-
erators are commutative, we need not develop separately the transfer conditions for a potential
error in the right operand. The binary boolean transfer conditions depend upon the boolean oper-

ator. For the boolean operator and, we see from Table 12 that (exp; and ezpz) # (¢%57 and ezps)

34

ezZp1 | €Ip; | exp2 | ezp; and exp; | €Zpy and ezps | ezp; or €Ip2 | €xpy OF exps
true | false | true true false true true
true | false | false false false true Jalse
false | true | true false true true true
false | true | false false false false true

Table 12: Boolean Expression Evaluation

only when ezp; = true. Thus, ezp; must be true to guarantee that a potential error in ezp; trans-

fers through the boolean operator and. For the boolean operator or, notice that (ezpy or ezpg)

(€Zp1 or ezpz) only when ezp; = false. Hence, ezp, must be false to guarantee transfer of the

potential error in ezp; through the boolean operator or.

The transfer conditions for boolean expressions are summarized in Table 13.

operator expression transfer condition
not not(ezp;) # not(ezp)) true
and ezpy and ezp; # €Ip; and ezp: ezps =lrue
or €Ip; Or ezps # €Ip; OF exP; ezp2 =false

Table 18: Transfer Conditions for Boolean Operators

4.2.3 Transfer through Relational Operators

The transfer condition for a relational operator guarantees that EXPirop EX P, is distinguished
from EXP; rop EXP; and that EXP; rop EXP, is distinguished from EXP; rop EXP,, when
EXP, and EXP,; are distinguished. We need not actually develop the transfer conditions for the
latter case separately, since for each rop the conditions that guarantee transfer of a potential error
in the right operand are the same as those for transferring a potential error in the left operand

through the complementary relational operator. For example, the conditions for distinguishing

35

EXP;<EXP, from EXP,<EXP, are the same as those for distinguishing EXP,;>EXP; from
EXPi2EXP;.

When the operands in a relational expression are boolean expressions, the only semantically-
correct relational operators are = and #. Distinguishing EXFPy and EXP,; implies that ezpy =
not(ezp;). If expr = ezpz, then €apy # ezps, and if ezp; # ezpz, then €Zpy = ezpz. Thus, no
additional transfer conditions are necessary for a potential error in EXP;.

When the operands in a relational expression are arithmetic expressions, a general represen-
tation for the transfer conditions is easy to write. Selection of test data to satisfy the conditions
is difficult, however, because the transfer conditions through relational operators require more
knowledge of the specific potential fault for which the potential error is transferred. The transfer
conditions depend upon the relational operator through which the potential error must transfer.
Let us consider the transfer condition for the relational operator <. We must determine when
(ezp1<ezpz) is not equal to (eZp7<exzpz). This is the case when only one of expy or ezpy is less
than ezpz, which may be written as (ezpy<ezp: and eZpj>ezpz) or (ezp1>ezp; and TTP1<expz).
The transfer conditions for the other relational operators are derived similarly; they are summarized
in Table 14.

These transfer conditions, although necessary and sufficient to guarantee transfer of a potential
error through a relational operator, require s;peciﬁc information about the value of the alternative
expressions, and hence are very difficult to apply. These conditions have been investigated more
extensively in [Zei86]. With limited knowledge about the relation' between ezp; and ezpy, we
can determine more specific conditions that are sufficient to guarantee that the potential error is
transferred through a relational expression for that test datum. For example, consider transfer
through the relational operator < in the expression EXPy<EXP;. If it is known for a test datum
that distinguishes between ezp; and €zpy that ezp; <eZpy, if exp) is only slightly less than ezpz,
then eZpy should be greater than or equal to ezpz. Then, for an originating test datum such

that ezp; <€Zpy, the additional condition that (ezpz — exzpy = ¢), where ¢ is the smallest possible

36

- il

operator expression transfer conditions

< expy<ezxpe # eIp1<ezpz) | (ezp1<ezp: and exp;>ezpz) or
(ezpy 2ezps and Zp;<ezpz)
exp1<ezps # €ip1<ezpz) | (ezp1<ezpz and ezp;>ezpz) or
(exp1>ezp2 and ezp;<ezp2)
= expr=ezps # €ipr1=czp2) | (ezp1 = ezpz and €zp; # ezpz) or
(ezp1 # ezp2 and exp; = ezps)
| exprteap; # eZpi#ezpz) | (ezp1 # ezpz and EZpy = ezpy) or
(ezpy = ezp, and €Zpy # ezp2)
> ezp1>exp; # expr>ezpz) | (ezp1>exp; and EZpr<ezpz) or
(ezpy<ezp: and €Zp;>ezp2)
ezpyXezps # ezpr2exp2) | (ezpi>ezpz and €zp1<ezpz) or

(ezp1<ezps and EZpT>ezp2)

IA

v

Table 14: Transfer Conditions for Relational Operators

positive difference between ezp; and ezpz, will transfer a potential error that originates within
EXP,. This assumes that the smallest positive difference between ezp; and ezp; is no greater
than the smallest positive difference between €Zp; and ezpz. This condition (exp2 — ezpy = ¢) is
sufficient, but not necessary, to guarantee transfer of a potential error in EX Py through a < operator
under the assumption that ezp; <€Zp;. A similar sufficient condition can be derived assuming that
expy >eTpr. Sufficient transfer conditions through each relational operator are reported under each
of these assumptions in table 15 10 .

The conditions ezp; — expy = ¢, ezpz — expy = —¢, ezpz — ezpy = 0, where ¢ is a small positive
value, are often cited in the literature. Although not specifically cited as “transfer” conditions
nor generally geared towards the concept of transfer, it is interesting to note that these are a
generalization of the sufficient conditions in Table 15 when applied to any relational operator. If

these “e— conditions® are to be used to transfer a potential error through a relational expression,

19], table 15, ¢ is the smallest magnitude positive difference between ezps and ezpy and —e¢ is the smallest magnitude
negative difference; note that +¢ and —¢ may not be of the same magnitude.

< B

operator

transfer conditions

assuming ezp) <ezZp;

transfer conditions
assuming ezp; >ezp;

< ezps — €IPy = € eTp2 — €ITP = —€
< ezp2 — exTPy = € exTp2 — TP = —€
= exps —exp; =0 ezpz —ezp; =0
ezps —ezp; =0 ezp; —ezp; =0
> expz — €TPy = —¢ ezZps — ezZp; =€
2> exTps — eITPy = —¢€ eTp2 — €ITP; = €

Table 15: Sufficient Transfer Conditions through Relational Operators

then three test data must be selected as follows:
1. (ezp) # €Zp1) and (ezpz — ezpy = ¢),
2. (ezps # T7p1) and (ezpz — ezpy = —¢),

3. (ezpy # €Zpr) and (ezpz — ezpy =0).

The advantage of combining these conditions is that their application is somewhat independent
of the relation between ezp; and €zpy, simply because they require satisfaction of the sufficient
condition for both relations (<,>). These conditions are only sufficient to guarantee transfer of
a potential error through a relational operator, however, under the assumption that the relation
between ezp, and €Zpy is the same for each of the three test data selected to satisfy all three e—
conditions listed above. This assumption must hold in order to guarantee that one of the sufficient
conditions in Table 15 is satisfied. In addition, these conditions are not sufficient unless ¢ is the
smallest positive difference between ezp; and ezp; and is no greater than the smallest positive
difference between €Zpy and ezp;. Furthermore, if any of these e— conditions is infeasible, absence
of a fault is not guaranteed by satisfaction of the remaining ¢— conditions

The transfer conditions, which are introduced in Table 14, are both necessary and sufficient to

guarantee transfer of a potential error through relational operators.

38

4.2.4 Transfer through Arithmetic Operators

The transfer conditions through arithmetic operators guarantee that EXP; aop EXP; is distin-
guished from EXP; aop EXP; or that EXP; aop EXP, is distinguished from EXP; aop EXP;,
when EXP; and EXP; are distinguished. Since addition and multiplication aré commutative, the
two cases need not be considered separately for these operators. The arithmetic transfer conditions
depend upon the arithmetic operator and are derived by determining the complement of the con-
ditions under which ezp; aop ezp; = &Zpy aop ezp;. The transfer conditions derived here assume
that both operands are of the same type, and that there is no round off error. Transfer conditions
through the following arithmetic operators is considered: +, —, #, / (real operands), and .

For the arithmetic operator -, there are no values ezp;, €Zpy, and ezps (assuming that ezp; #
€zpr) for which ezp; + ezp; = €Zp7 + exps; thus for all values of ezp:, €zp;, and exp; a potential
error between ezpy and eZpy will transfer through the outer addition in an arithmetic expression.
The same argument holds for subtraction (-).

For the arithmetic operators + and /, (ezp; * ezp; = €Zpy * ezp2) and (ezp, [ezp2 = eZp1/ezp;)
and (ezpz/ezp) = ezp;/epr) only when ezp; = 0. Thus to guarantee transfer through an outer
multiplication or real division expression, exp; must not be 0.

For the exponentiation operator *#, we must consider the order of the operands. When
EXP, and EXP, are the base raised to the power EXPz, we must examine when ezp;*tezp; =
W*!t'eng. This is true only when (ezp2 = 0) or (cxpl = —€Zp; and ezp; is even). Thus the
transfer conditions for an exponential expression when the potential fault is contained in the base
operand are (ezpz # 0) and (exp; # —&Zpy or ezp, mod 2 # 0). To determine the transfer con-
ditions when the potential fault is within the exponent, we must examine the conditions where
ezpz++ezpy = ezp2++€ipr. This is true when (ezp; = 0) or (ezp; = 1) or ezp;,&Zp; are both even
or both odd. Thus, the transfer conditions are (ezp; # 0) and (ezp2 # 1) and (ezp2 # —1 or
ezp; mod 2 # ezp; mod 2).

The transfer conditions for arithmetic operators are summarized in Table 16.

39

operator expression transfer conditions
+ ezp; + ezpz # €Zp; + ezp2 true
- eTp; — exps # €IP; — €TP2 true
- exps — expy ¥ expz — €IPy true
* eTp) * eIz # €IP; * eTp2 ezp2 #0
/ ezp1 [ezps # €Zpr/ezps ezp2 # 0
/ ezpz/ezpy # exp2[€TPy true
+ exp)++exp; # €Zpi++ezp; | (ezp2 # 0) and (ezp; # —€Zpy or expz mod 2 # 0)
% eTPoreTp; # eTPR*+EIP] (ezp2 # 0) and (exp; # 1)
and (ezp2 # —1 or ezp; mod 2 # #Zpy mod 2)

Table 18: Transfer Conditions for Arithmetic Expressions
4.3 Revealing Conditions for Context Errors

In this section, we illustrate the formation of revealing conditions from the origination condition
sets for the classes of potential faults and from the node transfer conditions for the expressions.
Consider the module fragment and that portion of the control flow graph seen in Figure 3.

Any variable referenced in a module is potentially faulty. Suppose the reference to X in node 2
is faulty. Note that the module contains two other variables that are type-compatible with X. For

this potential variable reference fault, the origination condition set is

{[z # y],
[z # 2]}.

In general, each origination condition must be satisfied by a test datum that also satisfies transfer
conditions through each ancestor operator. For a variable reference fault, in addition to the orig-
ination conditions described in 4.1.1, any of the transfer conditions presented in section 4.2 may
be applicable. In this example, an “originating test datum” must also satisfy transfer conditions

through the arithmetic operator #, the relational operator <, and the boolean operators and and
or. The node transfer condition is thus

(y#0) and ((z*y<zandZsy>z)or(z+y> zand T+ y<z)) and (b = false) and
(c = true),

40

X,Y,Z : integer

B,C : boolean

1 ioput X,Y,2,B,C

2 if (X*Y < Z or B) and C then

Figure 3: Module Fragment

where Z represents the alternate variable reference — i.e., Z € {y,z}. Combining the origination
condition set with the node transfer condition results in the following revealing condition set
{(z#y) and (y#0) and ((z*y<zand ysy > z)or (z+y > z and y * y<z)) and
(b = false) and (c = true)),
[((z#2) and (y #0) and ((z*y<zand z+y > z) or (z*y > z and z *» y<z)) and
: (b = false) and (c = true)] }.
Consider now the class of arithmetic operator faults. Suppose the multiplication operator in
node 2 is potentially faulty. To reveal a context error for this potential fault, we must satisfy the

origination condition set for an arithmetic operator fault for * as well as the node transfer condition.

The origination condition set for the class of arithmetic operator faults for * in node 2 is

{[(z+y) # (z+y)],
[(z+y) # (z—v)),
[(z+y) # (zdivy)),
[(z+y) # (z++y)])}

In general, an arithmetic operator fault is contained within an arithmetic expression, which may be

an operand of an arithmetic expression or a relational expression. The relational expression may

41

then be part of a boolean expression. Hence, in addition to satisfying the origination conditions
describe;i in section 4.1.5, test data to detect this fault may also be required to satisfy any of the
transfer conditions described in section 4.2, depending upon the structure of the entire node. The
potential error originated in the expression X+Y must transfer through the <, the or, and the and
operators. The node transfer condition is

((z % y<z and z¥y>z) or (z * y>z and z%y<z)) and (b= false) and (c = true),

where 7 is any arithmetic operator other than #. The revealing condition set for a context error is

thus

{[(z+y # z+y) and ((z+y<zand z+y>z)or (z+y 2 zand 2+ y < 2)) and
(b = false) and (c = true)),
[(z+y # z—y) and ((z+y < zandz—y 2 z)or (z+y > zand z—y < 2)) and
(b = false) and (c = true)),
[(zty £z div y) and ((z+y < zand zdivy > z) or (z+y > z and z div y < 2)) and
(b = false) and (c = true)),
[(z+y # z++y) and ((z +y < z and z*+y > z) or (z+y 2 z and z+sy < 2)) and
(b = false) and (c = true)} }

Let us now look at the formation of the revealing condition set for a relational operator fault.

The origination condition set for the class of relational operator faults for < in node 2 is

{lz+y=2],
[z+y > 2],
[z+y <4,
[z*y# 2],
[true]}

Since all three relations are feasible at node 2, a sufficient origination condition set is
{lz+y=12],
[z+y>2]}.

A relational operator fault is contained within a relational expression, which may be part of a
boolean expression. Hence, in addition to the origination conditions set described in 4.1.4, test

data may also be required to satisfy transfer conditions through boolean operators as described in

42

4.2.1. A potential error resuiting from the < in node 2 must transfer through the boolean operators
or and and. The node transfer condition is simply

(b = false) and (c = true).

The origination condition set combines with the node transfer condition to form the following

revealing condition set
{[(z *y = z) and (b = false) and (c = true)),
[(z * y>z) and (b = false) and (c = true)} }.
Consider now the class of boolean operator faults. The origination condition set for the poten-

tially faulty boolean operator or is

{(z+y < 2) £ 8]}

A boolean operator fault is contained within a boolean expression, which may be contained within
a larger boolean expression or within a relational expression. Therefore, in addition to satisfying
the origination conditions set described in 4.1.3, test data may also be required to satisfy transfer
conditions through boolean operators as described in 4.2.1. However, no additional transfer con-
ditions are required through relational operators. A potential error that originates from the or in
node 2 must only transfer through the boolean operator and. The node transfer condition through
this operator is

(c = true).

The revealing condition set for the potential faulty boolean operator or in this example is thus

{[((z*y < 2) #b) and (c = true)] }.

The boolean operator and is also potentially faulty; the origination condition set is

{l((z*y < 2)orb) # c]}.

There are no transfer conditions since the and is the outermost operator in the node. Thus, the

revealing condition set for the potential faulty boolean operator and in this example is thus

43

{[((z+y < z)ord) # c]}.

Consider finally the class of variable definition faults. The origination condition set is

{[(7 # v) or (ezp # v) | V7 is a variable other than V' that is type-compatible with V]}.

For the potentially faulty variable definition of z in node 3, the origination condition set is

{[(z # 2) or (3# 2)),
[(y # z) or (3 # 2)]}.

A variable definition fault occurs in the outermost expression of the node. Thus, there are no
transfer conditions that must be satisfied, and any test datum that satisfies the origination condition
set is guaranteed to reveal a context error for a potential variable definition fault.

We are now in a position to select a test data set that satisfies all the revealing conditions
sets just developed. A test datum that satisfies a revealing condition must be selected within the
domain of the module; further it must be selected such that the revealing conditions are satisfied
before execution of the node. Because the nocie for which we have developed revealing conditions is
one of the first nodes of the module, selection of test data that satisfies the conditions is relatively
easy. There are many possible test data sets that satisfy the revealing conditions developed for this

example. Table 17 shows just one such set.

] Input Values
datum {x y z b c
1 1 2 3 false true
2 1 2 1 false true
3 1 3 2 false true
4 1 2 2 false true
5 1 2 1 true true

Table 17: Sample Test Data Satisfying Revealing Conditions

First, consider the data selected for node 2. Datum 1 satisfies both revealing conditions in the

revealing condition set for the potential faulty variable reference of X. For the potentially faulty

44

arithmetic operator #, datum 1 satisfies the first revealing condition, datum 2 satisfies the second
and third conditions, while datum 3 satisfies the fourth condition in the revealing condition set.
For the potentially faulty relational operator <, datum 4 satisfies the first revealing condition, and
datum 5 satisfies the second condition in the sufficient revealing condition set. Datum 1 satisfies
the revealing condition set for the potentially faulty boolean operator or, while datum 2 satisfies
the revealing condition set for the potentially faulty boolean operator and.

Next, consider the data selected for node 3, where the only potential fault in the chosen classes
is the potentially faulty variable definition. Datum 2 satisfies the single revealing condition in the
corresponding revealing condition set, but is not in the DOMAIN of the node. Datum 5, however,
datum 5 satisfies the revealing condition and executes the node.

In this section, we havé demonstrated how revealing condition sets for context errors are formed
through evaluation of the origination and transfer conditions instantiated in sections 4.1 and 4.2

for the five fault classes.

5. Conclusion

In this paper, we define a formal model for error detection that is useful in light of the way
most people test programs. The model proposes revealing conditions on test data selection that
are necessary and sufficient to guarantee that a fault originates an error that transfers through
computations and data flow until it is revealed. The paper applies the model to five classes of
atomic faults. The model has also been used to analyze three test data selection techniques in
terms of their capabilities to detect these five faults. The model has been applied elsewhere to six
other fault classes and has provided similar results.

The underlying concepts of the model are generally applicable. Its further utility, however,
depends on the granularity at which the model can be practically applied. We are examining the
granularity of the origination conditions by looking at how alternate sets can be defined for more

general classes of faults, such as non-atomic faults and faults that are not statement specific.

45

The model of error detection defined herein is directed toward the detection of context errors.

We are currently extending the model to

between nodes and within a node that consists of a group of statements. Th

necessary and sufficient conditions to guarantee revealing an output error.

46

include data flow transfer conditions, which can be applied

is will provide the

[Bal69]

[Budsi]

[Buds3]

[Fai75)

[Gla81]

[Ham77]

[IEES3]

[MH81)

[Mor84]

[RH75)

REFERENCES

Robert M. Balzer. Exdams — extendable debugging and monitoring system. 1969 Spring
Joint Computer Conference, AFIPS, 34, 1969.

Timothy A. Budd. Mutation analysis: ideas, examples, problems and prospects. In B.
Chandrasekaran and S. Radicchi, editors, Computer Program Testing, pages 129-148,
North-Holland, 1981.

Timothy A. Budd. The Portable Mutation Testing Suste. Technical Report TR 83-8,
University of Arizona, March 1983.

Richard Fairley. An experimental program-testing facility. IEEE Transactions on Soft-
ware Engineering, SE-1(4), December 1975.

Robert L. Glass. Persistent software errc;rs. IEEE Transactions on Software Engineersng,

SE-7(2):162-168, March 1981.

Richard G. Hamlet. Testing programs with the aid of a compiler. IEEE Transactions on
Software Engineering, SE-3(4):279-290, July 1977.

IEEE Standard Glossary of Software Engineering Terminology, Standard 729-1983. Soft-
ware Engineering Technical Committee of the IEEE Computer Society, 1983.

Larry J. Morrell and Richard G. Hamlet. Error Propagation and Elimination in Computer
Programs. Technical Report 1065, University of Maryland, July 1981.

Larry J. Morrell. A Theory of Error-Based Testing. PhD thesis, University of Maryland,
April 1984.

C. V. Ramamoorthy and S. F. Ho. Testing large software with automated software

evaluation systems. IEEE Transactions on Software Engineering, SE-1(1):46-58, March
1975. =

47

[RT86a]

[RT86b)

[Stu73)

[Wey81]

[Wey82)

[Zei83]

(Zeig6)

Debra J. Richardson and Margaret C. Thompson. A Comparison of Test Data Selec-
tion Criteria. Technical Report 86-65, Computer and Information Science, University of

Massachusetts, Amherst, December 1986.

Debra J. Richardson and Margaret C. Thompson. A Formal Framework for Test Data
Selection Criteria. Technical Report 86-56, Computer and Information Science, University
of Massachusetts, Amherst, November 1986.

Leon G. Stucki. Automatic generation of self-metric software. Record of the 1973 IEEE

Symposium on Software Reliabslity, 1973.

Elaine J. Weyuker. An Error-based Testing Strategy. Technical Report 027, Computer

Science, Institute of Mathematical Sciences, New York University, January 1981.

Elaine J. Weyuker. On testing pontestable programs. The Computer Journal, 25(4),
1982.

Steven J. Zeil. Testing for perturbations of program statements. IEEE Transactions on

Software Engineering, SE-9(3):335-346, May 1983.

Steven J. Zeil. Domain Testing and Linear Fault Detection. Technical Report 38, Com-

puter and Information Science, University of Massachusetts, Amherst, August 1986.

48

