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. Abstract

This paper presents a method for initial hypothesis formation in image understanding
where the knowledge base is automatically constructed given a set of training instances.
The hypotheses formed by this system are intended to provide an initial focus-of-attention
set of objects from a knowledge-directed, opportunistic image understanding system whose
intended goal is the interpretation of outdoor natural scenes. Presented is an automated
method for defining world knowledge based on the frequency distributions of a set of train-
ing objects and feature measurements. This method takes into consideration the impre-
cision (inaccurate feature measurements) and incompleteness (possibly too few samples)
of the statistical information available from the training set. A computationally efficient
approach to the Dempster-Shafer theory of evidence is used for the representation and
combination of evidence from disparate sources. We chose the Dempster-Shafer theory
in order to take advantage of its rich representation of belief, disbelief, uncertainty and
conflict. A brief intuitive discussion of the Dempster-Shafer theory of evidence is contained
in Appendix A.
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1. The Interpretation Problem

An important task in image understanding is to develop a mapping from low-level im-
age events (such as regions, lines or surfaces) to higher level semantic abstractions (such
as road, grass and foliage). Achieving this task requires developing a knowledge base
which defines these semantic abstractions in terms of the low-level image events and using
constructive techniques to match or correlate primitive features of the low level events
against the knowledge base for each semantic abstraction. An inference technique is re-
quired to compare, contrast and combine match scores to create a consistent interpreta-
tion. Some schemes for combining information from various sources in initial hypothesis
formation include additive “voting” methods [Hans86,Belk86], Dempster-Shafer pooling
of evidence [Low82,Wes84,Rey86b|, Bayesian methods [Duda73], constraint propagation
[Kitc84,Wal72|, as well as many ad hoc but heuristically adequate Mycin type systems
[Shor76]. In any scheme three questions must be answered: What is the evidence for some
inference, How is it represented, and What method will be employed for combining and
propagating evidence?

In this paper we present a method for initial object hypothesis formation in image
understanding that has evolved from earlier work in the VISIONS research environment
documented by Hanson and Riseman in [Hans87]. These hypotheses can then be used
as a focus-of-attention set by a knowledge-directed interpretation system and expanded
into a more complete interpretation. An automated method is presented for defining
a knowledge base based on the frequency distributions of a set of training objects and
feature measurements. The system takes an image that is segmented into closed boundary

regions and “matches” each region against the stored knowledge base to generate a set of



initial hypothesis for a given region. This method can also be used to classify lines, surfaces
or any other image abstraction or combination of image abstractions. In our formalism,
evidence is represented by a plausibility function and combined using a computationally
efficient approach to the theory of evidence as pioneered by Glen Shafer referred to as the
Dempster-Shafer theory of evidence [Demp67,Shaf76|.

At the heart of the Dempster-Shafer formalism is a rich representation of evidence, a
belief function or mass function, and a method for combining evidence, Dempster’s Rule.
The formalism is often criticized for the computational cost associated with Dempster’s
Rule; in addition the Dempster-Shafer theory does not address the issue of acquiring mass
functions. The system presented here addresses both these problems. It is able to use the
rich semantics implied by the evidential representation of the Dempster-Shafer formalism
without the computational cost associated with Dempster’s Rule as well as defining an
automatic method for generating a knowledge base. A brief intuitive discussion of the

fundamental principles of the Dempster-Shafer formalism are presented in appendix A.

2. The VISIONS Experiments

In general we can think of intermediate-level image abstractions as tokens one or two
steps removed from the raw image data represented as pixels. Regions can be thought of
as area filling abstractions connecting pixels with some homogeneity constraint [Kohl84].
Straight lines may connect and group pixels with the same gradient direction [Burn86,Weis86|.
Each intermediate level token can be associated with a feature vector that measures primi-
tive features. If pixels are grouped into closed area-filling regions, measures can be defined

which statistically describe a region’s color, intensity or texture. Depending upon the line



algorithm used, lines also have a variety of primitive features such as length, position in
the image (rho), angle or orientation (theta), and measures of the contrast relating the
values of pixels on either side of the line.

An approach taken in VISIONS |Hans87| is to use th :se primitive features to create
initial hypothesis labels which associates with each region a semantic label to bootstrap
the high-level interpretation process. Although regions are being labeled in this approach,
line data can be incorporated into the interpretation process by the use of relationships

between lines and regions [Belk86].

2.1 Approaches to Representing and Combining Evidence

Existing approaches to the generation of initial hypotheses have used interactive and
heuristic approaches to the knowledge engineering problem. One in particular, the rule-
based object hypothesis system of Hanson and Riseman |Hans86|, defines constraints on
the features of line and region image abstractions; it uses frequency distributions to guide
the formation of heuristically defined, piece-wise linear ranking functions called rules. In
that system, rules provide a vote for a specific object, and a set of “simple” rules are
combined via a weighted average tor form a “complex” rule which can then be similarly
combined. The output of a complex rule represents a weighted combination of evidence
from various features and is used to rank order image regions (or collections of regions and
lines) according to how well they match a prototype object.

The contribution of the system presented here is two fold: (a) a formal and theo-
retical foundation for the combination and representation of evidence, and (b) the auto-

matic construction of the knowledge base. It defines the knowledge base automatically
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using statistical information obtained from a set of training object instances and uses a
computationally efficient approach to the Dempster-Shafer theory of evidence for the rep-
resentation and combination of evidence from disparate sources. The knowledge base is
represented in terms of plaustbility distributions; their construction takes into consideration
the imprecision (i.e. inaccurate feature measurements) and incompleteness (i.e. too few
samples) of the statistical information available from the training set. We show that the
automatically generated plausibility distributions characterize the range of feature values
associated with each object in the training set without biasing the interpretation towards
objects more likely to appear at random in the training set. The term plausibility is used
to indicate the equivalence between our formalism and the semantics and functionality of

the term plausibility in the Dempster-Shafer formalism.

2.1.1 The Rule System

The task of the rule-based object hypothesis system of Hanson and Riseman [Hans86]
system is to provide a set of candidate object hypotheses to a knowledge-directed schema
network. Based on these initial hypotheses an island driving focus-of-attention strategy
is employed to initiate further processing. Rules are formed by heuristically assigning a
vote for a specific object to ranges of feature values. Sets of “simple” rules are combined
via a weighted average from “complex” rules. Sets of complex rules are then combined in
the same way to form the initial hypotheses. A rule is represented as six threshold values,
0,0, ...,06, these thresholds define a piecewise linear mapping function from feature space
to object space. The intervals |- 0o, 8| and |5, 00| represent a veto range, |03,0,] the range

where the object label associated with the prototype feature vector receives a maximum
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Figure 2.1: Structure of a Simple Rule
Structure of a simple rule for mapping an image feature measurement f into a score for a
label hypothesis on the basis of a prototype fcature value. The object specific mapping is

parameterized by seven values, fp,fy, ..., 0.

vote of 1, the intervals [0;,0;] and |04,05] a noncommittal vote of zero, and finally (62,65
is linearly ramped from 0 to 1 whereas |05, 0;] is ramped from 1 to 0. Figure 2.1 shows the
construction of a simple rule. The weights given to the combination rule are heuristically
defined on a scale from 1 to 5.

Due to the potentially large number of rules needed for each object in the initial hy-
pothesis set, the rule system is designed to simplify the definition of each rule. The user
choosing the threshold values 6, through 65 for a particular object is equipped with an
interactive environment for constructing these rules and displaying their effect. In this
system each object has a different set of features which contribute to the objects prototype
feature vector. Given an image token, the score for one object is never directly compared

against the score for another object; instead for each object, tokens are ranked by how



-well they score for that object. Regions with the highest scores for a particular object
are used as exemplar regions in an island driving strategy applied in later stages of the
interpretation.

The rule system was developed in reaction to the problems of using Bayesian techniques
for the classification of tokens based strictly on statistical information available from an
inadequate training set. In particular, if the training set is small, the feature distribution
may only coarsely characterize feature space; in addition the a priori probability of seeing
a particular object at random in the training set is also a highly unreliable estimate of
seeing that object in the world, yet plays a powerful role in Bayesian decision functions
[Duda73,Wood78|. Section 4.1.1 discusses in more detail the problems inherent in Bayesian
methods when the statistical samples contain inaccurate or imprecise information, see also

[Low82, Wes84].

2.1.2 The Plausibility Formalism

The .approach used in our plausibility formalism differs in many aspects from the rule
system. Whereas the high level goal of producing object hypotheses for a knowledge
directed schema network is common to both systems, our approach is not thought of
as producing a ranking of regions for each symbolic object (although the results may
ultimately be used in this manner). The outcome is instead viewed as associating with
each region an evidential model of the current state of interpretation.

Our general approach resembles the principles behind a least commitment or constraint
propagation system. The system uses a set of features to rule out possible object hypotheses

until only a small set of initial hypotheses remain. Each piece of evidence results in



an assignment of a plausibility value to each hypothesis, yielding a plausibility function
defined on the set of hypotheses. Fach plausibility value is generated by comparing a
feature value for an image event against the knowledge base. For example, the system
may measure the average color of region 2; the value returned is then compared with
the knowledge base for each of road, foliage, sky... to find a plausibility value for each
possible semantic abstraction. The plausibility value represents the amount to which that
hypothesis should not be ruled out as a possible hypothesis. Each plausibility function
represents a mass function (a method for transforming a plausibility function into a mass
function is discussed in Section 3.). The plausibility functions derived from each feature
measurement are combined such that they represent the plausibilities of each singleton
hypothesis as if the equivalent mass functions were combined using Dempster’s Rule. The
result is a combined plausibility function which represents a consensus of opinions from
disparate pieces of evidence. Figure 2.2 shows the construction of a plausibility function
given a feature measure and a knowledge base.

It is important to understand that the plausibility functions returned by each knowledge
source are not statements about the probability of a hypothesis in a Bayesian view. The
role of a plausibility value is to rule out unlikely states of nature. The minimum semantic
requirement for a plausibility value is that it represent the extent to which a state of nature

should not be ruled out given an event.

2.1.3 Differences in Evidential Representation

In the rule system, a vote can have one of three different effects on an object hypothesis.

If the vote is between zero and one, this supplies supporting evidence, a vote of —co vetoes
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Figure 2.2: Constructing Plausibility Functions
The three shaded curves represent the knowledge base for Obj;, Objz, and Objs in the form
of plausibility distributions for some feature. Given a feature value f, the plausibility value
PI(Obj | f) can be determined from the plausibility distribution as shown by the shaded
circles. A plausibility function is the set of plausibility values obtained for a given feature
value.

an object hypothesis altogether, and a vote of zero is noncommittal. The final score
represents supporting evidence for a particular object. On the surface, the plausibility
formalism only allows ruling out hypotheses, but by transforming a plausibility function
into a mass function after combination we are also able to represent supporting evidence as
well as the possibility that an image abstraction may not be any of the objects represented
by the set of possible hypotheses, i.e. conflicting evidence.

The greatest advantage of the Dempster-Shafer approach is its representation of sev-
eral different types of evidence: supporting evidence, plausible evidence, and conflicting
evidence. It greatest disadvantlage is the exponential nature of Dempster’s Rule and the
explicit representation of the powerset of all object hypothesis. Our system provides a

technique that allows the representative power of the Dempster-Shafer approach to be
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combined with the computational efliciency of the rule system.

3. A Computationally Efficient Approach to Dempster-Shafer

A major criticism of the Dempster-Shafer formalism has been the combinatorial prob-
lems related to use of the powerset of all possible hypotheses in Dempster’s Rule. As the
frame of discernment becomes large, the computation becomes unmanageable. To over-
come this combinatorial problem, we present a way to represent a mass function using
only the elements of the frame of discernment and a combination rule that is equivalent
to Dempster’s Rule for this simplified representation. Reynolds et al. [Rey86b] describe a
method whereby knowledge sources need not return a mass function, but rather a plaus:-
bility function where each individual element of the frame of discernment, ©, is assigned
a plausibility value between zero and one. A mass function representation for a given
plausibility function can be obtained using the formula:

[IriGals) II Q=pi(] 1))

m(A) — a€A a€-A

o (3.1)

where pl(a | f) is the plausibility of seeing object a given a feature value f (see figure 2.2).

The conflict value of a plausibility function is defined as

k=TI~ pila] 1) (3.2)

aEA

Given two plausibility functions ply(a | fi) and ply(a | f2),a € ©, we define the combi-

nation pls(a | fi A f2) by the rule

plg(a I fi A fz) — pll(a | fll)_p’:Z(a' ‘ f2),a €0, (3‘3)
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where k is the conflict value defined above for pls(a | f; A f2) Analogously we define the
combination of an arbitrary number of plausibility functions.

It is shown in [Rey86b]| that this combination rule produces the the plausibilities of the
singletons, as defined in the Dempster-Shafer theory, when the mass functions generated
by formula 3.1 are combined using Dempster’s Rule. The terms plausibility values and
plausibility functions were chosen to point out this equivalence. A complete discussion and
proof of the equivalence of this simple representation and multiplicative rule with a class

of mass functions and Dempster’s Rule can be found in Reynolds et al. [Rey86b)].

4. Defining the Knowledge Base

In any image understanding scheme one of the most ill-defined tasks is that of defining
the knowledge base. To overcome the problems of an inaccurate training set, the rule sys-
tem creates its knowledge base by hand using the histogram of a set of training instances
for heuristic guidance. On the other hand, Bayesian techniques address the problem of
efficient definition of object rules for a given feature in terms of their conditional probabil-
ity distribution, but these techniques lack the ability to handle inaccurate or insufficient
sample sets: In this section a method is discussed for building a knowledge base, called
plausibility distributions. This method constructs plausibility distributions determined di-
rectly by the statistics of a training set of image primitives (in this sense similar to Bayesian
techniques), but can also deal with certain kinds of uncertainty inherent in the training
sel. In particular we address the situation where the training set is sufficient to show where
an object lies in feature space, but the a priori estimate of seeing that object in the world,

as estimated by the number of samples in the training set, is inadequate with regard to
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identifying objects in feature space.

4.1 Criteria for Plausibility Distributions

The approach taken by Hanson and Riseman [Hans86| describes a method for heuris-
tically assigning a rule score based on the feature distributions for a particular object in
relation the feature distribution for the entire image (or set of images). Our intent is
to use statistical information to automatically constructs a knowledge base of plausibility
distributions given information information about the frequency distribution of a set of

training instances.

frequency

—

feature value

Figure 4.1: Frequency distributions
The larger curve represents the frequency of seeing a particular feature value, denoted by h(f).
This is the distribution of the feature over the entire population of samples. The smaller,
shaded, curve represents the frequency of seeing a particular feature value and a particular
object, h(f A 0), the distribution of the feature over only those samples labeled object o.
The need is to find some function which characterizes the area in feature space in which
an object lies and also takes into account the relationship between the object and total

world sample. If we pick a set of pixels to represent some object, and a set of features over

which to characterize each object, then we have the following statistical information: the
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frequency of seeing a particular feature value, h(f) and the frequency of seeing a particular
feature value and a particular object, A(f A 0). (See Figure 4.1.)

Some considerations in evolving a system for producing automatic plausibility distri-
butions include:

Statistical Accuracy: What statistical information is available from a training set of ob-
ject instances, what assumptions can be made about the accuracy ol these statistics,
and how useful is this information for discrimination and recognition?

Semantics of a Plausibility Valune: What are the specific semantics of a plausibility
value with respect to our plausibility formalism.

Size of the Training Set: Should the final plausibility distribution be independent of
the number of positive training instances for a particular object in the world? For
example, if 30% of the training instances are object; and 20% are object;, should the
relative plausibility of finding object; over object; be dependent upon the probability
of picking object; out of the training set at random (this is the classic discussion
about the validity of a priori statistics)? It may or may not be reasonable to assume
a priori that certain objects are more likely to be seen than others.

We briefly discuss each of these considerations in the next three sections.

4.1.1 Statistical Accuracy

We must first address the question of the accuracy of statistics collected over a set
of training instances. Any matching or inference technique is only as good as the rep-
resentation of the world knowledge as defined by a training set, and the quality of the
information returned by the processes which measure the features to be compared with
the world knowledge. In complex domains, both areas are subject to uncertain, imprecise
and occasionally inaccurate information [Low82|. One concern with probabilistic methods
is the amount of information needed to assure quality statistics. To accurately compute

the conditional probability of seeing a particular state of nature w given a feature measure,
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p(w | f), requires the a priori knowledge of seeing w given no other information p(w), the
probability of perceiving a particular feature measure p(f), and the probability of seeing
a particular feature measure given a state of nature p(f | w). At best, this information is
diflicult to obtain or reliably estimate. Sources of uncertainty can arise through inaccu-
rate feature measures, incomplete data sets, aliasing resulting from digitization and region

segmentation, and inaccurate region segmentation.

4.1.2 Semantics of a Plausibility Value

Secondly, we look at the desired semantics of a plausibility value. The objective at this
stage of interpretation cannot be emphasized enough. When the interpretation begins, each
token is possibly any object contained in the frame of discernment or the unknown event,
moreover the features used to characterize object hypotheses at this level are extremely
primitive. Therefore the goal is not object classification, but rather a pruning of possible
hypotheses. With this in mind, the minimum semantic requirement of a plausibility value
is that it represent how much an object should not be ruled out given a particular feature

measure.

4.1.3 Size of the Training Set

Finally, some understanding must be reached about the size of the sample set for each
object in the frame of discernment. Using Bayesian techniques, the conditional probability
p(w | f) represents both the probability of seeing object w, p(w), and knowledge about the

probability of seeing feature measure f given w, p(f | w).

_ o/ [ wplw)

p(w ] f) ()
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Consider the two object case, with objects w; and w;. Given equal probability for p(f | w1)
and p(f | wz) then the decision process is based solely on the the values for p(w;) and
p(wz). In our paradigm of using sample regions hand labeled as the training set, then
these two a priori probabilities are based solely on the number of samples for any object
in the training set. This is not an adequate estimate. A compromise has been suggested
that the a priori probability p(w) is assumed equal for all objects and thus can be removed
from the calculation leaving the likelihood ratio,
p(f |w)
p(f)
A ratio greater than 1 indicates that the feature measure f is more likely to occur for this
particular object than for some random object. A ratio equal to 1 indicates no information,
and less than 1 states that the feature value f is more likely to occur by chance for any
object than it is for a particular object w,. This ratio is the theoretical foundation under-
lying the heuristic approach of Hanson and Riseman [Hans86] and has also been employed
by Woods in speech understanding |Wood78]. If the a priori statistics are assumed to be
inaccurate, this is still not a reasonable solution because the a priori statistic p(w) is still
present in the term p(f | w).

If it is reasonable to assume that certain object are more likely to appear than other
object, then some estimate of the a priori probability may be devised. On the other hand, if
you assume that the a priori probabilities are ill defined at best, then it is not good enough
to simply remove that term from the computation of the conditional statistic, rather some

effort must be made to factor out the size of the sample over which the probabilities are

calculated.
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In the domain considered here the number of samples for a given object, o, is not be
an adequate estimate of the a priori probability of seeing that object in the world. Indeed
this a priori probability may be impossible to determine. However the number of samples
does influence h(f) and h(f A 0). What is needed is to find the range of feature values
associated with a given object and to factor out any effects related to the probability of
picking an object at random out of the training set.

In summary, early work on the generation of feature rules by Hanson and Riseman sug-
gests that the rule for an object should be influenced not only by the its conditional feature
distribution, but also by its relationship to the feature distribution of all the objects in the
entire training set. In addition, we set as our goal that the final plausibility distribution
should be characterizations of feature ranges and not include information about a priori

probabilities.

4.2 Automatic Generation of Plausibility Distributions

For a given feature value consider the ratio of the height of a frequency distribution for
a given object, h(f Ao;), to the height of the frequency distribution for all training objects,

h(f) (see Figure 4.1). This is by definition an estimate of the conditional probability 1

Boc| ) = h%l (4.1)

Similarly defined are the estimates p(o;), the relative frequency of seeing object; in the

knowledge base and p(f), the relative frequency of seeing a particular feature value f.

fofobject; Xy h(f A 0:‘_)_
i1 flofobject; X ()

ploi) = (4.2)

I'We will use the notation p to indicate the use of estimates of probabilities based on discrete samples.
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As mentioned earlier, one desirable characteristic of a plausibility distribution is that it
be relatively invariant with respect to the size of the training set used to model the feature
distribution. That is, two distributions differing only in the size of the sample set over
which they are defined should have the same plausibility distribution. We can show that
one way of accomplishing this behavior is to use the estimate of the a priori probability,
p(0i), as a decision threshold on the conditional probability p(o; | f). If the value of
P(o; | f) is at least as large as the estimate of seeing.o.-, #(0;), assume a plausibility value

of 1, otherwise normalize by p(o;) We now have the following definition for a plausibility
function.

Definition: For each object o; and each feature f we define a plausibility value for object
o; given feature { as follows: ?

(o; = Min ﬁ(on.;l
Pl(o; | f) = Min(1.0, 3l ). (4.4)

We can now examine the behavior of a plausibility value with respect to the size of the

training set that makes up our statistical samples. To do this we must look at the behavior

of

B(f A o)
#()p(o) (4.5)

with respect to two objects with the same distribution but with difference sample sizes.
Given two objects, 0, and 0,, wo can show that Pl(oy | f) = Pl(o, | /) regardless of the

difference in the size of P(o1) and p(o,) as long as the distribution for the two objects

occupy the same area in feature space.

%A full discussion of this definition and proof of related theorems can be found in [Rey86b).
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Theorem: Let p(f A oz) =~ ap(f A o)) and p(oz) ~ «p(o;) where o is some scalar, then

A/ A 1)

_ S Ahe) (] Aer) .
aNplos)  #(f)ablor) ~ #(f)p(or) (4.6)

We show in figure (4.2) that this function indeed characterizes the proportion of feature
space in which the objects feature distribution lies and minimizes the effect of the sample

size over which the statistics are taken as stated by the above theorem.

5. Using Plausibility Functions for Initial Hypothesis

In this experiment we started with six images of New England road scenes digitized to
a resolution of 256 x 256 pixels. Each image was then segmented using a knowledge based
segmentation technique [Hans87]. Each region was hand labeled as one of the following
labels {ambiguous, barn, dirt, foliage, grass, gravel, house, phonepole, pole, post, railing,
road, roadline, sign, sky, sky-tree, tree-trunk, wire}, but only objects with a significant
number of occurrences in the training set were used in the frame of discernment. The
context for this experiment is defined by the following question, frame of discernment and
set of feature spaces:
Question: “What are the plausible semantic labels for this region?”

Frame Of Discernment: {foliage, grass, gravel, road, roadline, sky, sky-tree, trunk}.

Feature Spaces: Four feature categories were used; Intensity, Color, Location and Tex-
ture.

¢ Intensity Features: Y color transform, Intensity color transform, Raw red,
Raw green, Raw blue.

e Color Features: Percentage of red, Percentage of green, Percentage of blue,
Excess red, Excess green, Excess blue, Hue, Saturation, Q color transform, I
color transform.

3The unknown object is not explicit but rather implicitly represented by the conflict value k.

18
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Figure 4.2: Plausibility distributions of synthetic world knowledge.
This graph shows the plausibility distributions for synthetic world knowledge as defined by a
set of four gaussian distributions. On the left is displayed h(f), the sum of the gaussians, with
h(f A o) shown separately from top to bottom. On the right, the four plausibility distributions
are displayed. Note that the top two distributions have the same mean and standard deviation,
and their plausibility distributions are identical. The dotted horizontal lines pass through p(o).
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o Texture Features: Horizontal edge measure, Vertical edge measure, Lower
diagonal edge measure, Upper diagonal edge measure.

¢ Location Features: Row position of centroid.

No information about object size or shape were used in this set of experiments. The
objective was to use a simple set of feature measures to reduce the set of possible object
hypotheses for any particular region. In particular, the feature measures used here contain
little or no special knowledge which relates to a specific context. The approach is not
strictly classification, but rather to provide some initial evidence for an hypothesis. The
initial hypothesis can then provide information about a more specific context to be used as
interpretation continues; with this more specific context are more specific, perhaps more
expensive, feature measures. Under current development is a system for extending and
verifying an initial hypothesis using a high-level knowledge based system implemented in
a black board architecture [Weym86,Drap86].

The knowledge base for each feature space was formed over the feature distribution of
the hand labeled regions from all six images. The feature spaces were specifically designed
to use only features that could be measured over pixels. For each feature, a feature plane
is defined which encodes a feature value at every point in the image. The feature planes
and the training regions are then used to create a pixelwise frequency distribution for each
object in the frame of discernment. An alternative is to define the frequency distributions
by the mean feature value defined over the training regions and to weight the mean value
by the size of the region. In the latter method, a high degree of smoothing is required to
produce a robust frequency distribution. In the pixelwise method only minimal smoothing
was used. During the interpretation phase, each knowledge source returns an evidential

model based on the mean feature value of the region in question.

20



In addition, no plausibility was allowed to receive a value of zero. Due to the multi-
plicative nature of our combining function, a value of zero could cause a hypothesis to be
completely ruled out based on ecrrorful information. Instead, all plausibility values were
normalized between .1 and 1. Figure 5.1 shows the plausibility functions generated for

the feature intensity, where intensity is defined as R + G + B/3.

5.1 Understanding Normalization

In Section 3. we discuss a combination function for plausibility functions which parallels
the Dempster’s Rule applied to mass functions. This combination function uses (1-k)
as a normalization constant. Intuitively, the amount to which two knowledge sources do
not agree, k, indicates the amount to which the correct initjal hypothesis is not contained
in the frame of discernment. This section introduces other possible uses of normalization
and different normalization constants when conflict is due to a situation other than the

disagreement of knowledge sources.

5.1.1 Conflict Due to Inaccurate Evidence

An approach taken in the rule system is to load the system with redundant information
so that no one knowledge source contributes a significant amount of information to the
interpretation process. This is desirable if any of the knowledge sources are suspected to
be unpredictably errorful. Unfortunately, in the approach presented here, as the number
of objects and feature spaces increase, so does the conflict between plausibility functions
in the interpretation of a token. In particular the automatic plausibility distributions may

allow many objects to receive a small plausibility value, ruling out, completely no one object
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Figure 5.1: Plausibility distributions of Intensity.

These graphs show the feature histograms and resulting plausibility functions for the objects
foliage, grass, gravel, road, roadline, sky, sky-tree, and total. For each object, the lower curve
is the histogram of the actual feature values for the regions in the training set. The upper
curve is the resulting plausibility function. Each object histogram is scaled with respect to
the number of samples contained in the training set for that particular object. The histogram
for “total” in the lower right hand corner represents all regions in the training set including
those whose labels are not included in the set of possible initial hypotheses.
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for any one feature value. For many tokens, each object in the frame of discernment will be
ruled out to some significant degree by at least one piece of evidence due to errorful data
(e.g. inaccurate feature measurc ment due to aliasing or poor placement of a segmentation
boundary). This situation intro«uces conflict into the final interpretation which is not due
to the detection of an unknown image event.

Recognizing that conflict can be generated by a single knowledge source, it may be
reasonable to eliminate this conflict before combination with other knowledge sources. This
can be accomplished by normalizing a plausibility function by its maximum plausibility

value.

Plal))

Plroml@ 1) = b X eopi(a | )

5.1.2 The Associative Issue

We have stated an equivalence betwecn plausibility functions and mass functions. If n
plausibility functions are multiplied term-wise and normalized by the conflict value of the
combined plausibility function, then the result is the plausibilities of the singletons obtained
by combining a set of n equivalent mass functions using Dempster’s Rule. What happens
when a new piece of evidence becomes available? Dempster’s Rule is both commutative and
associative. This says that new evidence represented as a mass function can be combined
with evidence contained in a previously combined mass function with the same effect as
having the new knowledge avaiiable from the beginning of the inference process. In the
.case of the plausibility functions this is not true.

Let cpl be the result of combining n plausibility functions and em the result from n mass

functions. Although cpl are the plausibilities of ¢cm over the singleton sets of the frame of
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discernment, the mass function obtained from cpl by formula (3.1) is not the same mass
function as em. Therefore the addition of a new plausibility function to epl will not yield
the same plausibilities as the addition of a new mass function to cm. The discrepancy
is caused by the fact the the combined plausibility functions are normalized only once,
after all the term-wise multiplications have been performed, conversely Dempster’s Rule
normalizes after each pair wise combination. A simple solution is to represent an evidential
pair consisting of a plausibility function and the conflict value by which it was normalized.
Now we can construct a combination rule that is equivalent of Dempster’s Rule over this
pair.

_(l - kl)pl,(o.-) * (1 - ’Cz)plz(o,')

pls = E(pl, k1) D E(plz, k2)(0:) = 1 — ks

(5.1)

Part of the Dempster-Shafer approach assuines conditionally independent knowledge
sources, that is knowledge from one piece of evidence does not provide any information
about another piece of evidence. When this assumption is violated by multiple redundant
knowledge sources we must find a way to realize independence. The approach taken in the
Rule System is to group redundant knowledge sources into independent groups, combine
the groups of knowledge sources and then combine the results of each group. This will
have an effect on the final combined evidence if and only if the combination rule is not
associative. When dealing with redundant multiple knowledge sources, the non-associative

nature of combining plausibility functions can be an advantage.

5.1.3 In Defense of Normalization

It has been argued that normalization is used to eliminate or hide a contradiction

of aggregate evidence |Zad83|. It must be noted that with a multiplicative combination
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function, the use of no normalization will create monotonically decreasing plausibility
values. This means that any evidence supplying a plausibility value less than 1.0 can only
decrease a hypothesis’ plausibility value. The more evidence that is accumulated, the more
the system becomes susceptible to errorful data.

In the results presented in this paper, we have chosen to use a normalization constant
of (1 — k). Using this normalization keeps the system from being a monotonically de-
creasing system, preserves the semantics of the plausibility values as the plausibilities of
the singleton subsets of the related mass function, and allows for the representation of an

unknown object.

5.2 Interpretation Strategies and Future Work

In these experiments, the Dempster-Shafer formalism is not used as an end to reasoning,
but rather as a representation formalism for evidence. The interpretation strategy to
be employed after initial hypotliesis generation dictates some of the desired qualities for
a decision over the set of initi ] hypothesis. One approach might be to use the initial
hypothesis to indicate exemplar regions, regions which most look like grass for example.
These regions can then be used to constrain the interpretation of neighboring regions, on
the other hand, the initial hypothesis can be viewed as simply reducing the set of possible
hypothesis.

Several different decision strategies were suggested creating the initial set of hypotheses
for this experiment. The simplest strategy is to normalize out all conflict contained in a
plausibility function (by dividing the plausibility function by the maximum plausibility

value) and use these numbers for ranking objects. This strategy does not allow the repre-

25



sentation of the unknown object. Normalizing by (1 - k) allowed an explicit representation
of the unknown event. Another strategy suggested uses the idea of consistent evidence. A
simple strategy can be used to find the most likely object. Next, all plausibility functions
which rule out, to some significant degree the top ranking object, as produced by the simple
strategy, are then removed from the final combination of evidence.

The decisive factor for determining the best decision strategy at any step in the inter-
pretation should be the context and objectives of the interpretation system as a whole.
There may be only a few relevant c“ontrol (control about conflict) strategies, or control

may become a highly variant context dependent process.

6. Results and Figures

The hypotheses displayed in this section are initial hypotheses to be used by a knowledge-
directed, opportunistic image interpretation system. The initial hypotheses can verified
and used to create a contexiual environment in which to hypothesize objects not defined
by the frame of discernment, hallucinate the merging or splitting of image tokens, and in
general aid in the development of a mapping between image events and world events.

We chose the following two step combination scheme using the multiplicative combina-

tion function defined by formula 3.3:

1. Combine all the plausibility functions for each of the four feature spaces (i.e. inten-
sity, color, texture and location) and normalize each by (1 — k), with k defined by

for each plausibility function.

2. Combine the four resulting plausibility functions and again normalize by (1 — k),

with k defined by the combined plausibility function.
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By combining the evidence for each category of features first, we were able let each
group have eqyal weight in the final combination. For instance, there are ten color features,
but only one location feature. By combining the color features and renormalizing before
combining with the location feature, we were able to represent color and location equally
in the final interpretation. Once the evidence contained in each plausibility function is
combined, a mass function is constructed as discussed in Section 3. to represent the final
evidential model.

Figure 6.2 through figure 6.5 each show four pieces of information for a particular object
hypothesis. The terms, support, plausibility, singleton objects, and mass value are used in
terms of the Dempster-Shafer theory of evidence. Brief definitions of these terms can be
found in Appendix A. For each piece of information, the intensity encodes a numeric value
with darker regions representing higher numbers.

e The top left quadrant displays all the regions which would answer the question “What
are all the regions initially hypothesized as object X?”, where X represents the object
under consideration. An object is considered as an initial hypothesis if it is contained
in the highest ranking subset of the final mass function.

* The top right quadrant shows the mass value assigned to the highest ranked subset
for those regions displayed in the top left quadrant.

e The bottom left shows, for every region in the image, the support value for the set
containing the singleton object under consideration. The support is computed from
the final mass function and can be thought of as the lower bound on the system’s
belief that this region is this object.

¢ Finally, the bottom right displays the plausibility value for the set containing the
singleton object under consideration. Again, the plausibility is computed from the
final mass function and can be thought of as the upper bound on the system’s belief
that this region is this object.

In figure 6.7, the combined conflict obtained for each region is displayed. A high conflict

value (i.e. a dark region) indicates a large amount of disagreement between separate
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pieces of evidence. This is the value for k contained in the normalization constant of the
combination function (see formula 3.2). The cA(mﬂict. measure can be used to pinpoint
areas which may need more verification. Also of interest is the conflict obtained by each
intermediate combination. This is displayed from left to right, top to bottom as conflict

from color, intensity, texture and location respectively in figure 6.8.

7. Conclusion

We have presentéd here a method which automatically generates a knowledge base for
the formation of initial object hypotheses using statistical information provided from a set
of training objects. The plausibility formalism uses a computationally efficient approach to
the Dempster-Shafer formalism for representing and combining evidence. The Dempster-
Shafer formalism is used for its rich evidential representation. Our system addresses the
problems of using heuristic methods for constructing a knowledge base and combining
evidence as well as the problems of a strict Bayesian approach. Presented is a set of
results showing our plausibility theory applied to a set of color oﬁtdoor road scenes which

shows that the approach has significant potential.
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Figure 6.1: Intensity Image
The intensity image digitized to a resolution of 256 by 256. The intensity was computed from
the red, green, and blue planes using the formula R+ G + B/3.
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Figure 6.4: Initial Hypotheses for Foliage
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I'igure 6.5: Initial Hypotheses for Sky
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A. Dempster-Shafer Tutorial

A.1 Dempster-Shafer — An Intuitive Approach

The Dempster-Shafer theory of evidence provides a rich set of semantics for representing

and combining evidence and can be viewed as a least commitment approach. Each piece of

evidence is intended to reduce a set of possible hypotheses. The consensus of many pieces
of evidence is then used to focus on the smallest possible set of hypotheses. Dempster’s
combination rule is the heart of the system and much literature can be found describing

its focusing methods [Shal‘76,Lu84,Low82,Wes84,Rey86a,Rey86b].

A.2 Terms and Concepts

The Dempster-Shafer theory of evidence can be hroken up into several concepts:

Frame Of Discernment: A framework which defines a set of possible hypotheses, or
possible answers to a given question. The frame of discernment defines a set of
assertions: This 15 an X. where X is an element of the frame of discernment. A
frame of discernment is defined to contain all possible answers to the question to be
answered. This assumption can be fulfilled by the addition of some “unknown” object
which represents all answers not explicitly contained in the frame of discernment. The
set which contains all elements of the frame of discernment is represented by ©.

A Mass Function: A structure for representing evidence which maps a unit of belief over
the powerset of the frame of discernment. The mass value assigned to a subset of
the frame of discernment quantifies how much the belief is contained in the system
that ezactly that subset of hypotheses is the best answer to the question.

A Feature Space: Each feature space is fashioned to provide information needed to an-
swer some particular aspect of the given question. A set of feature spaces are designed
to bring together many aspects of the evidence needed for an inference.

A Knowledge Source: Maps a feature value for a specified feature space into a represen-
tation suitable for combining with other evidence given a combination rule. In this
case, a knowledge source maps a feature value into a mass function to be combined
with other pieces of evidence using Dempster’s Rule.
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Dempster’s Rule: Dempster’s Rule combines evidence as represented by two mass func-
tions to create a consensus of opinion. Dcmpster’s Rule is both associative and
commutative providing means for several picces of information to brought together
as combined evidence. Mathematically Dempster’s Rule is the orthogonal sum of
two mass functions and is defined as follows: For every C € ¢

m @ ma(C) = 2‘405:40'_’,;‘.1__(/;.‘)_'."‘_2_(}?) (A1)

where

k=Y mi(A) - ma(B). (A.2)

AnB::0

k is precisely a statement about how much disagreement exits between the two pieces
of evidence.

Support, Plausibility,'Doubt, and Conflict: Metrics which describe the degree to
which some member or some subset of the frame of discernment is the correct answer
to a given question.

In the Dempster-Shafer approach, the object space is defined over the powerset of all
possible objects. A hypothesis then is not merely an element of the frame of discernment,
but rather a set of objects. Each knowledge source is responsible for distributing a unit of
belief across the subsets of the frame of discernment. The resulting list of object subsets
and mass values is a mass function. Higher mass values are associated with more likely
hypotheses. Three restrictions apply to mass functions; each subset receives a mass value
between zero and one, the empty set receives zero mass, and the sum of the mass values
over the object space equals one. For a complete discussion of mass functions see [Shafer|.

In general, an inference problem consists of a question to be answered, a frame of
discernment containing all possible answers to this question, and a set of feature spaces
each designed to provided some piece of information useful in answering the question at

hand. This collection is termed a context.
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A.3 Specific attributes of the Shafer Dempster Approach

As well as providing a combination rule for bringing together disparate sources of
evidence, the Dempster-Shafer approach provides explicit information about supporting
evidence, plausible evidence, uncertainty of a decision, conflict between knowledge sources,

disbelief and no belief. The following subsections describe these types of information.

A.3.1 Supports, Doubt, and Plausibility

The mass values associated with each subset in the object space is only a small portion
of the information supplied by a mass function. Of initial importance is the information
obtained by asking the following questions for a given subset A: “What amount of of
evidence supports A as being the correct answer?”, “What amount of evidence refutes A
as being the correct answer?” and “What amount of evidence fails to refute A as being
the correct answer?”. The values obtained by asking these questions are the referred to as

support, doubt and plausibility respectively.

Spt(A) = Y m(s).

Dbi(A) = 3" m(s).
sNA=0
Pls(A) = > m(s) =1 - Spt(-A).

sNAF#0

Figure A.1 shows graphically the relationship between the support, doubt and plausi-

bility.
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Figure A.l: Venn diagram of support, plausibility and doubt.
Spt(A) = m(A) + m(C).
Pls(A) = m(A) + m(C) + m(D) + m(E).
Dbt(A) = m(B).

A.3.2 Knowledge about Conflict

Implicit with each combined mass function is a statement about how the knowledge
sources involved in the decision process agree with one another. This is known as the
conflict value and is precisely defined by Dempster’s Rule as:

k = Z ml(A) . mz(B). (A3)

AnB=0

One assumption mentioned ecarlier is that all possible objects are represented in the
frame of discernment. This may be accomplished by the addition of the unknown object in
the frame of discernment. If all knowledge sources are required to give some mass to the
unknown object, then k = 0 for all combinations of mass functions and the conflict value

is precisely the amount of mass assigned to this unknown object.
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A.3.3 Disbelief versus No Belief

Disbelief and no belief can be discussed both in terms of a mass function as a whole
and about a particular subset receiving mass within a mass function. Looking at a mass
function as a whole, statements about support and plausibility are direct statements about
disbelief and no belief. No belief is represented as the support for some subset being near
zero, where as disbelief is represented as a plausibility near zero. Looking at the mass
values themselves. If for a given subset A the mass value is near one, then for any a C A
the system provides little information (no belief) for the support of @ but much information
about its disbelief for any b ¢ A. Disbelief about the systems performance in general (or

about a knowledge source) is contained in the appropriate conflict value.
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