An Analysis of Test Data Selection Criteria
Using the RELAY Model of Error Detection

Debra J. Richardson
Margaret C. Thompson

COINS Technical Report 8665
December 1986

Software Development Laboratory
Computer and Information Science Department
University of Massachusetts
Ambherst, Massachusetts 01003

Index Terms — software testing, test data selection, criteria evaluation, fault-based testingl

This research was supported in part by the National Science Foundation under grants DCR-83-18776 and DCR-
84-04217 and by the Rome Air Development Center grant F30602-86-C-0006.

Abstract

RELAY, a model for error detection, defines revealing conditions that guarantee that a fault
originates an error during execution and that the error transfers through computations and data
flow until it is revealed. This model of error detection provides a framework within which the
capabilities of other testing criteria can be evaluated. In this paper, we analyze three test data
selection criteria that attempt to detect faults in six fault classes. This analysis shows that none
of these criteria is capable of guaranteeing error detection for these fault classes and points out
two major weaknesses of these criteria. The first weakness is that the criteria do not consider the
potential unsatisfiability of their rules; each criterion includes rules that are sufficient to cause errors
for some fault classes, yet when such rules are unsatisfiable, many errors may remain undetected.
Their second weakness is failure to integrate their proposed rules; although a criterion may cause a
subexpression to take on an erroneous value, there is no effort made to guarantee that the enclosing
expression evaluates incorrectly. This paper shows how the test data selection criterion defined by
RELAY overcomes these weaknesses.

1 Introduction

Many testing techniques [Bud81,Bud83,Ha.m77,Mor84,Zei83,Wey81] are directed toward the de-
tection of errors that might result from commonly occurring faults in software. These “fault-based”
testing techniques are often sufficient to select data that cause the computation of erroneous values
for particular faults but do not guarantee that these erroneous results are reflected in the output.
Instead, the erroneous intermediate values are often masked out by later computations. This ex-
tremely common occurence is a type of “coincidental correctness,” which is the bane of testing.
Coincidental correctness occurs when no error is detected, even though a statement containing a
fault has been executed; thus the effort put into selecting the data and the associated execution is
for naught.

This paper reports on a study that analyzes several “fault-based” testing techniques in terms
of their abilities to actually reveal errors. This analysis is based on the RELAY model of error
detection, which formalizes a fault-based approach to testing. RELAY defines revealing conditions
that guarantee that a fault originates an error during execution and that the error transfers through
all affected computations until it is revealed. The next section summarizes the RELAY model; more
detail is provided in a related paper[RT86b]. The third section briefly describes the instantiation
of the model to develop revealing conditions for a particular class of faults. The origination and
transfer conditions for six fault classes are found in Appendix A. In the fourth section, we present
an evaluation of the error detection capabilities of three proposed test data selection criteria for
these six fault classes using the model. In summary, we discuss the implications of the analysis and

our future plans for RELAY.

2 RELAY: A Model of Error Detection

The RELAY model has three principal uses. First, it is a test data selection criterion that

when used to test a program is capable of guaranteeing the detection of errors that result from

some chosen class or classes of faults. Second, given test data that has been selected by another
criterion, RELAY can be used as a measurement technique for determining whether that test data
detects such errors. Third, RELAY provides a method for analyzing the ability of other test data
selection criteria to guarantee detection of errors for classes of faults. It is this third application
that is the focus of this paper. Before describing the RELAY model of error detection, we first
introduce a terminology within which we define the RELAY model and the test data selection

criteria analyzed in section four.

2.1 Terminology

We consider the testing of a module M that implements some function Fas : Xar — Zar. A
module M can be represented by a control flow grapk Gpr = (N, E), where N is a (finite) set of
nodes and E C N x N is the set of edges. N includes a start node n,,,; and a final node n final;
each other node in N represents a simple statement! or the predicate of a conditional statement in
M. A subpath in a control flow graph Gy = (N, E) is a finite, possibly empty, sequence of edges
p = [(n1,n2), .., (Rjpps npj+1)] in E; note that the last node nyp4; has been selected by virtue of
its inclusion in the last edge but is not visited in the subpath traversal. An initial subpath p is a
subpath whose first node is nyqpt. A path P? is an initial subpath whose open node is n final-

A test datum t for a module M is a sequence of values input along some initial subpath. For any
node n in Gp, DOMAIN(n) is the set of all test data t for which n can be executed. A test datum ¢
may be an incomplete sequence of input values in the sense that it cannot execute a complete path.
This may be because: 1) additional input is needed to complete execution of some path; or 2) the
initial input ¢ may cause the module to terminate abnormally (before n finat) or possibly never to

terminate. This allows for testing criteria that consider invalid inputs, which are not in the domain

'Single statements are considered here for the clarity of the presentation; a simple extension allows nodes to
represent a group of simple statements.

2Where the distinction between a subpath and a path is important, we will use an upper case letter (P) to signify
a path and a lower case letter (p) for a subpath (or initial subpath).

of M but for which M may initiate execution. The test data domain Djps for Gpr = (N, E) is the
domain of inputs from which test data can be selected, Dps = {t | 3n € N,t € DOMAIN (n)}.

A testing method typically specifies some subset of the test data domain for execution. A test
data set Tps for a module M is a finite subset of the test data domain, Tas C Dps. A test data
selection criterion S, is a set of rules for determining whether a test data set T)s satisfies selection
requirements for a particular module M.

To reveal errors by testing, there is usually some test oracle that specifies correct execution of
the module [Wey82). A test oracle might be a functional representation, formal specification, or
correct version of the module or simply a tester who knows the module’s correct output. In any
case, an oracle O(Xop, Zp) is a relation, O = {(z,2)} C Xo x Zo, where X and Zg are the domain
and range, respectively, of the oracle. When (z,z) € O, z is an acceptable output for z. Execution
of 2 module M on input z reveals an output error when (z, M(z)) ¢ O.

A “standard” oracle judges the correctness of the module’s output for valid input data. Testers
often have a concept of the “correct” behavior of a module, however, and not just its correct output.
Rather than waiting until output is produced to find errors, the tester might check the computation
of the module at some intermediate point, like one does when using a run-time debugger. This
approach to testing can be performed with an oracle that includes information about intermediate
values that should be computed by the module; this information might be derived from some correct
module, an axiomatic specification, run-time traces, or monitoring of assertions. Let us associate
with the execution of an initial subpath p on some test datum ¢ a contezt Cyp(t), Which contains the
values of all variables after execution of p(t). A contezt oracle O¢ is a relation O¢c = {((t, p), Coe))}s

that relates a test datum and an initial subpath (¢,p) to one or more contexts Cyp(¢) that are

acceptable after execution of p on t3. Execution of a path p on test datum ¢t reveals a contezt error

when ((t,p), Cpp) ¢ Oc-

3For simplicity, the granularity of the context oracle is assumed to be the same as that of the control flow graph,

although this is not necessary.

2.2 RELAY

The errors considered within the RELAY model are those caused by some chosen class or classes
of faults in the module’s source code. The fault-based approach to testing relies on an assumption
that the module being tested bears a strong resemblance to some hypothetically-correct module.
Such a module need not actually exist, but we assume that the tester is capable of producing
a correct module from the given module and knowledge of the errors detected. As currently
formulated, RELAY is limited to the detection of errors resulting from a single fault.

A node containing a fault may be executed yet not reveal an error; the module appears correct,
but just by coincidence of the test data selected. It is also possible that the tested module produces
correct output for all input despite a discrepancy between it and the hypothetically-correct module.
In this case, the module is not merely coincidentally correct, it is correct. Thus, a discrepancy is
only “potentially” a fault. Likewise, incorrect evaluation of an expression is only “potentially” an
error since the erroneous value may be masked out by later computations before an erroneous value
is output. A potential fault, denoted fy, is a discrepancy between a node n in the tested module
M and the corresponding node n* in the hypothetically-correct module M* — that is, n # n*. The
evaluation of some expression EXP* in M, which contains a potential fault, and the corresponding
expression EXP* in M* results in a potential error when ezp # exp*. To discover a potential
fault, erroneous results must appear for some test datum as a context error or as an output error,
depending on the type of oracle used.

RELAY is a model that describes the ways in which a potential fault manifests itself as an
error. Given some potential fault, a potential error originates if the smallest subexpression of
the node containing the potential fault evaluates incorrectly. A potential error in some expression
transfers to a “super”—expression that references the erroneous expression if the evaluation of the

“super”—expression is also incorrect. To reveal a context error, a potential fault must originate a

4Upper case EXP is used here to denote the source-code expression, while lower case ezp denotes the evaluated
expression.

output

originate
& context

€rror

computational
transfer

data flow
transfer

Figure 1: RELAY Model of Error Detection

potential error that transfers through all computations in the node thereby causing an incorrect
context. This is termed computational transfer. To reveal an output error, a potential fault
must cause a context error that transfers from node to node until an incorrect output results. This
transfer includes data flow transfer, whereby a potential error reaches another node — that is,
the potential error is reflected in the value of some variable that is referenced at another node
— as well as computational transfer within the nodes that an erroneous value reaches. We know
unequivocally that the module is incorrect only if an output error is revealed. Thus, a potential
fault is a fault only if it produces incorrect output for some test datum.

Figure 1 illustrates the RELAY model of error detection and how tixis model provides for the
discovery of a fault. The conditions under which a fault is detected are 1) origination of a potential
error in the smallest containing subexpression; 2) computational transfer of that potential error
tilrough each operator in the node, thereby revealing a context error; 3) data flow transfer of that
context error to another node on the path that references the incorrect context; 4) cycle through
(2) and (3) until a potential error is output. If there is no single test datum for which a potential

error originates and this “total” transfer occurs, then the potential fault is not a fault, and the

potential

R,/
b _4 error

ORIGINATE

s — -~ = -
r, \
,: ~ ~
potential AN
Sault \
\
context \
crror]
3 ‘l
data frlow tational
transfer computationa
CONTEXT transfler
\ ORACLE
conlext
8 error
com put.auonal : §§dat.a ﬂow
transfer t.ransfer

oulput
error — /
 —————— —
Dot "

_~__OUTPUT ORACLE __—
—

i

Figure 2: The Testing Relay

module containing the potential fault is equivalent to some hypothetically-correct module.

As shown in Figure 2, this view of error detection has an illustrative analogy in a relay race,
hence the name of our model. The starting blocks correspond to the fault location. The take off of
the first runner, as the gun sounds the beginning of the race, is analogous to the origination of a
potential error. The runner carrying the baton through the first leg of the race is the computational

_transfer of the error through that first statement. The successful completion of a leg of the race has
a parallel in revealing a context error, and the passing of the baton from one runner to the next is
analogous to the data flow transfer of the error from one statement to another. Each succeeding leg
of the race corresponds to the computational transfer through another statement. The race goes
on until the finish line is crossed, which is analogous to the test oracle revealing an output error.

Our goal, of course, is to guarantee that the relay race is won — that is, errors are detected.

To this end, the RELAY model proposes the selection of test data that originates an error for any

potential fault of some type and transfers that error until it is revealed. RELAY uses the concepts
of origination and transfer to define conditions that are necessary and sufficient to guarantee error
detection. When.these conditions are instantiated for a particular type of fault, they provide a
criterion by which test data can be selected for a program so as to guarantee the detection of any
error caused by a fault of that type.

Given an oracle and a module M with G = (N, E) that contains a potential fault f, at node
n € N, a test data selection criterion S is said to guarantee detection of a fault fn if for all test
data sets Tas, where Ty satisfies S, there exists t € T such that fn originates an error for M(t)
that transfers until it is detected by the oracle. If a context oracle exists, the potential fault must
reveal a context error for some test datum. If error detection is done by a standard output oracle,
then a context error revealed by the fault must also transfer to the output for some test datum.
Note that guaranteeing detection of a context error does not necessarily mean that the potential
fault is indeed a fault, since it is possible that the context error is masked out by later statements
and not transferred to the output.

Let us assume, for the purposes of this paper, that a context oracle exists. We are concerned,
then, with the ability of a test data selection criterion to guarantee the detection of a context error.
Here, we define origination, transfer, and revealing conditions that are necessary and sufficient to
guarantee that a context error is revealed. Sufficient means that if the module is executed on data
that satisfies the conditions and the node is faulty, then a context error is revealed. Necessary, on
the other hand, means that if a context error is revealed then the module must have been executed
on data that satisfies the condition and the node is faulty.

These conditions are defined for a potential fault independent of where the node occurs in
the module. The test data selected, however, must exet;ute the node within the context of the
entire module. Thus, for a potential fault at node n, such test data are restricted to DOMAIN(n).
Because these conditions are both necessary and sufficient, if the conditions are infeesible within

DOMAIN(n), then no context error can be revealed and the potential fault is not a fault. Although,

in general, this is an undecidable problem, in practice, it can usually be solved.

First, let us consider what conditions must be satisfied to guarantee detection of a particular
fault f, in a no&e n. This is somewhat unrealistic, since if one explicitly knew the location of a
fault, one would fix it. We will address this issue in a moment, after some groundwork is laid.
By requiring test data to distinguish the faulty subexpression from the correct one, the origina-
tion condition for a potential fault f, guarantees that the smallest subexpression containing f,
originates a potential error. A potential error originating at the smallest subexpression contain-
ing a potential fault must transfer to affect evaluation of the entire node. By requiring test data
that distinguishes the parent expression referencing the potential error from the parent expression
referencing the correct subexpression, the transfer condition guarantees that a potential error
transfers to a parent expression. To affect the evaluation of a node, test data must satisfy the
transfer condition for each operator that is an ancestor of the subexpression in which the potential
error originates. The node transfer condition is the conjunction of all such transfer conditions.

To guarantee a fault’s detection through revealing a context error, a single test datum must
satisfy both the origination and node transfer conditions. The revealing condition for a potential
fault f, occurring in node n is the conjunction of the origination condition and the node transfer
condition for f, and n.

As an example of these conditions for error detection, suppose that a statement X := (A+B)=C
should be X := (A~ B)*C. Then the origination condition is [(a+b) # (a—b)]. This potential error
must transfer through both multiplication by C; the corresponding transfer condition is [(a+bd)*c #
(a — b) * ¢}, which simplifies to [c # 0]. This value must then transfer through the assignment to
X, which is trivial. Thus the revealing condition for this potential fault is [(a + b) # (a — b)] and
[c#0).

Derivation of this revealing condition, as currently defined, is dependent on knowledge of the
correct node. Since this is unlikely, an alternative approach is to assume that any node, in fact

any subexpression of any node, might be incorrect and consider the potential ways in which that

(%)

expression might be faulty. By grouping these potential faults into classes based on some common
characteristic of the transformation, we define conditions that guarantee origination of a potential
error for any potential fault of that class. A class of potential faults determines a set of alternative
expressions, which must contain the correct expression if the original expression indeed contains a
fault of that class. To guarantee origination of a potential error for a class, the potentially faulty
expression must be distinguished from each expression in this alternate set. For each alternative
expression, then, our model defines an origination condition, which guarantees origination of a
potential error if the corresponding alternate were indeed the correct expression. For an expression
and fault class, we define the origination condition set, which guarantees that a potential error
originates in that expression if the expression contains a fault of this class. The origination condition
set contains the origination condition for each alternative expression.

For each alternative expression, a potential error that originates must also transfer through each
operator in the node to reveal a context error. The node transfer condition, which is determined by
these operators, is independent of the particular alternate. Thus, for a fault class, each alternate
defines a revealing condition, which is the conjunction of the origination condition and the node
transfer condition. The revealing condition set contains a revealing condition for each alternate
in the alternate set and is necessary and sufficient to guarantee that a potential fault of a particular
class reveals a context error.

Consider again the statement X := (A + B) * C, but now suppose that the addition might be
faulty but we do not know how. The origination condition set is {[(a + b) # (aopd)] | op # +}.
The transfer condition is [c # 0]. Thus the revealing condition set for this potential fault is
{I(e+8)# (a~b)] and [c £0] | op # +}..

The RELAY model of error detection is based on the generic revealing condition sets just defined.
The model is applied by selecting a fault classification and instantiating the generic origination
and transfer conditions for the classes of faults. The next section summarizes the instantiation

of RELAY for six classes of faults. The instantiated origination and transfer conditions can be

evaluated for the nodes in a module’s control flow graph to provide the actual revealing condition
sets that must be satisfied to guarantee the detection of any fault in the chosen classification. The
actual revealing cohditions for a module can be used to measure the effectiveness of a pre-selected
set of test data and/or to select a set of test data. A simple example of RELAY as a test data
selection criterion is presented at the end of the next section. The instances of the origination and
transfer conditions can also be used to evaluate the ability of another test data selection criterion
to guarantee detection of an error caused by the chosen classes of faults. RELAY is applied in this

fashion to analyze three test data selection criteria for the six fault classes in section four.

10

EXY

3 Instantiation of RELAY

In this section, we discuss the instantiation of the RELAY model for a class of faults. The
development of the revealing condition set for a class of faults consists of the development of the
origination condition set and of any applicable transfer conditions. This instantiation process is
illustrated for the class of relational operator faults. We derive the origination condition set for
this class and the computational transfer conditions through boolean operators since a relational
expression may be contained within boolean expressions.

The class vof relational operator faults is one of six for which RELAY is instantiated in [RT86b).
The six classes are constant reference fault, variable reference fault, variable definition fault, boolean
operator fault, relational operator fault, arithmetic operator fault. These six classes were selected
because of their relevance to a number of test data selection criteria, which include those criteria
analyzed here. The application presented provides revealing conditions for context errors for single
statements potentially containing a fault in one of the six classes. Each of the six classes is a class
of atomic faults, where a (potential) fault f, is atomic if the node n differs from the correct node
n" by a single token. Moreover, the restriction to context errors means that only computational
transfer need be considered at this time. _

To determine the revealing conditions for a class of potential faults, we must instantiate the
origination condition set for the class as well as the applicable computational transfer conditions.
Thus, for the six fault classes, we derive origination conditions for each class as well as transfer
conditions through all operators applicable to these faults — that is, assignment operator, boolean

operator, arithmetic operator, and relational operator.

3.1 Origination Conditions

An origination condition guarantees that the smallest expression containing a potential fault
produces a potential error. Thus, given the smallest expression S EX P containing a potential fault

and an alternative expression SEX P, the origination condition guarantees that sezp # sezp. The

11

test data relation
expression evaluated | (ezp;<ezps) | (ezpy = exps) | (ezpi>ezps)
(EXP, < EXP,) true true false
(EXP<EXPs) true false false
(EXP,=EXP,) false true false
(EXP, # EXP) true false true
(EXP,>EXP,) false false true
(EXP, > EXP,) false true true

Table 1: Relational Operator Evaluation

origination condition set contains the origination condition for each alternate.

Consider the class of relational operator faults, where a potential error may result when a rela-
tional operator is mistakenly replaced with another relational operator. We consider six relational
operators: <, <,=,#,>,>. Given a relational expression (EX P rop EXP,), if the relational oper-
ator rop is faulty, then the correct expression must be in the alternate set {(EXP,¥op EXP;) | ¥6p
is a relational operator other than rop }.

As an example, let us construct the origination condition set for the relational operator <. We
must determine the origination condition that distinguishes (EXP, < EXP;) from each alternate
(EXP, 76p EXP,). For any relational expression, there are three possible relations for which
test data may be selected — (ezp; < ezp;), (ezp1 = ezp;), (exzp; > ezp;). Table 1 enumerates the
evaluation of any relational expression with data satisfying these three relations. For illustration, let
us construct the origination condition for alternative operator =. As seen from Table 1 the original
expression, (EXP; < EXP,), and alternative expression, (EXP; = EXP,), evaluate differently
for any test datum satisfying either the relation (ezp; < ezps) or the relation (ezpy = ezp;);
thus the condition (ezp; < ezp,) is sufficient for origination of a potential error. For a test datum
satisfying the third possible relation, (ezp; > ezp,) the original and alternate expressions evaluate

the same; hence, the condition (ezp; < ezp;) is also necessary for origination of a potential error.

12

The origination condition to distinguish between EXP; < EXP, and EXP; = EX Py, therefore, is
[ezp1 < ezp;). The origination conditions for the other alternative operators are derived similarly.

The origination conditions for relational operator faults are summarized in Table 2.

operators unsimplified origination condition origination condition
<, < [ezp1 = ezpo)] [ezpy = ezp)]
<,= [(exp1<ezpz) or (ezpy = ezpy)] lezpy < ezpy]
<,# [ezpy>ezp,) [exp1>ezp,)
<,> [(ezpr<ezps) or (ezpy = ezp;) or (ezp:>ezps)] [true |
<, > ((ezp1<ezps) or (ezp;>ezp,)] [ezp1 # ezp,]
<,= [ezp1<ezpy] [ezp1<ezp,]
$# [(ezp1 = ezp3) or (ezp1>ezpy)] [(ezp1 > ezps)
<2 [(ezp1<ezps) or (ezp1>ezp,)] lezpy # ezpy)
<> [(ezp1<ezp2) or (ezpy = ezp3) or (ezp1>ezps)) [true]
=,# [(ezp1<ezpy) or (ezp; = ezpy) or (ezp;>ezp;)) [true]
=,> [ezp1>ezpy) [expy>ezpy)
=,> [(ezp1 = exzp,) or (exp1>ezp,y)] [ezp1 > ezxp,)
#2 [(ezp1<ezps) or (ezpy = ezpy)| [ezpy < ezps)
#> [(ezp1<ezps)) [ezp1<ezp;)
2,> [ezp) = ezps] lezp; = ezp,] |

Table 2: Origination Conditions for Relational Operator Faults

The origination condition set for the class of relational operator faults for a particular operator
is the set of all origination conditions that distinguish that original operator from some alternate.
For a less than (<) fault, for instance, the origination condition set can be derived from Table 2 as
{lezp1 = expa], [ezp1<ezp,], lexp1>ezpy], [true], [ezpi7ezpa]}. The origination condition sets for

other relational operator faults are derived similarly and stated in Table 3.

3.2 Transfer Conditions

A computational transfer condition guarantees that a potential error in an operand of an ex-

pression is not masked out by the computation of a parent operator. Thus, given an expression

13

operator origination condition set
< {lezp1 = ezpy], [exp1<expy, [true],
[(ezp1>ezp2)|, [ezp1#ezpa)}
{lezp1 = ezps), [exp1<ezpy), [true]
lezp1 >ezp,], [ezp1F#ezps]}
{lezp1<ezpy|, [ezp1<ezpq|, [true],
lezp1>ezpy], [ezp12ezp2|}

{{ezp1 > ezp3}, [ezp1>ezps), [true],
ezp1<ezpy), [ezp1<ezpa]}
[true], [ezprFezpa), [exp1>ezpa),
{[ezp1<ezps], {[ezp1 = ezps]}
> {lezp1#ezps], [true], [ezpi<ezp,],

[ezp1>ezpy), [ezp1=ezp,|}

IN

v

Table 3: Origination Condition Sets for Relational Operator Faults

op(...,EXP,...), where a potential error exists in EXP, the transfer condition guarantees that
op(...,ezp,...) also produces a potential error. More specifically, given EX P containing a poten-
tial fault and EXP an alternate, the existence of a potential error in ezp implies that exp # €zp,
and the transfer condition guarantees that op(...,ezp,...) # op(...,€Zp,.. .).

Let us now continue with our illustration for relational operator faults. A relational expression
may be contained within a boolean expression; thus, in order to develop revealing condition sets
for the class of relational operator faults, we must also develop transfer conditions through boolean
operators and must consider both unary and binary boolean operators.

Consider first transfer through a unary boolean operator. The unary boolean transfer condition
guarantees that not (EXP,) is distinguished from not (EXP;), where EXP, and EXP; are

distinguished. From Table 4, we see that no additional conditions are necessary for transfer of

a potential error in a unary boolean expression because not (ezp;) # not (€Zp;) if and only if

ezpy # €Zp1.
The binary boolean transfer conditions guarantee both that (EX P, bop EXP,) is distinguished

14

”

| exp) | €Zpy | ezps | exp; and ezp, | €xp; and exzp,; | exp, or exp, | €ZP; or exp,
true | false | true | true false true true
true | false | false false false true false
false | true | true false true true true
false | true | false | false false Jalse true

Table 4: Boolean Expression Evaluation

from (EXP; bop EXP,) and that (EXP; bop EXP,) is distinguished from (EXP; bop EXP,),
whenever EXP) and EXP, are distinguished. Since the binary boolean operators are commutative,
we need not develop separately the transfer conditions for a potential error in the right operand. The
binary boolean transfer conditions depend upon the boolean operator. For the boolean operator
and, we see from Table 4 that (exzp;andezp;) # (eTpyandezps) only when exp; = true. Thus, exp,
must be ¢rue to guarantee that a potential error in ezp; transfers through the boolean operator and.
For the boolean operator or, notice that (ezp; or ezp;) # (€Zpy or ezps) only when ezps; = false.

Hence, ezp; must be false to guarantee transfer of the potential error in exp; through the boolean

operator or.

The transfer conditions for boolean operatars are summarized in Table 5. The transfer condi-

operator expression transfer condition
not not(ezp;) # not(ezpy) true
and ezp; and expz # €Zp; and ezp; exps =true
or eIp) Or exp; ¥ €ZIP; Or exp; exp; =false

Table 5: Transfer Conditions for Boolean Operators

tions through the operators applicable to the six fault classes are summarized in Appendix A.

15

X,Y,Z : integer

B,C : boolean @ B
1 input X,Y,2Z,B,C @
2 if (X*Y < Z or B) and C then

Figure 3: Module Fragment
3.3 Revealing Conditions

In this section, we illustrate the formation of context error revealing conditions for the class of
relational operator faults and demonstrate how these conditions can be used to select test data.
Consider the module fragment and that portion of the control flow graph shown in Figure 3.

The relational operator at node 2 is potentially faulty. The origination condition set for the
class of relational operator faults for < in node 2 is {[m*y = z],[z*y > 2], [z*.y < z), [z*y # 2], [true
]}. Examination shows that the origination conditions [z *y = z] and [z * y > 2| are sufficient to
satisfy the entire set. Thus, a sufficient origination condition set is {[z*y = 2],[z*y > z]}. A
potential error resulting from the < in node 2 must transfer through the boolean operators or and
and. The node transfer condition is simply

(b= false) and (c = true).

The origination condition set combines with the node transfer condition to form the following

revealing condition set

16

{[(z*y = z2) and (b = false) and (c = true)],
[(z*y>z) and (b= false) and (c = true)] }.

We are now in a position to select a test data set that satisfies the revealing condition set. A
test datum that satisfies a revealing condition must be selected within the domain of the module;
further it must be selected such that the revealing conditions are satisfied before execution of the
node. Because the node for which we have developed revealing conditions is one of the first nodes
of the module, selection of test data that satisfies the conditions is relatively easy. There are many
possible test data sets that satisfy the revealing conditions developed for this example. Consider
a test data set that contains the following two data (1,2, 2, false, true)and(1, 3,2, false, true). The
first datum satisfies the first revealing condition in the revealing condition set, and the second
datum satisfies the second revealing condition. If the < operator should have been some other
relational operator, then execution for these two test data will reveal a context error. If no context

error is revealed, then the < operator is correct.

17

REOSRE- .

4 Analysis of Related Test Data Selection Criteria

RELAY provides a sound method for analyzing the error detection capabilities of a test data
selection criterion in terms of its ability to guarantee detection of an error for some chosen class
or classes of faults. A test data selection criterion is usually expressed as a set of rules that test
data must satisfy. Our analysis approach evaluates a criterion in terms of the relationship between
its rules and the revealing conditions defined by RELAY for the six fault classes. The revealing
conditions are both necessary and sufficient to guarantee error detection, so this is an unbiased
means of analysis. A rule or combination of rules is judged either to be insufficient to reveal an
error, to be sufficient to reveal an error, or to guarantee that an error is revealed. This analysis is
completely program independent.

In this section, we use the origination and transfer conditions for the six fault classes (provided
in Appendix A) to analyze the error detection capabilities of three fault-based test data selection cri-
teria — Budd’s Error-Sensitive Test Monitoring [Bud81,Bud83|, Howden’s Weak Mutation Testing
[How82,How85], and Foster’s Error Sensitive Test Case Analysis [Fos80,Fos83,Fos84,Fos85). Each
of these criteria was selected because its author claims that it is geared toward detection of faults
of the six classes previously discussed. Our analysis shows, however, that none of the criteria
guarantees detection of these types of faults. The analysis also points out two weaknesses that are
common to all three criteria and demonstrates how RELAY rectifies these common problems.

As noted, the application of RELAY discussed in this paper is limited to revealing context
errors. Thus, the revealing condition set is necessary for the detection of a fault (as opposed to a
potential fault), but not sufficient. This is because the context error introduced by satisfaction of
these conditions may still be masked out by later computations on the path and thus not transfer
to produce an output error. To describe the ‘conditions under which a criterion guarantees the
detection of a fault of a particular class through an output error, the revealing condition set must
be augmented to include data flow transfer conditions. The analysis of the test data selection

criteria to follow does not consider whether or not these criteria guarantee the detection of a fault

18

through revealing an output error. As we shall see, however, this limitation is of little consequence,
since for the most part, the criteria do not guarantee the revealing of a context error.

For each criterion, we first define it in the terminology provided in Section 2. Next, we examine
the criterion’s ability to satisfy the origination condition sets for each class of faults and also its
ability to satisfy transfer conditions through the applicable operators. Then, for each class of
faults, we discuss the circumstances in which the criterion will guarantee revelation of a context
error, which requires that a single test datum must be selected to satisfy both a specific origination
condition in the origination condition set and the node transfer condition. Thus, although a criterion
may include rules that satisfy the origination condition set and the applicable transfer conditions,
if the criterion does not explicitly force all such transfer conditions to be satisfied by the same data
that satisfies the origination condition sets for a class of faults, revelation is not guaranteed for that
class. In the case where only origination is guaranteed, revelation of a context error is guaranteed
only when the potential fault is in the outermost expression of the statement or is contained only
within expressions for which transfer conditions are trivial (e.g., unary boolean). Furthermore,
recall that the test data selected for a particular node n must be in DOMAIN (n). If no such data
exists to satisfy the application of a particular rule in a criterion, then the rule is unsatisfiable for
n. When no alternative selection guidelines are proposed, we do not assume the selection of any
test data for an unsatisfiable rule.

In the discussion that follows, we provide counter examples to demonstrate when a criterion does
not guarantee origination or transfer. When it is obvious that a criterion guarantees origination or
transfer (e.g., a rule of a criterion is equivalent to an origination or transfer condition), we merely
state this fact. Several of the conditions are trivially met by any criterion that satisfies statement
coverage, these include origination of a constant reference fault and transfer through assignment
operator. Since each of the three criteria analyzed here direct their selection of test data to each
statement in a module, we will not belabor the satisfaction of these trivial conditions.

The following is not intended to be a complete analysis of the error detection capabilities of

19

e o

these criteria. Only those faults discussed in Section 4 are included in the discussion. A complete
analysis must consider a more complete classification of faults. The analysis presented in this
paper, however, provides insight into how our model of error detection can be used to analyze the

strengths and weaknesses of testing criteria.

4.1 Budd’s Estimate

Budd’s Error-Sensitive Test Monitoring (Estimate) [Bud81,Bud83] is the first stage of Budd’s
Mutation Testing suite. For the most part, the testing suite is directed toward the evaluation of
a test data set, but the first stage also provides a criterion that aids in the selection of test data.
A test data set satisfying Budd’s Estimate executes components in the program (e.g., variables,
operators, statements, control flow structures) over a variety of inputs. The rules below outline

test data that must be selected to pass Estimate.

Rule 1 For each variable V', T contains test data t,,t, tc, for some node ng, np, n. such that:

a. to € DOMAIN (n,) and v = 0;
b. ty € DOMAIN(n;) and v < 0;
¢. t. € DOMAIN(n,) and v > 0.

Rule 2 For each each assignment V' := EXP at each node n, T contains a test datum t, €
DOMAIN (n) such that:

a. exp ¥ v.

Rule 3 For each binary logical expression, EXP, bop EXP; at each node n, T contains test data
te,ty € DOMAIN (n) such that:

a. expy = true and exp; = false;

b. expy = false and expp = true.

Rule 4 For each edge (n,n') € E, where BP(n,n') is the branch predicate, T contains a test
datum t, such that:

a. to € DOMAIN (n) and bp(n,n') = true.

Rule 5 For each relational expression, EXP; rop EXP;, at each node n, T contains test data
te,ts,te,ta € DOMAIN (n) such that: '

20

(=]

. exp) — expy = 0;

O
.

expy — expy > 0;

o

ezxp) — expy < 0;

d. ezp) — exps = —¢ or —¢ (where ¢ is a “small” value).

Rule 6 For each binary arithmetic expression EXP; aop EXP; at each node n, T contains a test
datum t, € DOMAIN (n) such that:

a. expy > 2 and expy > 2.

Rule 7 For each binary arithmetic expression EX P,aopC (Caop EXP,), (where C is a constant),
at each node n, T contains a test datum t, € DOMAIN (n) such that:

a. exp; > 2.

First, let us consider Estimate’s ability to originate potential errors for the six fault classes.
Rule 3 satisfies the origination condition set for boolean operator faults, and rule 5 satisfies the
origination condition set for relational operator faults. Thus, Estimate guarantees origination of a
potential error for boolean and relational operator faults.

Rule 1 appears to be concerned with forcing variables to take on a variety of values, which is
one requirement for detection of variable reference faults. Consider the following segment of code:

1 read A, B;
2 X .= 2xA;

The three test data (0,0), (3,3), and (-10,-10) satisfy rule 1, for variables A and B, but would not
distinguish a reference to A from a reference to B at node 2. Estimate is not sufficient, therefore,
to originate a potential error for a variable reference fault.

Estimate’s rule 2 is directed toward the detection of variable definition faults. A test datum
that satisfies this rule fulfills the origination condition set. The origination condition set, however,
contains another condition, (¥ # v), that must be satisfied if (exp # v) is infeasible. Estimate does

not satisfy this other condition, and thus a potential error caused by a variable definition fault may

remain undetected by Estimate. Consider the following example:

21

T

1 read A, B,C;
2 if C = A+B then
3 C := A+B;

The condition (a + b # ¢), which is the evaluation of (ezp # v), is unsatisfiable at node 3. It is
possible, in fact quite likely, however, that the definition at node 3 should be to a variable other
than C, such as to D. To detect such a variable definition fault, the values of C and D must differ
before execution of node 3, a condition not required by Estimate. Thus, Estimate is sufficient to
originate a potential error for a variable definition fault, but it does not guarantee origination for
this class of faults.

Rule 6 is specifically concerned with arithmetic operator faults. Budd notes that test data satis-
fying this rule distinguishes between an arithmetic expression and an alternate formed by replacing
the arithmetic operator by another arithmetic operator except for an addition or a subtraction
operator replaced by a division operator (or vice versa). We agree that Estimate originates a po-
tential error for any potential arithmetic operator fault in all but the four exceptions just cited.
Estimate, however, is more stringent than necessary. When this rule is unsatisfiable — that is, no
test datum exists such that (ezp; > 2) and (ezpz > 2) - there may exist an undetected potential

error due to an arithmetic operator fault. For instance, consider the following code segment:

1 read X,Y;
2 ifX<2andVY < X then

3 A= XxY;

Note that at node 3, X and Y are restricted to values less than or equal to 2. In this case,
Estimate’s rule is unsatisfiable, and no data must be selected to satisfy rule 6 for this statement.
The expression A := X+YVY is an alternate that is not equivalent; there are data within the domain

of the statement for which the two expressions evaluate differently — (e.g., z = 2 and y = 1). Thus,

22

Estimate is only sufficient to originate a potential error for arithmetic operator faults except for
the four noted exceptions, where Estimate is insufficient. Estimate, however, does not guarantee
origination of a potential error for any arithmetic operator fault.

Let us now consider how Estimate does with transfer conditions. Note first that rule 3 fulfills
and guarantees the transfer conditions through boolean operators.

Estimate’s rule § is similar to one of the general sufficient transfer conditions shown in Appendix
A, although Estimate does not consider the assumptions noted there. Even if these assumptions
were taken into account, one of these sufficient conditions is not by itself sufficient to guarantee
transfer through a relational operator. Consider the relational expression in the following:

1 read X,Y;
2 if XxY > 10 then

(where X and Y are of type integer). Suppose X * Y should be X + Y. Test datum (11,1) would
originate a potential error (since 11+1 # 11+ 1), and satisfies rule 5 (since X Y differs from 10 by
a small amount). However, the potential error is not transferred through the relational operators
since both 1141 and 11*1 are > 10. Thus, Estimate is not sufficient to transfer through relational
operators. .

A test datum satisfying Estimate’s rule 6 satisfies transfer conditions through all arithmetic
operators but the exponentiation operators. Rule 6, however, is more restrictive than necessary;
when unsatisfiable, it does not guarantee absence of a fault. Consider the arithmetic expression in

-

the following:

1 read X,Y;
2 fX<2andY < X then

3 A= XY,

23

where a potential error originates in z at node 3. No test datum satisfies rule 6 for this node;
however, a test datum such that y # 0 transfers any potential error in z. Thus, Estimate is sufficient
to transfer through most but not all arithmetic operators but does not guarantee transfer.

We are now in a position to determine the ability of Estimate to guarantee revelation of a context
error for the six fault classes. In general, Estimate does not require data that satisfy origination
conditions to also satisfy transfer conditions, and thus transfer of an originated potential error is
not guaranteed. This is because Estimate does not prescribe any integration of the application of
its rules.

When two or more rules are applicable to an expression, Estimate does not dictate any way in
which these two rules should interact. As an example, consider revelation of a context error for a
potential relational operator fault in the expression (A < B) or Z (assume for simplicity that A and

B are of type integer) in the following:

1 read A, B, Z;
2 if (A < B) or Z then

The test data shown in Table 6 satisfies Estimate’s rules 3, 4 and 5 for this expression. Test data
i, ii, and iii satisfy rule 5 for the relational expression containing the operator <. If this relational
operator should have been any other relational operator, this test data would originate a potential
error; for these test data, however, z =true, which will not transfer any potential error. Test data
iii and iv satisfy rule 3 for the outer boolean expression containing or. Data v and vi satisfy rule
4 for the conditional statement. Test data iv and vi are the only data that would transfer any
potential error originated in the relational expression; these data alone, however, are insufficient to
guarantee origination of a potential error for the potential relational operator fault. If, for example,
the < should be <, no selected datum both originates and transfers a potential error caused by this
fault. Thus, Estimate does not guarantee revelation of a context error for this potential relational

operator fault.

24

value of variable
datum a b z

i 1 3 true
il 3 1 true
ii 2 2 true
iv 1 2 false
v 2 1 true
vi 3 1 false

Table 6: Sample Test Data Selected by Estimate for (A< B)or 2

The prescription of rule integration is lacking even in the repeated use of a single rule, as

illustrated in the application of rule 3 to the boolean expression (X and Y') or Z in the following

code:

1 read X,Y, Z;
2 if (X and Y) or Z then

The test data shown in Table 7 satisfies Estimate’s rule 3 for the conditional expression in this
example. Test data i and ii satisfy rule 3 for the inner boolean expression containing the operator
and. Test data iii and iv satisfy rule 3 for the outer boolean expression containing or. If the inner
operator should have been an or, test data i and ii would originate a potential error. For these
test data, however, z =true, which will not transfer any pdtential error. Test data iii and v are the
only data that would transfer a potential error originated at the inner expression, bt_lt for these test
data, the values z and y would not originate a potential error. Thus, Estimate does not guarantee

revelation of a context error for a potential boolean operator fault.

When origination of a potential error is guaranteed for a class of potential faults, revelation of
a context error is guaranteed by Estimate only when the transfer conditions are trivial. In general,

this occurs when the smallest expression containing the potential fault is the outermost expression

25

value of variable
datum =z y z
i true false true
it Jalse true true
iii true true false
iv false false true

Table 7: Sample Test Data Selected by Estimate for (X andY)or 2

in the node. The transfer conditions are always trivial for a variable definition fault. Since Estimate
is sufficient to originate a potential error for this class, it is also sufficient to reveal a context error.

Recall, however, that Estimate does not guarantee origination for this class.

4.2 Howden’s Weak Mutation Testing

Howden’s Weak Mutation Testing (WMT) [How82,How85] is a test data selection criterion
whereby test data is selected to distinguish between a componént and alternative components gen-
erated by application of component transformations— e.g., substitution of one variable for another.
Howden considers six transformations, which may be applied to various program components, and
includes test data selection rules geared toward the detection of these transformations. Although
Howden’s transformations are presented quite differently than the six fault classes, each of these
transformations result in one of the faults classes. The rules below specify test data intended to dis-
tinguish between a program component and alternatives generated by the transformations. These

rules must be met by a test data set T to satisfy Howden’s weak mutation testing.

Rule 1 For each reference to a variable V' at node n, T contains a single test datum t, € DOMAIN
(n) such that for each other variable V'

a. vETS,

SHowden proposes a more restrictive rule that is specifically concerned with array references. Since this rule is
subsumed by rule 1, it does not provide any additional error detection capabilities and we do not include it here.

26

Rule 2 For each assignment V := EXP at node n, T contains a test datum t; € DOMAIN (n)
such that:

a. v # ezp.

Rule 3 For each boolean expression bop(EXP,, EXP,,...,EX P;) at each node n, T contains
test data t1,12,...,t5 € DOMAIN (n) such that {t1,ts,...,t,:} covers all possible combinations
of true and false values for the subexpressions EXP;, EXP;,..., EXP,.

Rule 4 For each relational expression EXP; rop EXP;, at each node n, T contains test data
tayty,te € DOMAIN (n) such that:

o. ezp, — expy = —¢ (where —¢ is the negative difference of smallest satisfiable magnitude);
b. ezp; — exp, = 0;

¢. expy — expy = +¢ (where ¢ is the positive difference of smallest satisfiable magnitude).

Rule 5 For each arithmetic expression EXP at node n, T contains test data ta,tv € DOMAIN
(n) such that:

a. the expression is executed;
b. exp # 0;

Rule 6 For each arithmetic expression EX P, where k is an upper bound on the exponent in the
ezp, at node n, T contains test data t;,13,...tx11 € DOMAIN (n) such that {t;,ts,...tx+1} is any
cascade set of degree k + 1 in DOMAIN (n).

Howden’s WMT guarantees origination of a-potential error for boolean and relational operator
faults. Rule 3 satisfies the origination condition set for boolean operator fault, and rule 4 satisfies
the origination condition set for relational operator fault.

Rule 1 is obviously directed toward detection of variable reference faults, and a test datum that
satisfies this rule does satisfy the origination condition set. This rule, however, is more restrictive
than required for this class of faults; it requires a single test datum to distinguish between the
potentially incorrect variable reference and all other variable references. This rule may not be
satisfiable although the origination condition set is feasible. In this case, a non-equivalent alternate
may not be distinguished. Consider, for example, the reference to X at node 3 in the following

module fragment:

27

1 read X,Y, Z;

2 f (X=Y)or (X=2) then

3 A:=2xX,
The origination condition set requires that a test set T' contains a test datum such that z # y and
a test datum such that z # z to distinguish an incorrect reference to X at this statement from
possibly correct refereﬁces toY or Z. WMT, on the other hand, requires a single test datum such
that z # y and = # 2. In this example, it is possible to satisfy the origination condition set with
two test data, such as (1,1,2) and (1,2,1), but it is not possible to satisfy the WMT requirement
which requires a single test datum. In this case, WMT will not necessarily distinguish a reference
to Y or a reference to Z from a reference to X, although neither reference is equivalent. WMT is
sufficient to originate a potential error, therefore, but does not guarantee origination for variable
reference faults.

WMT’s rule 2 is the same as Estimate’s rule 2, which is directed toward detection of variable
definition faults. As noted in the discussion of Estimate, a test datum satisfying this rule will
originate a potential error for a variable definition fault. This rule alone is incomplete, however,
since it does not guarantee absence of a potential fault when it is unsatisfiable. Thus, WMT is
sufficient but does not guarantee origination for this class.

Rule 5 and 6 are the only rules specifically directed toward exercising arithmetic expressions.
For a potential error for a potential arithmetic operator fault that exchanges an addition operator
for a subtraction operator (and vice versa), rule 5 will guarantee origination of a potential arithmetic
operator fault. For other arithmetic operator faults, this rule is insufficient. Rule 6 is insufficient
to guarantee origination of a potential error due to a potential arithmetic operator fault. This is
because such a fault may change i:he degree of the arithmetic expression. Consider the arithmetic
expression in node 2 of the following:

1 read X,Y;
2 A=X+Y;

28

Rule 6 requires a cascade set of degree 2 for this expression. One such set is { (0, 0),(2,2)}. This
set of test data, however, does not distinguish the expression X + Y from the alternate X x Y.

Next, consider the ability of WMT to transfer a potential error. Rule 3 selects data that satisfies
the boolean transfer condition and guarantees transfer through boolean operators.

WMT’s rule 4 is similar to the sufficient transfer conditions for relational operators. For these
transfer conditions to be sufficient, the two assumptions noted in the table in Appendix A must also
hold. WMT does not consider these assumptions. Hence, even when WMT’s relational operator
rule is satisfied, a potential error may not transfer through a relational operator. Consider transfer

of a potential error in the arithmetic expression in node 2 through the relational operator > in the

following.

1 read X,Y;
2 if X*Y > 10 then

Suppose X *Y should be X +Y, where X and Y are integers. The test data (3,3), (2,5), and (11,1)
satisfy WMT rule 4. In all three cases, while a potential error originates, the potential error and the
potentially correct expression share the same relationship to the right-hand-side of the relational
expression, and no potential error transfers. Thus WMT is insufficient to transfer a potential error
through a relational operator.

Rule 5 satisfies the transfer conditions for all arithmetic operators but the exponentiation op-

erator. Consider the following module fragment:

1 read X,Y;
2 A= XY,

where a potential error originates in Y. The test datum (1,2) satisfies WMT’s rule 5; however,

a potential error in Y does not transfer through the exponentiation operator with z = 1. Rule 6

29

value of variable
datum a b z

i 1 2 true
ii 2 1 © true
i 2 2 true
iv 1 3 true
v 1 3 false
vi 3 1 true
vii 3 1 false

Table 8: Sample Test Data Selected by WMT for (A< B)or Z

does not apply because a proper cascade set cannot be selected when the degree of the expression
is unknown. WMT, therefore, only partially guarantees transfer through arithmetic operators.

As with Estimate, WMT does not require that a rule that satisfies origination be related to
a rule that satisfies transfer. Thus, origination and transfer are not guaranteed to be satisfied by
the same test datum, and hence revelation of a context error is not guaranteed. As with Estimate,
this may happen both when the same rule applies for origination as for transfer and when different
rules apply. Consider the same example expressions as in the discussion of Budd’s Estimate.

Consider the relational expression (A < B) or Z (where A and B are of type integer). The test
data shown in Table 8 satisfies WMT for the relational expression as well as the boolean expression
in this example. Test data i, ii, and iii satisfy rule 4, while test data iv, v, vi, and vii satisfy rule
3. Test data v and vii are the only data that could transfer a potential error originated in the
relational expression; these two data alone, however, are insufficient to guarantee origination of a
potential error for relational operator fault. If, for example, the < operator is incorrect and should
be <, no datum in the set both originates as well as transfers a potential error caused by the
potential relational operator fault. Thus, WMT does not reveal a context error for this potential

relational operator fault.

30

variable value
datum z y z

1 true true true

i true false true

i false true true
iv false false true

v true true true

vi true true false
vii false false true
viii false false false

Table 9: Sample Test Data Selected by WMT’s for (X andY)or 2

Now consider the boolean expression ((X and Y) or Z) which would be written by WMT as
or(and(X,Y), Z). The test data in Table 9 satisfies WM T for both boolean expressions contained
in the example expression. Test data i, ii, iii, and iv satisfy rule 3 for the expression and (X,Y).
Test data v, vi, vii, and viii satisfy rule 3 for the expression or(EX P, Z), where EXP = and(X,Y).
Test data ii and iii would originate a potential error if the and should be or, but for these test
data, z =true, and any potential error does not transfer through the outer or. Test data vi and
viii would transfer a potential error in X and Y since z =false. Neither of these test data, however,
satisfies the origination condition set for the nested expression. Thus, WMT criterion does not
guarantee revelation of a context error for a potential boolean operator fault.

In sum, Howden’s WMT guarantees revelation of a context error when origination of a potential
error is guaranteed for a class of potential faults and the transfer conditions are trivial. Only for
variable definition fault are the transfer conditions always trivial. WMT is sufficient to originate a

potential error for this class and hence is sufficient to reveal a context error.

31

4.3 TFoster’s Error-Sensitive Test Case Analysis

Foster’s error-sensitive test case analysis ESTCA [Fos80,Fos83,Fos84,Fos835] adapts ideas and
techniques from hardware failure analysis such as “stuck-at-one, stuck-at-zero” to software. He has
presented his rules in a number of articles. Where there is inconsistency, we will evaluate the most
recently published applicable rules. A test data set T satisfies Foster’s ESTCA if the rules outlined

below are satisfied.

Rule 1 For each variable V input at node n,, and for each variable W input at node ny, T contains
test datum, t, € DOMAIN (nsinat) such that:

a. the value input for V is not equal to the value input for W

Rule 2 For each variable V' input at node n and some edge(n,n'), T contains test data t,,t, €
DOMAIN (n') such that the value input for V' at node n is:

a. vg > 0;
b, vy <0,

where v, and vy have different magnitude (if v is restricted to only positive or negative values, v,
and vy need only be of different magnitude).

Rule 3 For each logical unit L of each boolean expression EXP = (...L...) at node n, let
EXP' = {(...~L...), T contains test data t,,t, € DOMAIN (n) such that:
a. | = true and ezp' = —ezp 7;

b. | = false and exp' = —exp.

Rule 4 For each relational expression EXP; rop EXP; at each node n, T contains test data
ta,ts,tc € DOMAIN (n) such that:

a. expy — ezp; = —e (where —e¢ is the negative number of smallest magnitude representable
for the type of exp; — ezpa);
b. exp; — exps = 0;

c. exp) — expz = +¢€ (where ¢ is the positive number of smallest magnitude representable for
the type of exp; — ezp,).

S A logical unit is either a logical variable, a relational expression or the complement of a logical unit.
"that is, substituting =L in EXP complements the value of EXP.

32

Rule 5 For each assignment V := EXP at node n and for each variable W referenced in EXP, T
contains a test datum t, & DOMAIN (n) such that:

a. w has a measurable effect on the sign and magnitude of ezp.

Foster’s ESTCA contain no rules that approach the origination condition sets for either a
potential variable reference fault or a potential variable definition fault.

Foster’s ESTCA guarantees origination of a boolean operator fault. Rule 3 considers a boolean
expression in terms of logical units. A logical unit is a variable or relational expression that is one of
the operands oi' is a subexpression of one of the operands of a boolean expression (EX Pbop EXP,).
ESTCA requires selection of test data such that each such logical unit takes on the value true (and
the value false) and complementing the logical unit complements the entire boolean expression.
This rule satisfies the origination condition sets for boolean operator faults. To see this, notice that
for any boolean expression EXP; bop EXP,, three test data are selected, (ezp;,ezp;) = (T,F),
(F,T), and (T,T) if bop is and, or (F,F) if bop is or. This test data satisfies origination condition
sets for a boolean operator fault. Thus, ESTCA guarantees origination of a potential error for the
class of boolean operator faults.

Consider now the class of relational operator faults. When satisfiable, ESTCA’s rule 4 results
in data such that ezp; > ezps, ezp; = ezps, exp; < exps. Thus, test data satisfying this rule
will originate a potential error for potential relational operator faults. This rule, however, is more
stringent than required and may be unsatisfiable while the origination condition set is feasible.
Consider the relational expression in node 4 in the following code segment:

1 read X,Y;
2 if Xmod2=0and Y mod2=0 then

3 if X > Y then

4 endif
5 endif

33

&E ‘;&'
B

ESTCA’s rule 4 is unsatisfiable at node 3 since the values of X and Y must differ by at least 2.
There is data within the domain of node 4, however, that would satisfy the origination condition set
for the relational obera.t;or and originate a potential error. Thus, ESTCA ig syfficient to originate a
potential error for relational operator faults but does not guarantee origination of a potential error
for relational operator faults.

In an attempt to detect faults in arithmetic expressions, ESTCA’s rule 5 requires selection of
test data such that variables in arithmetic expressions have a measurable effect on the sign and
magnitude of the result. Although the meaning of this rule is ambiguous, it clearly does not imply
the origination of a potential error for an arithmetic operator fault. It is possible for variables in
an arithmetic expression to have a measurable effect on the sign and magnitude of the result yet
still evaluate the same for alternate arithmetic operators in the expression. ESTCA does not, we
conclude, guarantee origination of a potential error for arithmetic operator faults.

Let us now consider the satisfaction of transfer conditions. ESTCA’s rule 3 satisfies trans-
fer conditions through boolean operators. The requirement that complementing the logical unit
complements the entire expression is equivalent to selecting test data that. satisfies the transfer
conditions.

Rule 4 is similar to the general sufficient transfer conditions through relational operators. Like
Howden, however, Foster does not consider the assumptions that must hold for these conditions to
be sufficient for transfer. Moreover, rather than specifying € to be the smallest satisfiable difference,
Foster fixes € at the smallest representable magnitude. As a result, the ability of ESTCA to
transfer a potential error through a relational operator is further limited. Consider, for example,
the relatlional expression in the module fragment below, where a potential error originates within

the arithmetic expression in node 3.

34

1 read X,Y, Z;
if Xmod2=0and Y mod2=0 then

to

W

if2*%* X >Y then

endif
endif

18

[J]]

Again, the condition at node 2 causes rule 4 to be unsatisfiable at node 3, and hence, no data need
be selected that satisfies rule 4. There is data in the domain of node 3, however, that could transfer
a potential error originated within the arithmetic expression. Suppose the reference to X at line
3 should reference Z. The test datum (4,4, 1) originates a potential error for this potential fault
and transfers the potential error through the relational operator. Thus, ESTCA is insufficient to
transfer a potential error through a relational operator.

Rule 5 attempts to disallow the effect of a variable or subexpression to be masked out by other
operations in the statement. While the specifics of how this rule is applied are unclear, one might
interpret this as requiring transfer of a potential error through arithmetic operators. Under the
broadest interpretation, therefore, ESTCA guarantees transfer through arithmetic operators.

As with the other criteria, Foster fails to ‘prescribe integration between ESTCA rules that
satisfy origination and those that satisfy transfer. Rule 3, however, does guarantee revelation
of a context error for boolean operator faults. As seen above, this rule satisfies the origination
and transfer conditions for relational operator faults. In addition, when applied to the outermost
boolean expression, this rule selects a single datum for each nested binary boolean expression
that originates a potential error due to a potential fault in the associated boolean operator and
transfers that potential error to the outermost expression. To see this, consider any expression
EXP = EXP; bop EXP,. Some test datum selected for logical units within EX P, fulfills the
origination condition for potential boolean operator faults in EXP;. Complementing a test datum

selected for a logical unit that is a subexpression of EXP; must complement the value ezp. To

35

force this, if bop = and then exp; =true, or if bop = or then e:ipz =false. Thus, for any test
datum selected for a logical unit that is a subexpression of EXP;, EXP, will take on a value that
will transfer any potential error originated within EX P, to the outer expression EXP. Therefore,
ESTCA’s boolean operator rule satisfies origination as well as transfer conditions simultaneously

and hence guarantees revelation of a context error for boolean operator faults.

4.4 Summary of Analysis

Table 10 summarizes the analysis of the three test data selection criteria. The entry insufficient
means that the criterion does not include a rule that satisfies the condition. The entry sufficient
means that the criterion includes a rule that when satisfied fulfills the condition when satisfied.
The entry partially sufficient means that the criterion includes a rule that is sufficient to distinguish
many but not all of the alternates or transfer through many but not all of the operators. The entry
guarantees means that the criterion includes a rule that satisfies the conditions when the conditions
are feasible, while partially guarantees means the criterion includes a rule that satisfies many but

not all of the conditions when feasible.

36

amr o TR EAES

) Budd’s Estimate | Howden’s WMT | Foster's ESTCA
Origination
1. Constant Reference Fault guarantees guarantees guarantees
2. Variable Reference Fault insufficient sufficient insufficient
3. Variable Definition Fault sufficient sufficient insufficient
4. Boolean Operator Fault guarantees guarantees guarantees
3. Relational Operator Fault guarantees guarantees sufficient
6. Arithmetic Operator Fault partially partially insufficient
sufficient guarantees
Transfer
1. Assignment Operator guarantees guarantees guarantees
2. Boolean Operator guarantees guarantees guarantees
3. Relational Operator insufficient insufficient insufficient
4. Arithmetic Operator partially partially guarantees
sufficient guarantees
Revelation
1. Constant Reference Fault insufficient insufficient insufficient
2. Variable Reference Fault insufficient insufficient insufficient
3. Variable Definition Fault sufficient sufficient insufficient
4. Boolean Operator Fault insufficient insufficient guarantees
5. Relational Operator Fault insufficient insufficient insufficient
6. Arithmetic Operator Fault insufficient insufficient insufficient

Table 10: Analysis Summary

37

5 Conclusion

In this paper, we use the RELAY model of error detection to evaluate the error detection
capabilities of other testing techniques. This analysis demonstrates how the rules of a test data
selection criterion must be carefully designed and tightly integrated to reveal an error for any
potential fault by showing how other techniques have failed to accomplish this precision. Without
this precise analysis, it is easy to arrive at test data selection rules that do not guarantee the
detection of a fault and may not even be sufficient to do so. Using RELAY, we have evaluated
where previous criteria have failed in this regard.

We have analyzed the ability of three test data selection criteria to guarantee revelation of a
context error for six classes of faults. Our analysis shows that none of these criteria is adequate
for this fault classification and indicates two major weaknesses of the criteria. First, each criterion
includes rules that are sufficient but not necessary to originate or transfer an error. When such
a rule is unsatisfiable, a test data set satisfying the criterion will not detect all potential errors.
This weakness is primarily due to the creation of rules that are too narrow and the failure of the
authors to consider what data is necessary when these restrictive rules are not satisfiable. Second,
the authors failed to pz;opose ways in which their rules should be integrated. Each criterion includes
rules that guarantee origination of potential errors for some classes of faults and rules that guarantee
computational transfer of potential errors through some operators, yet no criterion explicitly forces
the rules guaranteeing transfer to be satisfied by the data selected for the rule that guarantees
origination. Thus, in most cases, none of the criteria guarantee that a context error is revealed for
any of the six classes of faults. The one exception is ESTCA, which guarantees detection of any
boolean operator fault.

RELAY overcomes these weaknesses because the test data selected by RELAY satisfies precise
origination conditions that are coupled with the transfer conditions. Moreover, these conditions

are necessary and sufficient for both origination and transfer of a potential error.

We continue to extend our model of error detection and to evaluate its capabilities by instan-

38

- -

-V

tiating it for other classes of faults. In addition, we are applying this analysis method to other

testing criteria.

39

Appendix A

A.1 Origination Conditions

constant referenced | origination condition set

C true _

Table A-1: Origination Condition Set for Constant Reference Fault

variable referenced origination condition set I
1 {[v # v|V is a variable other than V'
that is type-compatible with V}

Table A-2: Origination Condition Set for Variable Reference Fault

assignment origination condition set ||
V:=EXP || {[(¥#v) or (exzp# v) | V is a variable other than V
that is type-compatible with V]}.

Table A-3: Origination Condition Set for Variable Definition Fault

operator || origination condition set
not { [true] }
null { [true] }.
and {[ezp1 # ezp2]}
or {[ezp1 # ezp2]}

Table A-4: Origination Condition Sets for Boolean Operator Faults

40

operator || origination condition set sufficient condition set
< {lezpr = ezps], [ezp1 > exps), | {[ezp1 = ezpy], [exp1 > ezp.]}
lezpy < ezpaj, [ezpy # ezpa]}
< {[ezp1 = ezps), [ezp1 < ezpa], | {[ezp1 < ezpy], [ezp1 = ezps]}
[ezpl > e:z:pz], [e‘CPl # esz]}
{lezp1 > ezpa], [ezp1 > ezpy), | {lezp1 < expq), [ezp1 > ezps]}

lexpy < ezps], [ezpy < ezp,]}
= {lezp1 < ezpa], [ezp1 < exzpy), | {[ezp1 < ezpy), [ezp1 > ezps]}
[ezp1 > ezpy], [ezp1 > ezps)}

> {lezp1 # ezp2], [ezp1 > ezpa], | {[ezp1 = ezp2), [ezp1 > ezps]}
ezp1 < ezps), [ezpy = ezpa]}
> {lezpy # ezps), [exp1 > ezp], | {lezp1 < ezps), [ezp1 = ezp]}

[ezPl < €1‘P2]s [expl = _egn]}

Table A-5: Origination Condition Sets for Relational Operator Faults

operator | origination condition set

+ {[(ezp1 + ezp2) # (ezp1 op ezpz))
| Op =, *7/’ div’ **}
- {[(ezp1 — ezp2) #.(ezp1 Op ezps)]
| op = +, %, /, div, **}

* {[(expy * ezp2) # (ezp) Op ezp2))
| op = +, —, /, div, *x}
/ {[(ezp1/ezp2) # (ezpy op ezp;)]

l op =+, —,%, diV, **}

div {[(ezp1 div ezp;) # (ezpy op ezp2)|
| op = +’-)*,/)**}

* {[(ezp1*+ezps) # (ezp1 op ezps)|

{ op = +,—,*,/,diV}

Table A-6: Origination Condition Sets for Arithmetic Operator Fault

.
g

A.2 Transfer Conditions

operator expression transfer condition

= Vi=EXP#V :=FEXP true

Table A-7: Transfer Condition Through Assignment Operator

operator expression transfer condition
not not(ezp;) # not(ezp!) true
and ezp) and ezp; # €Zp; and ezp, ezps =true
or exp; OT exp; 7 €Zp; Or erps ezpy =false

Table A-8: Transfer Condition Through Boolean Operators

operator | expression transfer conditions T
+ exp; + expy 7 €Ip) + exp; true
- exp) — exp; # €Zp) — ezps ‘ true
- eTps — exp) F exps — €IpPy true
* erp) * exp; 7 TIP] * expy ezpy # 0
/ ezp1/ezps # €ZP1/ezp; exps # 0
/ ezpz/ezp; # exp;[ezp; true
** ezp **ezrp; 7 €Zp1**exps | (ezps # 0) and (ezp; # —€ZPpi or exp; mod 2 # 0)
ok eITpy**erp) # eIpy*+e€xpy (expz # 0) and (ezps # 1)
. and (ezp2 # —1 or ezp; mod 2 # eZpy mod 2) |

Table A-9: Transfer Conditions Through Arithmetic Operators

42

operator expression i transfer conditions

< ezp) <expy * EIP1<ezpz) (exp1<ezp; and €zpy>ezp;) or
(ezp1>ezps and €Zpy<ezp;)
< exp1<exp; # €Zpi<ezps) || (ezpi1<ezp; and EZpy>ezp,) or

(ezpy>ezps and €eZp;<ezp;)
= ezp=ezp; # EZP1=ezp3) || (ezp1 = ezp, and eZp; # ezp;) or
(ezpy # exp; and €Zp;y = ezp,)

ezp)Fezp; # EIP17exps) || (ezpy # ezp; and EZp; = ezpy) or
(ezpl = exp2 and €Ip; # ezpz)
> €Tp1>eTps ¥ €T P1>e:z:p2) (ea:p1>ea:p2 and €zp; Sezpz) or

(ezp1<ezp, and €zp;>ezp;)
ezpy>expy # €ZP1>expz) || (expi>ezp; and ezpi<ezps) or
(ezp1<ezp; and eZpi>ezrps)

v

Table A-10: Transfer Conditions Through Relational Operators

—

§ operators sufficient transfer conditions
<,$=5%,>,2 €Zp2 — €xIp) = €,
_ exp — exp1 = —¢,
ezp; — exp; =0

Table A-11: General Sufficient® Transfer Conditions Through Relational Operators

®For sufficient transfer conditions through relational operators, ¢ is the smallest magnitude positive difference
between ezp; and ezp, and —e is the smallest magnitude negative difference; note that +e and —¢ may be of different
magnitude. In addition, these conditions are only sufficient under the assumption that the relation between ezp,
and €Zp; is the same for each of the three test data selected to satisfy all three e—~conditions listed in the table. In
addition, these conditions are not sufficient unless ¢ is the smallest positive difference between ezp, and ezp, and is
no greater than the smallest positive difference between €Zp; and ezps. If any of these e~ conditions is infeasible,
absence of a fault is not guaranteed by satisfaction of the remaining e-conditions.

43

{Bud81]

[Buds3]
[Fos80]
[Fos83]
[Fos8d]
[Fos8s]
(Ham77]
(How82]
[How83)
[Morg4

[RT86a]

[RT86b)

[Wey81)
[Wey82]

(Zei83]

REFERENCES

Timothy A. Budd. Mutation analysis: ideas, examples, problems and prospects. In B.
Chandrasekaran and S. Radicchi, editors, Computer Program Testing, pages 129-148,
North-Holland, 1981.

Timothy A. Budd. The Portable Mutation Testing Suite. Technical Report TR 83-8,
University of Arizona, March 1983.

Kenneth A. Foster. Error sensitive test case analysis (estca). IEEE Transactions on
Software Engineering, SE-6(3):258-264, May 1980.

Kenneth A. Foster. Comment on ’the application of error-sensitive testing strategies to
debugging. ACM Software Engineering Notes, 8(5):40-42, October 1983.

Kenneth A. Foster. Sensitive test data for logical expressions. ACM Software Engineering
Notes, 9(3), July 1984.

Kenneth A. Foster. Revision of an error sensitive test rule. ACM Software Engineering
Notes, 10(1), January 1985.

Richard G. Hamlet. Testing programs with the aid of a compiler. IEEE Transactions on
Software Engineering, SE-3(4):279-290, July 1977.

William E. Howden. Weak mutation testing and completeness of test sets. JEEE Trans-
actions on Software Engineering, SE-8(2):371-379, July 1982.

William E. Howden. The theory and practice of functional testing. IEEE Software,
2(5):6-17, September 1985.

Larry J. Morrell. A Theory of Error-Based Testing. PhD thesis, University of Maryland,
April 1984,

Debra J. Richardson and Margaret C. Thompson. A Formal Framework for Test Data
Selection Criteria. Technical Report 86-56, Computer and Information Science, University
of Massachusetts, Amherst, November 1986.

Debra J. Richardson and Margaret C. Thompson. A New Model of Error Detection.
Technical Report 86-64, Computer and Information Science, University of Massachusetts,
Ambherst, December 1986.

Elaine J. Weyuker. An Error-based Testing Strategy. Technical Report 027, Computer
Science, Institute of Mathematical Sciences, New York University, January 1981.

Elaine J. Weyuker. On testing nontestable programs. The Computer Journal, 25(4),
1982.

Steven J. Zeil. Testing for perturbations of program statements. IEEE Transactions on
Software Engineering, SE-9(3):335-346, May 1983.

44

