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Abstract

In this paper we examine the problem of grouping tokens extracted from images of
natural scenes into geometrically significant components useful for image interpretation.
We propose an algorithm which hypothesizes groups based on the Gestalt laws of percep-
tual organization, and uses a notion of simplicity in order to resolve conflicting hypotheses.
Initially we are examining the problem of grouping straight line segients into larger geo-
metric structures using the geometric relations of collinearity, parallelness, relative angle
and spatial proximity. Lines may be viewed as the nodes of a graph and the geometric
relations between lines as links in this graph. Significant geometric structures then arise
as connected components which our results show bear a close relation to interesting scene
events.

This work has been supported by the following grants: DARPA N00014-82-K-0484 and
DMA 800-85-C-0012.



1. Introduction

Interpreting an image involves many processes of description and explanation
which transform the original intensity array into a form appropriate for the goals
of the system (see [10,16,28,15]). Any interpretation system must deal with two
central issues: (1) How are the semantics of the scene to be defined in terms of
the description and explanation processes?, and (2), Ilow is the enormcus search
space, which contains the projection of the scene events of interest, to be pruned to
managable size? In this paper we discuss a class of algorithms for grouping collec-
tions of primitive image events, herein called “tokens”, into geometrically significant
components useful for image interpretation.

Crucial to the process of constructing an image interpretation is the generation
of intermediate level tokens which reduces the amount of data which needs to be pro-
cessed, hence cutting the search space, while tncreasing the amount of information
carried with each token and providing the semantic primitives for the interpreta-
tion processes. These tokens fit into a variely of abstraction hierarchies, such as
spatial resolution, part - whole and, important for this paper, image geometric -
scene semantic.

The relationship between geometric events in the image and corresponding
events in the scene has attracted the attention of the image understanding com-
munity for many ycars. Some work has heen done recently in the context of acrial
photographs, see for example |5,24,13,17]. The work done in the “blocks world”
domain (see [8,26,23]) includes many analyses of the relation hetween image geom-
ctry and scene semantics. It is interesting to note that many of the “blocks world”
algorithms are good examples of the explanation processes which Witkin and Ten-
nanbaum ([|28]) assert are important to the process of image interpretation. Fvents
such as T-junctions have oiily a fixed number of “explanations” within a blocks
world scene, and spatially propagating these events and taking advantage of the
mutual constraints between pairs of events results in a single “explanation” or 3-1)
structure consistent with the constraints.

One reason that this work did not generalize to natural scenes is that the events
which occur in natural scenes could not he represented in terms of the primitives
which the blocks world algorithms assumed as input. The work presented in this
paper builds the structures which, for images of natural scenes, require ezplanation
in terms of scene events.

In the context of natural scenes Hanson and Riseman (|10]) proposed a hierar-
chical decomposition of declarative knowledge (see Figure 1). This decomposition
involved placing explicit representions of geometric events in the image at different
levels of the hierarchy and linked them via a knowledge base to scene events. The
bottom three levels of this hierarchy involve geometric relations in the image The al-
gorithms presented in this paper can be viewed as l;lanipulating the representations
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Figure 1: Hierarchical decomposition of geometric knowledge. From [lanson and
Riseman 1978.

residing at these levels.

Of course natural scenes are rich in geometric structure, and we present here
a methodolgy for constructing tokens whose features and descriptions provide the
necessary cues for infering the scene structure. We will argue that this requires
complex hypothesis generation and resolution strategies at the image description
stage of the processing (sce also |27]). The initial results reported on in this paper
deal with the problem of grouping line collections of the type typically seen in road
scenes and aerial photographs.

Generally scenes of this nature will require that the geometric relalions belween
lines and regions be combined in different ways in different. parts of the image, and
a general system will require a family of grouping strategies guided by a knowledge-
directed or schema-based interpretation system (see [25,7]). We present some pre-
liminary results on natural outdoor scenes and acrial photographs in which lines are
grouped based rectilinearity. The results demonstrate that our system can succes-
fully extract geometric structures which closely correspond 1o important semantic
features in these domains.



Figure 2: Natural Scene, an Aerial Photograph.

Let us review briefly the kind of primitives which we can assume our system will
have as input. In Figure 2 we see an acrial view of and urban area and in Figure 3
we see a road scene.

Figure 4 and Figure 5 show the results of a local histogram based segmentation
algorithm on the images in Figure 2 and Figure 3 respectively (see [3]). Here the
input is some collection of pixels and the output is a collection of regions each of
which is homogeneous with respect to some (possibly complex) feature. Figure 6
and Figure 7 show the results of a straight line extraction algorithm (see [6]) where
the output lines are formed from a set of pixels of approximately uniform gradient
direction. These results, although in some ways quite good, are typical of the output
of complex low level algorithms. These algorithms often produce fragmented and
in some cases (from the point of view of the human obeserver) incorrectly located
region boundaries and straight lines.

Moreover, neither of these image abstractions alone contains the information
needed to capture the semantic richness of the scene. This is true for two reasons.
First, in the case of the region segmentation algorithm, although it has made explicit
some semantically important regions of the image, important geometric structure
is only implicit in the boundaries of the regions. In the case of the line data, some
of the important geometic structure has been made explicit, but more complex



Figure 3: Natural Scene, a Rural Road.
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Figure 4: Region segmentation of the aerial photograph.
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Figure 5: Region segmentation of the road scene.

geometric structure such as closed regions and collections of parallel lines though
immediately obvious to the human observer, are again only implicit in the lines.
Secondly, regions and lines are simply not the primitives with which to represent
many of the events of the scene. In the case of the road scene, the road, barn, trees
and other structures are composed of groupings of these (and other) primitives.
Therefore the primitves seen in Figure 4 and Figure 6 for the aerial photograph,
and Figure 5 and Figure 7 for the road scene, need to be fused and manipulated
in such a way that the primitives required to represent ‘objects’ in the scene are
explicit in the resulting structres.

What is needed then are algorithms which group tokens of each type of segmen-
tation separately and simultaneously in order to generate a more complete set of
image based tokens with which to represent the image and scene events. Specifically
we are interested in geometric segmentation and grouping algorithms where the in-
put is some collection of tokens (regions,lines...), and the output are collections of
tokens satisfying some (possibly complex) geometric relation between the tokens,
for example: relations of adjacency, similar orientation, T-junction and arbitrary
combinations of these involving many lines and regions.
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2. Generating and Resolving Multiple
Hypothesis

One difficuty in formulating any grouping algorithm or strategy is that a sin-
gle token may have many possible interpretations, and in order to account for its
occurence in the image, it is sometimes necessary to observe the token in more
than one larger context. Thus, it is necessary to generate hypotheses which suggest
possible explanations and then determine which of those hypotheses (or contexts)
serves as the “best” explanation. The criteria by which such a determination is
made will depend on the domain, top-down information available at the time such
a determination is being made, bottom up information in the local area about the
line, and various factors involving the “simplicity” (see the next section) of the
structure being hypothesized.

Let us start with a simple example. Consider the image contained in Figure 8.
If one is presented with a list of the lines bounding the dark region (shown in bold)
and asked to organize them, and return a description of that organization, there
are many possibili'ties. Two are shown in Figure 9 and Figure 10. Figure 9 shows
one natural organization of the lines using the Gestalt Law of “good continuation”
as the primary organizational principle, and suggests an addmittedly incomplete
description of Figure 8 such as: “a dark figure consisting of a diamond and a
rectangle, ‘transparently’ overlapping”.

Figure 10 shows another natural organization using the Cestalt Law of “closure”
as the dominant organizational principle and suggests another also incomplete de-
scription of Figure 8 such as: “a dark figure composed of two pentagonal figures
and two triangles with a hexagonal hole in the middle”.

From a psychological point of view the descriptions suggested in Figure 9 and
I'igure 10 are very different, and one might be able to determine which of these
organizations (or even some other) is more “natural” to a human observer. However
from the point of view of computer vision, each of these descriptions, and many
others for that matter, are equally reasonable. Indeed there is no reason to prefer
one over the other, unless there are scene (general or specific) constraints which
guide the selection.

Indeed it is exactly such constraints which are at work in the human visual sys-
tem. The question is, how do we translate these constraints into the computational
processes of a computer vision system? In natural scenes the situations in which
region and line relations allow for multiple hypotheses of this nature to be gen-
erated expand exponentially with the number of tokens. Methods for translating
scene knowledge and constraints into constraints on the grouping and hypothe-
sis generation processes are crucial to limiting the number of either top-down or
bottom-up hypotheses actually formed. It is natural for the bottom-up processes



IFigure 8: A grouping description problem.

Figure 9: Description |
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Figure 10: Description 2

to draw these constraints from measures of forin (see below) applied to the groups
which are generated.

In the above two examples, the notions of line, region, closure, angle, square,
rectangle and other measures of form were crucial to the ultimate descriptions which
resulted. Moreover Lthese descriptions are natural and important to image interpre-
tation for two reasons. First they lead to “simple” descriptions of the image events,
within the repertoire of descriptions available and consistent with the data. Second,
these descriptions provide a rich set of primitives for defining a representation of
the events in natural scenes.

It has been proposed by the Gestalt school that when presented with more than
one description (as in the above example) of an image event, the perceptual system
tends to perfer the one involving the “simplest” description. This notion of simplic-
ity has received much attention in the literature and has in more recent years been
revised and updated by a number of authors (see [22]). Oune variation is from the so
called empiricist point of view wherein the “inost economically encoded” representa-
tion is preferred; and another is from the so called constancy point of view wherein
the preference is for the description or explanation in which the “object remains
constant”. Rock has recently proposed another principle wherein “an executive
agency secks to explain seemingly unrelated but co-occurring stimulus variations on

10



Figure 11: It is diflicult to perceive (describe) the figure on the loft as composed of
two symmetrical figures, even though it secms to be a “simpler” description. After
Rock 1983.

the basis of a common cause or in the case of stationary configurations, secks solu-
tions that explain sceming coincidences and uncxplained regularities that otherwise
are implicit in the nonpreferred solution” (see |Rock| page 133). For example in
Figure 11 we sce an example where the “executive agency” prefers the perception
(description) which explains the occurence of the collinear lines over the perception
(description) which yeilds (the “simpler”) two symmetrical objects. Apparently the
“executive agency” forces a perception explaining the collinearity over one explain-
ing the symmetry. Perhaps the elements requiring explanation do not even include
the two symmetrical objects.

These proposals are interesting not only fromn the point. of view that it helps
to explain observed phenomena in human perception, but also that they provide
a preliminary framework for constraining the hypothesis generation processes. For
example, Julian Hochberg [1] suggested a notion of simplicity or “figural goodness”
(in the context of cconomic encoding) which he proposed explains our perception
of line drawings in three dimensions. Consider the following three features of a line
drawing:

1. The number of angles enclosed within the figure.
2. the number of different angles divided by the total number of angles.

3. The number of continuous lines.

Hochberg proposed that, minimizing a quantitative measure defined in torms of
these features yiclded the structure most likely to be perceived. Thus we perceive
the object to the left in Figure 12 as a three dimensional cube “sinee” i, minimizes
Hochberg’s measure. Morcover when the cube js viewed from a particular angle (the



I'igure 12: The Necker cube.

object to the right in Figure 12) we no longer perceive the three dimensional struc-
ture, “since” there is a simpler description (with respect to llochberg’s measure)
which yields a two dimensional perception.

We are not interested here in the validity of Hochberg’s measure for human per-
ceplion. We are interested though, in the notion of finding the simplest description
for the maximum amount of structure as a possible model for creating bottom-
up organizational processes. These processes will require measures of “simplicity”
guided by both top down and bottom-up information in order to significantly re-
duce the search space and build appropriate semantic primitives. In this paper we
will develop an algorithm which uses this paradigm for line organization and apply
it to line grouping in the context of natural scenes.

3. Requirements for a Geometric Grouping
System

There are four essential requirements on any geometric grouping system. First is
the representation of primitive tokens (in our case lines) and the geometric relations
between tokens (in our case collincarity, parallelness, relative angle, and spatial
proximity. Our choice of a representation will be discussed in next section.

12
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Second, it must identify the relationship hetween the groups of tokens satisfying
these primitive relations, and knowledge about the domain being interpreted. That,
is, one must select, primitives which form the basis of a language for representing
objects and knowledge ahout the scene.

Third, it. must develop grouping strategics, based on the objects of interest in the
scene, knowledge of the domain and the current state of the system. That is, one
must build a language of grouping strategies for representing procedural knowledge
about the objects of interest in the domain. Finally, at all stages of gronping the
system must deal explicitly with the problem of search, and its relation to the
objects in the domain which are to be hypothesized.

The algorithm presented in this paper is part of a larger computational frame-
work under development, at UMASS (see also [27]) for confronting the issues de-
scribed above. We view the grouping and search processes as part of a 4 stage
iterative grouping and extraction strategy which can be summarized as follows:

o Primitive Structure (lencration: These processes provide the primitives (re-
gions, lines, more complex tokens) which are the input to the grouping and
hypothesis generation process described next.

o Linked Structure Generation: This step applics very general geometric con-
straints to obtain graphs within which search processes can he applied to iden-
tify specific structures of interest. For example rectilinear structures which
would contain rectangles or other simple geometrie structures. This is essen-
tial for generating search spaces of reasonable size.

o Subgraph Eriraction: This step involves the extraction of specific structures
“one step up” the abstraction hierarchy, and uses the linked structures to
constrain the search.

* Replacement and Ilteration: Naving extracted more abstract tokens, these can
now play the role of primitives in another pass of grouping and extraction.

The algorithm presented in this paper is at the Linked Structure Generation
stage of the strategy and is applied here only to straight lines for the purpose of
building rectilinear structures. In [27], a similar strategy is applied with striking
results for the purpose of extracting straight lines. [In general cach step of the
grouping and extraction strategy must apply constraints which either signilicantly
reduce the search space and/or add important information to the descriptive power
of the system.

13



4. Identifying Rectilinear Structure

In this section we review the system under development for the extraction of
rectilinear structure and our approach Lo limiting the scarch for both general and
specific geometric structure.  The process starts with a sel. of primitives which
are the the output of a straight line extraction algorithm, in this case the Burns
algorithm was used (see |6]). These lines are viewed as nodes in a graph and the
geometric relations of

e spatially proximate collinear

e spatially proximate parallel

e spatially proximate orthogonal
e and any subset of the above,

as relations between the nodes. These specific relations will be defined below.

Hypotheses of line groups are then generated using a connected components al-
gorithm based on the chosen geometric links. These components, which are called
Rectilinear Line Groups, form a new class of tokens which have emergent features
and form a new level of the Geometric-Semantic abstraction hierarchy. Because dif-
ferent choices of the prisuitive geometric relations yield different rectilinear groups, a
given line may participate in more than one group and so we are begining to explore
various notions of “simplicity” or “preference” to resolve conflicting or competing
hypotheses. Finally, specific geometric structure may be identified (rectangles, co-
llinear and parallel structure) as subgraphs of these connected components. We
refer the reader to |7| for examples of the extraction of specific geometric structure
corresponding to the projection of scene events.

In defining spatial proximity one must recognize that there are essentially three
types of proximity to choose from. First, there is a notion of image-dependent proz-
tmity wherein the metric of the image itself is used to define the distance between
two tokens independent of the size of the tokens. The second is token-dependent
prozimity where the distance between two tokens is a function of the size of the
tokens. For example, the length of a line might be a factor in defining a notion
of parallel. Finally, there is scene-dependent prorimity where, for example in a
road scene with a camera in standard position, distance between two objects at the
hottom of the image might mean something very different than for two objects at
the top of the image. For the results presented in this paper we have used token-
dependent prozimity for defining orthogonal, parallel and collincar relations. Clearly
this is only a start, and indeed there are many issues that we have only begun to
address with regard to the relations between these three types of proximity.

4
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Figure 13: Lines in the Orthogonality Range for the Acrial Scene containing the
greatest number of lines.

The process of finding rectilincar line groups involves partitioning the lines into
overlapping groups filtered with respect to orientation. These groups, which we
call orthogonality ranges, contain all lines within 7/16 radians (11.25 degrees) of
some orientation or ta/2 radians of that orientation. The choice of 7 /16 radians
results in 8 distinct orthogonality ranges. By restricting the connected components
algorithm to lines from a single orthogonality range the rectilinearity of the group
as a whole is guaranteed. In addition, considering each of the orthogonality ranges
independently reduces the search space without, limiting the resulting geometric
structures and lends a degree of parallelism to the process. In Figure 13 we sce the
lines in the orthogonality range from Figure 6 containing the the greatest number of
lines. In Figure 14 we see the lines from Figure 7 in the orthogonality range about
the horizontal orientation.
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Figure 14: Lines in the Horizontal and Vertical Orthogonality Range for the Road
Scene.
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Figure 15: Tllustrating Comparison of two lines for Spatially Proximate Orthogo-
nality.

4.1 Spatially Proximate Orthogonal Line
Segments

Figure 15 illustrates our use of token dependent proximity to determine whether
two line segments A and B are spatially proximate orthogonal. Three measures
contribute to determining spatially proximate orthogonality, A8, ¢t and '. If one
thinks of line segment A as the unit vector of a coordinate system obtained by
extending A infinitely in both dircctions, then £ is the value where the extension of
line segment B intersects it. The value ¢ is analogus to ¢, excepl the roles of lines
A and B are reversed. The value Af is simply the relative orientation between A
and B.

Definition: Two lincs are spatially prorimate orthogonal if the following condi-
tions are satisfied:

o 6t} 6,
o St T4,
* T2 €< A< m[2 .

The terms ¢ and 6 are thresholds which constrain the definition. For smaller ¢ the
two lines must, he closer to orthogonal to he related. For smaller 6 the lines must,
be spatially closer with resepect 1o their endpoints.  Note this definition makes
no distinction between corners and T-junctions.  Values of « 0.17 radians (10
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degrees) and & - 0.5 were used for the resulls in this paper and an investigation of
this parameter space is currently underway.

4.2 Line Overlap and Displacement

Spatially proximate parallel and spatially proximate collinear are defined in
terms of two more primitive relations which we call symmetric lateral displacement
(DI1Sym) and symmetric overlap (OV,,,). The basis for these two measures arc
more primitive relations shown in Figure 16 where
DIS(A, B, ) measures the displacement. from point Py on A to B and OV (A, B)
measures the overlap from A to B. Symmetric measures DIS., and OV, result
essentially by taking averages of measures from A to B and B to A with these and
the same measures with the roles of A and B reversed. A detailed explanation of
how displacement. and overlap are caleulated can be found in [20].

The resulting symmetric measures satisfy the following conditions

0 DISym(A,B) - oo

00+ OVym(AB) - 1.

These measures are intended for use between lines already known to be roughly
of the same orientation. The lateral displacement measure captures the distance
in the direction orthogonal to the orientation of the line. The overlap measure
captures the distance along the projection of the line. A negative overlap is used to
measure the distance between two lines along their projection. For example a line
completly overlaps itself (OV,,, (A, A) 1) while there is no lateral displacement.
between a line and itself (D1S,,,.(A,A)  0). For two parallel sides of a square,
DISqym(A,B) 1 and OV, (A, A) 1. For two collinear lines lying end to end,

DISqm(A,A)  Oand OV, (A, A) 0.
4.3 Spatially Proximate Collinear and Parallel

We are now in a position to define spatially proximate collinear using the defi-
nitions of displacment and overlap.

Definition: T'wo lines are spatially prorimate collinear if the following condi-
tions are satisfied:

L - ()V_.y,,,(/l,“) Tt
o DISym(AB) - &
o |A0|< «~

18
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Figure 16: Hlustrating Displacement, and Overlap Between T'wo Lines.
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For the results shown in this paper we have used the values ¢ - .5, (separated
by al most 50 pereent of their average length), ¢ .15, (having at most 15 percent
overlap), 8 .15, (displaced by al most 15 percent of their average length) and
a - 0.17, (10 degrees).

Similarly we have used displacement and overlap lo define spatially proximate
parallel.

Definition: Two lines are spatially prozimate parallel if the following conditions
are satisfied:

o OV, ..(A,DB) -«
o DISym(A,B) - 6
) I Al |"\ o

For the results shown in this paper we have used the values ¢ = .5, ( at most
50 percent overlap), & .5, ( at most 50 percent. of the average length apart ), and
a  0.17 (10 degrees).

In summary these definitions provide measures of token dependent proximity
with respect 1o the relations of collinear, parallel and orthogonal. There is much
work 1o be done in exploring the parameter spaces employed in these definitions.
In Figures 17, 18 and 19 we see the line pairs satisfying the relations of spatially
proximate orthogonal, spatially proximate collincar and spatially proximate parallel
for the acrial photograph. Figures 20, 21 and 22 show the same relations for the
road scenc. The pairs shown in these figures are the in input to the connected
components phase of the grouping algorithm which we describe in the next section.

4.4 Line Group Generation and Competing
Hypothesis Resolution

We are now in a position to describe the creation of rectilinear groups. Their
generalion really involves two processes:

1. Connected Components: which forms an hypothesis of a spatially proximate
rectilinear structure.

2. Voting Processes, Competing lypothesis Resolution: which tries to find the
simplest explanation for the largest collection of lines.

The connected components algorithm uses any subset of the three relations,
spatially proximate orthogonalspatially proximate collinear and spatially proxi-
mate parallel. These different subsets make up a family of possible relations upon
which the connected components can be based. For example we might choose to
select. conditions only from the rules for collinearity and parallelness and ignore

20
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Figure 17: Lines Belonging to Spatially Proximate Orthogonal Pairs for the Aerial
Photograph.
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Figure 18: Lines Belonging to Spatially Proximate Collinear Pairs for the Aerial

Photograph.
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Figure 19: Lines Belonging to Spatially Proximate Parallel Pairs for

Photograph.
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Figure 20: Lines Belonging to Spatially Proximate Orthogonal Pairs

Scene.
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Figure 22: Lines Belonging to Spatially Proximate Parallel Pairs for the Road Scene.

the orthogonality conditions. The output of the connected components algorithm
would be structures all of whose elements are parallel or collinear with the property
that any line in the group is spatially proximate (in the sense described above) to
al leasl one other line in the group.

Given that the the connected components algorithm is run separately on each
of the othogonality ranges and thal the orthogonality ranges overlap, each line
can belong to two connected components. In addition, groups based on different
combinations of links are formed separately and a line can belong to groups of each
type independently. Currently we have explored resolution within groups formed
using a single combination of links. One means for accomplishing this resolution is
to invoke a process which asks of each line which component it prefers according
to various selection criteria. For example: Let each line vote for the group which
has the most lines, or the group whose total length is longest, or the group which is
”simplest” based on some more complex rule. Some preliminary results are shown
in the next section.
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5. Results

The Rectilinear Line Grouping System, as the system described above is called,
has been run on roughly ten images drawn from different domains including road
scenes, acrial photographs and house scenes. In cach case connected components,
or what we will simply call line groups, were formed using all combinations of the
three basic relations, spatially proximate orthogonal, spatially proximate collinear
and spatially proximate parallel. These line groups clearly represent a next step up
the geometric-semantic abstraction hicrarchy. The groups we have produced differ
greatly in size and form, capturing a wealth of structure in the images. We are just,
begining the process of learning how best to utilize and characterize these groups.
Presented here is a sampling of the groups gencrated for the images presented in
Figures 2 and 3.

5.1 A Sample of the Connected Components
Grouping Results

In Figure 23 we see the lines which belong to the group containing the largest,
number of lines formed using only the relation spatially proximate orthogonal. The
source lines (Figure 6) are for the aerial photograph. This group contains 82 lines,
the next largest group of the same type for this image contained only 19. Ap
examination of Figure 17 shows that many spatially proximate orthogonal line pairs
are identified around the buildings in the lower lefthand portion of the image. The
connected components grouping finds a number of groups containing roughly 5 to
15 lines in this area.

The line groups shown in Figure 24 are the result of grouping lines from the
same aerial photograph based on the relations spatially proximate collinear and
spatially proximate parallel. The figure was generated by selecting the 1 largest
groups and displaying ‘best’ 3. How the best 3 were chosen will be discussed below
as an example of resolving multiple hypothesis.

The line groups shown in Figure 25 were produced using all three relations, spa-
tially proximate orthogonal, spatially proximate collincar and spatially proximate
parallel. Four groups are shown, selected out of the largest 5. What appears to be
a large group resulling from buildings in the lower portion of the scene s actually
two groups. The two groups contain 158 and 135 lines respectively and share 54
lines in common. The two groups arose out. of the connected components grouping
in adjacent orthogonality ranges. It is clear that the significant groups based on
rectilinearity correspond to significant scene events.

In Figures 26 and 27 we see rectilinear line groups for the road scene image of
Figure 3. The source lines are shown in IFigure 7. The two groups shown in Figure 26
are the result of grouping based solely on spatially proximate orthogonality. They
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Figure 23: Largest, Group Based on Spatially Proximate Orthogonality.

are the 2 ‘best’ groups oul of the largest 4. The 2 discarded cach contain about
half the lines in the largest group, and are the result of grouping the lines for the
large group in the orthogonality ranges adjoining the one in which the large group is
found. Figure 27 shows the single largest group produced by grouping based upon
all three relations.

5.2 TIllustrating the Resolution of Multiple
Hypothesis

In selecting the groups shown in Figure 24 we said the ‘hest’ three of the four
groups were sclecled. Figure 28 shows the group the was rejected and Figure 29
the group that caused it to be rejected. As mentioned earlier, a simple means of
resolving conflicting hypotheses is for each line 1o vole for the group it ‘prefers’. One
basis for preference is size. Reliance on size amounts to an elementary definition
of ‘simplicity’ which in this case amounts to the selecting the group accounting for
the maximum ammount, of structure. Size may bhe measured in many ways, and
two simple ways arc in terms of the number of lines or the cumulative length of the
lines. The group shown in Figure 28 contains 88 with a cumulative length of 1116.
The group shown in Figure 29 contains 117 lines with a cumulative length of 1336.
These 2 groups share 83 lines in common. Using cither of these measures, the group
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Figure 25: Largest Groups Based on all Three Relations: Spatially Proximate Or-
I.hog,ond.l, Spai.m.lly Proximale Collinear and Spatially Proximate Parallel.

30

3

(4]



Figure 26: Largest Groups Based on Spatially Proximate Orthogonality.

in Figure 29 would clearly receive the majority of the votes.

In resolving the conflict between the groups in Figures 28 and 29 it made little
difference what measure of size was used. This may not always be the case, however
as the groups illustrated in Figures 30 and 31 the group in Figure 31 was chosen
over the one in Figure 30 for inclusion in Figure 25 by hand Which of these two
groups would be considered ‘best’ depends upon the ieasure of size. ‘The group in
Figure 30 contains 107 lines with a cumulative length of 902. The group in Figure 31
contains 102 lines with a cumulative length of 983. The two groups have 70 lines in
common. Hence which group is chosen depends upon the measure used. Based on
cumulative length, the group in Figure 31 wins. Based on the number of lines, the
group in Figure 30 wins. This example gives some flavor for the types of difliculties
surrounding the issue of multiple hypothesis resolution.

6. Conclusion and Future Directions

In this paper we have examined the problem of grouping tokens extracted from
images ol natural scenes into peotetrically signilicant components useful for inmage
interpretation. An implementation of a system lor grouping straight. lines into larger
rectilinear configruations is described. In designing and implementing this system,
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Figure 27: Largest Single Group Based on all Three Relations: Spatially Proximate
Orthogonal, Spatially Proximate Collincar and Spatially Proximate Parallel.
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Figure 28: Line Group Based on Spatially Proximate Collincarity and Parallelness,

rejected For Lack of Support.
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Figure 29: Line Group Based on Spatially Proximate Collinearity and Parallelness.
Selected Over Group Shown the Previous Figure. Contains 117 Lines.
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Figure 30: Line CGroup Based on Spatially Proximate Othogonality, Collinearity

and Parallelness. (}

roup Contains 107 lines with a cumulative length of 902.



Figure 31: Line Group Based on Spatially Proximate Othogonality, Collinearity
and Parallelness. Group Contains 102 lines with a cumulative length of 983.
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two central issues in geometric grouping had to be addressed. IFirst, the importance
of building structures which can serve as primitives for defining scene events and
second, the importance of pruning the cnormous scarch spaces which contain the
projections of the scene cvenls of interest. The Gestalt Laws of perceptunal orga-
nization and in particular many of the rules of simplicity and economic encoding
provide a framework for developing deseriptions and algorithms which constrain the
number of hypothesis gencrated.

In this paper we have dealt only with line organization, and our future work
includes extending the algorithms we describe to include line and region relations.
For example in the algorithm described in this paper we have not used the direction
of the intensity gradient across the line, color information in a neighborhood about
the line or information about regions of a segmentation to which the line is adjacent,
to constrain the grouping processes. Fach of these additional constraints will allow
the generated structures to be more complete descriptions of some local area in
the image, allow further pruning of the search space, and provide a richer set of
primitives for higher level processes.
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