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Abstract

A problem solver’s control component must resolve uncertainty about which possible solutions
to pursue and about what actions will best lead to the desired solutions. In this paper, we describe
a planner that improves the control decisions made by a blackboard-based problem solver. This
planner abstracts the problem solving state to recognize possible competing and compatible solu-
tions and roughly predicts the importance and expense of developing these solutions. With this
information, the planner plans sequences of problem solving activities that most efficiently resolve
its uncertainty about which of the possible solutions to work toward. The planner only details
actions for the near future because the results of these actions will influence how (and whether) a
plan should be pursued. As problem solving proceeds, the planner adds new details to the plan
incrementally, and monitors and repairs the plan to insure it achieves its goals whenever possible.
The planner also attempts to meet time constraints by using its predictions about the time needs
of its plans to recognize and revise plans that will exceed problem solving deadlines. The planner
modifies plans to more quickly generate inferior but still acceptable solutions whenever possible.
By predicting whether plans to generate alternative solutions are probably worth pursuing (given
enough time) the planner also decides when a satisfactory solution has been found and problem
solving should be terminated. We describe how these mechanisms have been implemented as part
of a blackboard-based problem solver, and we discuss how they improve problem solving decisions,
reduce overall computation, and allow the problem solver to meet deadlines and to decide when it
has done enough work on a problem.

This technical report subsumes the original technical report with this number that was entitled
“Planning to meet deadlines in a blackboard-based problem solver.”
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1. Introduction

A problem solver begins with knowledge about the problem domain and data about the
current situation, and constructs solutions by applying knowledge to data. The problem
solver’s control component must decide what actions the problem solver will take, where
each action is to apply some knowledge to certain data. This component must not only
resolve uncertainty about what actions will lead to desirable solutions, but also about what
solutions will be desirable. The resolution of this uncertainty is particularly difficult in
problem domains where the space of possible solutions (the search space) is very large,
the knowledge available to the problem solver is diverse and computationally expensive to
apply, and the data is extensive and potentially errorful.

To improve control decisions in such domains, we view control as an incremental plan-
ning process. In this paper, we explore how a planning component for control can be in-
corporated into a blackboard-based problem solver. Like most planners, a problem solver’s
planner must resolve uncertainty about which sequence of actions will satisfy its long-term
goals, where its long-term goals are possible solutions to construct. Moreover, whereas most
planners are given a (possibly prioritized) set of well-defined long-term goals, a problem
solver’s planner must often resolve uncertainty about the goals to achieve. For example,
a blackboard-based problem solver typically performs data-directed problem solving: it
incrementally constructs larger, more encompassing partial solutions until a complete so-
lution is reached [9]. Because the problem solver explicitly represents complete solutions
only after it has solved the problem, the problem solver’s planner must generate its own
representation that allows it to recognize potential solutions in advance.

When unable to recognize potential solutions in advance, a data-directed, blackboard-
based problem solver bases its control decisions on the desirability of the expected imme-
diate results of each action. The Hearsay-II system developed an algorithm for measuring
desirability of actions to better focus problem solving [12]. Extensions to the blackboard
architecture unify data-directed and goal-directed control by representing possible exten-
sions and refinements to partial solutions as explicit goals [2]. Through goal processing

and subgoals, sequences of related actions can be triggered to achieve important goals.



Further modifications separate control knowledge and decisions from problem solving ac-
tivities, permitting the choice of problem solving actions to be influenced by strategic
considerations [11]. However, none of these approaches develop and use a high-level view
of the current problem solving situation to recognize potential solutions and relationships
between these solutions. By specifying the characteristics of likely solutions (defining more
specific long-term goals) in advance, the problem solver plans actions to selectively pro-
cesses only its most useful low-level data as it efficiently navigates through a large solution
space to form complete solutions.

In this paper, we introduce new planning mechanisms that allow a blackboard-based
problem solver to form such a high-level view. By abstracting its state, the problem solver
can recognize possible competing and compatible solutions, and can use the abstract view
of the data to roughly predict the importance and expense of developing potential partial
solutions. These mechanisms are much more flexible and complex than those we previously
developed (8] and allow the recognition of relationships between distant as well as nearby
areas in the solution space. We also present new mechanisms that use the high-level view
to form plans for achieving long-term goals. A plan represents specific actions for the near
future and more general actions for the distant future. By forming detailed plans only for
the near future, the problem solver does not waste time planning for situations that may
never arise; by sketching out the entire plan, details for the near-term can be based on a
long-term view. As problem solving proceeds, the plan must be monitored (and repaired
when necessary), and new actions for the near future are added tncrementally. Thus, plan
formation, monitoring, modification, and execution are interleaved [1,4,10,16,18).

In addition, we describe mechanisms that make predictions about how long plans will
take and about the expected quality of their different results so that the problem solver
can reason about any deadlines it faces. Someone or something usually has a specific,
time-dependent use for the solution, and the solution is useless beyond some deadline.
Moreover, a deadline is often combined with preferences for solution time, such as “get a
good solution as soon as possible and no later than time ¢.” With this type of deadline, the
problem solver faces difficult decision about when to terminate problem solving: if it has

found a solution with time to spare but a better solution might be found with additional
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work, then it must balance the conflicting goals of returning a solution as quickly as possible
and returning a good solution. By terminating problem solving too early it might miss
an important solution, but by terminating too late it might waste valuable time, so it is
important to make termination decisions wisely [12,20]. A problem solver can reduce its
uncertainty about whether to terminate by predicting whether any pending plan is likely to
generate a solution better than those already found. It can also recognize when following
a plan might cause it to exceed some deadline, so that either it should modify the plan
to take less time (by forming an inferior but still acceptable result) or it should prefer an
alternative plan that needs less time.

We have implemented and evaluated our new mechanisms in a vehicle monitoring prob-
lem solver, where they augment previously developed control mechanisms. In the next sec-
tion, we briefly describe the vehicle monitoring problem solver. Section 3 provides details
about how a high-level view is formed as an abstraction hierarchy. The representation of a
plan and the techniques to form and dynamically modify plans are presented in Section 4.
Techniques for making predictions about plans are described in Section 5, along with ways
of using the predictions to modify plans to meet deadlines. Section 6 summarizes several
experiments that illustrate the benefits and costs of the mechanisms, including how they
improve problem solving decisions, reduce overall computation, and allow the problem
solver to meet deadlines and to make informed termination decisions. Finally, Section 7

recapitulates our new mechanisms and indicates directions for future research.

2. A Vehicle Monitoring Problem Solver

A vehicle monitoring problem solving node, as implemented in the Distributed Vehicle
Monitoring Testbed (DVMT), applies simplified signal processing knowledge to acousti-
cally sensed data in an attempt to identify, locate, and track patterns of vehicles moving
through a two-dimensional space [14]. The vehicles’ characteristic acoustic signals are
detected at discrete time intervals, and these signals indicate the types of vehicles pass-
ing through the area and their approximate locations at each sensed time. An acoustic
sensor’s range and accuracy are limited, and the raw data it generates can be errorful,

causing non-existent (ghost) vehicles to be “identified” and causing actual vehicles to be
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located incorrectly, misidentified, or missed completely. A vehicle monitoring node applies
signal processing knowledge to correlate the data, attempting to recognize and eliminate
incorrect noisy sensor data as it integrates the correct data into solution tracks. Each node
has a blackboard-based problem solving architecture, with knowledge sources and levels
of abstraction appropriate for vehicle monitoring. A knowledge source (KS) performs the
basic problem solving tasks of extending and refining hypotheses (partial solutions).

A hypothesis is characterized by one or more time-locations (where the vehicle was at
discrete sensed times), by an event-class (classifying the frequency or vehicle type), by a
belief (the confidence in the accuracy of the hypothesis), and by a blackboard-level. The
hypotheses are organized on a blackboard with four blackboard-levels: signal (for low-
level analyses of the sensory data), group (for collections of harmonically related signals),
vehicle (for collections of groups that correspond to given vehicle types), and pattern
(for collections of spatially related vehicle types such as vehicles moving in a formation).
Each of these blackboard-levels is split into a blackboard-level for location hypotheses
(which have one time-location) and a blackboard-level for track hypotheses (which have a
sequence of time-locations). In total, nodes have eight blackboard-levels with appropriate
KSs for combining hypotheses on one level to generate more encompassing hypotheses
on the same or on a higher level (Figure 2). A synthesis KS uses knowledge about how
different distributions of frequencies are indicative of certain types of vehicles: the KS
finds combinations of compatible data and filters out noisy data to identify likely vehicles.
Formation, extension, and merge KSs takes several hypotheses that each indicate where
a particular type of vehicle may have been at some sequence of sensed times, and uses
vehicle movement (velocity and acceleration) constraints to combine the hypotheses into
a single hypothesis with a longer track.

A knowledge source instantiation (KSI) represents the potential application of a par-
ticular KS to specific hypotheses. Each node maintains a queue of pending KSIs and,
at any given time, must rank the KSIs to decide which one to invoke next. We use an
extended Hearsay-II architecture (Figure 3) that lets nodes reason more fully about the
intentions or goals of the KSIs [2]. As explicit representations of the node’s intentions to

abstract and extend hypotheses, goals are stored on a separate goal blackboard and are
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KSs combine hypotheses to form more encompassing hypotheses on the same or higher
levels. Synthesis (s:) KSs generate higher level hypotheses out of compatible lower level
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Figure 1: Levels of Abstraction and Knowledge Sources.



given importance ratings. A goal processing component recognizes interactions between
goals and adjusts their ratings appropriately (for example, subgoals of an important goal
might have their ratings boosted). The scheduler ranks a KSI based both on the estimated
beliefs of the hypotheses it may produce and on the ratings of the goals it is expected to
satisfy. Appropriate goal processing can therefore alter KSI rankings to improve local
control decisions.

Given a particular problem solving environment, the DVMT simulates the nodes’ ac-
tivities as follows.! Each node begins by transforming any sensed data into a set of signal
location hypotheses (using the sensors KS). With each new signal hypothesis, the node
generates goals to improve upon it and forms KSIs to achieve these goals. After it has cre-
ated all of its signal hypotheses, a node then chooses a KSI to invoke. The KSI invocation
may cause the creation of new hypotheses, which stimulate the generation of more goals,
which in turn may cause more KSIs to be formed. The node then chooses another KSI and
the cycle repeats until the problem solver generates acceptable solutions. The criteria for
deciding whether a hypothesis at the pattern blackboard-level represents an acceptable so-
lution is statically defined before problem solving begins: the user specifies some minimum
belief, expected spatial and temporal characteristics, etc.? In Section 5, mechanisms that
allow the node to decide whether satisfactory solutions have been found based on dynamic
criteria—its knowledge about other potential solutions that it can develop—are described.

A snapshot of the contents of the signal, group, and vehicle blackboard-levels while
solving a sample problem is shown in Figure 3, where each blackboard-level is represented
as a surface with spatial dimensions z and y. At the signal blackboard-level s, there are
10 hypotheses, each for a single time-location (the time is indicated for each). Two of
these hypotheses have been synthesized to the group blackboard-level g. In turn, these
hypotheses have been synthesized to the vehicle blackboard-level v, where they have been
connected into a single track hypothesis (graphically, the two locations are linked). Prob-

lem solving proceeds from this point by having the goal processing component form goals

! More detailed descriptions can be found elsewhere [3,14}.

2In many cases, the user specifies exactly the solution that the node should find, but this information is
treated as an “oracle” that only tells the node when a solution has been found—the information cannot be
used to guide a node’s problem solving decisions.
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A KS forms hypotheses on the data blackboard, which in turn trigger the formation of goals
on the goal blackboard. The goal processor forms KSIs to satisfy the goals, and the KSIs
are scheduled. The dispatcher then invokes the KS for the best pending KSI and the cycle
repeats.

Figure 2: DVMT Node Architecture.



Blackboard-levels are represented as surfaces containing hypotheses (with associated sensed
times). Hypotheses at higher blackboard-levels are synthesized from lower level data, and
a potential solution is illustrated with a dotted track at blackboard-level v.

Figure 3: An Example Problem Solving State.

(and subgoals) to extend this track to time 3 and instantiating KSIs to achieve these goals.
The highest rated pending KSI is then invoked and triggers the appropriate KS to exe-
cute. New hypotheses are posted on the blackboard, causing further goal processing and
the cycle repeats until an acceptable track incorporating data at each time is created. One

of the potential solutions is indicated at blackboard-level v in Figure 3.

3. A High-level View for Planning and Control

Planning about how to solve a problem often requires viewing the problem from a
different perspective. For example, a chemist generally develops a plan for deriving a new
compound not by entering a laboratory and envisioning possible sequences of actions but
by representing the problem with symbols and using these symbols to hypothesize possible
derivation paths. By transforming the problem into this representation, the chemist can
more easily and cheaply sketch out possible solutions and spot reactions that lead nowhere,

thereby improving the decisions about the actions to take in the laboratory.



A blackboard-based, vehicle monitoring problem solver requires the same capabili-
ties. Transforming the node’s problem solving state into a suitable representation for
planning requires domain knowledge to recognize relationships—in particular, long-term
relationships—in the data. This transformation is accomplished by incrementally clus-
tering data into increasingly abstract groups based on the attributes of the data: the
hypotheses can be clustered based on one attribute, the resulting clusters can be further
clustered based on another attribute, and so on. The transformed representation is thus
a hierarchy of clusters where higher-level clusters abstract the information of lower-level
clusters. More or less detailed views of the problem solving situation are found by access-
ing the appropriate level of this abstraction hierarchy, and clusters at the same level are
linked by their relationships (such as having adjacent time frames or blackboard-levels, or

corresponding to nearby spatial regions). A cluster therefore contains:

e A rough specification of the possible solutions that could be constructed from the
abstracted data, including a sequence of time-regions (the vehicle’s probable move-

ments), and a subset of vehicle types (the vehicle’s probable type);

¢ The characteristics of its abstracted data that could affect the expense of processing
and the quality of possible results, including the range of beliefs of the abstracted
hypotheses, the blackboard-levels of those hypotheses, the amount of spatial noise
(ambiguity in the vehicle’s spatial attributes) and frequency noise (ambiguity about

what type of vehicle was sensed);

¢ Pointers to other clusters that abstract hypotheses related to those in this cluster

(related temporally, spatially, by blackboard-level, by event-class, or by belief ).

We have implemented a set of knowledge-based clustering mechanisms for vehicle mon-
itoring, each of which takes clusters at one level as input and forms output clusters at a

new level. Each mechanism uses different domain-dependent relationships, including:

e temporal relationships: the output cluster combines any input clusters that rep-
resent data in adjacent time frames and that are spatially near enough to satisfy
simple constraints about how far a vehicle can travel in one time unit.
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e spatial relationships: the output cluster combines any input clusters that repre-
sent data for the same time frames and that are spatially near enough to represent

sensor noise around a single vehicle.

o blackboard-level relationships: the output cluster combines any input clusters

that represent the same data at different blackboard-levels.

e event-class relationships: the output cluster combines any input clusters that

represent data corresponding to the same event-class (type of vehicle).

e belief relationships: the output cluster combines any input clusters that represent

data with similar beliefs.

The abstraction hierarchy is formed by sequentially applying the clustering mechanisms.
Since the order of clustering affects which relationships are most emphasized at the highest
levels of the abstraction hierarchy, the problem solver clusters to emphasize the relation-
ships it expects to most significantly influence its control decisions. In our vehicle mon-
itoring problem solver, for example, the most important relationships are temporal and
spatial: the problem solver constructs solutions by extending partial tracks using data for
adjacent sensed times in nearby regions. The problem solver therefore clusters data first
based on less important attributes like event-class and blackboard-level, and then later
based on spatial and temporal relationships. Issues in clustering in different orders to
emphasize other relationships are discussed elsewhere [5].

Because the problem solver works in a dynamic environment, it may receive new sensor
data at any time. New data can cause new clusters to be added to the hierarchy and can
cause existing clusters to be changed.®* However, because the majority of clusters and
relationships between clusters may be unaffected by new data, the planner should avoid
simply discarding the old hierarchy and generating a completely new one. The clustering
mechanisms have thus been developed so that new data can be incorporated into the

clustering hierarchy by updating the existing hierarchy. The mechanisms begin by using

3Because locally generated hypotheses all fall within the scope of clusters already in the clustering hier-
archy, they need not be incorporated into it: they would not substantially alter the high-level view provided
by the hierarchy.
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the new data to modify relevant existing clusters at the lowest level if there are any, and
otherwise to generate new clusters at this level. After updating the relationships between
the lowest level clusters, the clustering mechanisms can then follow these relationships to
propagate changes throughout the hierarchy.

To illustrate clustering, consider the clustering sequence in Figure 4, which has been
simplified by ignoring many cluster attributes such as event-classes, beliefs, volume of data,
and amount of pending work; only a cluster’s blackboard-levels (a cluster can incorporate
more than one) and its time-regions (indicating a region rather than a specific location
for a certain time) are discussed. Initially, the problem solving state is nearly identical to
that in Figure 3, except that for each hypothesis in Figure 3 there are now two hypotheses
at the same sensed time and slightly different locations. In Figure 4a, each cluster e,
(where ! is the level in the abstraction hierarchy) corresponds to a single hypothesis, and
the graphical representation of the clusters mirrors a representation of the hypotheses. By
clustering based on blackboard-level, a second level of the abstraction hierarchy is formed
with 19 clusters (Figure 4b). As is shown graphically, this clustering “collapses” the black-
board by combining clusters at the previous abstraction level that correspond to the same
data at different blackboard-levels. In Figure 4c, clustering by spatial relationships forms
9 clusters. Clusters at the second abstraction level whose regions were close spatially for a
given sensed time are combined into a single cluster. Finally, clustering by temporal rela-
tionships in Figure 4d combines any clusters at the third abstraction level that correspond
to adjacent sensed times and whose regions satisfy weak vehicle velocity constraints.

The highest level clusters, as illustrated in Figure 4d, indicate four rough estimates
about potential solutions: a vehicle moving through regions R;R;RsR4RsRs, through
RyR;RsR4RL R}, through R} R)R3R4R5Rs, or through R{ R, Rs R4RyRg. The problem solver
could use this view to improve its control decisions about what short-term actions to pur-
sue. For example, this view allows the problem solver to recognize that all potential
solutions pass through R; at sensed time 3 and R, at sensed time 4. By boosting the
ratings of KSIs in these regions, the problem solver can focus on building high-level results
that are most likely to be part of any eventual solution.

In some respects, the formation of the abstraction hierarchy is akin to a rough pass at
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A sequence of clustering steps are illustrated both with tables (left) and graphically (right).
¢t represents cluster ¢ at level ! of the abstraction hierarchy. In (a), each cluster is a
hypothesis. These are clustered by blackboard-level to get (b); note that graphically the
levels have been collapsed into one. These clusters are then grouped by spatial relationships
to form (c), which in turn is clustered by temporal relationships to form (4).

Figure 4: An Example of Incremental Clustering.
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solving the problem, as indeed it must be if it is to indicate where the possible solutions may
lie. However, abstraction differs from problem solving because it ignores many important
constraints needed to solve the problem. Forming the abstraction hierarchy is thus much
less computationally expensive than problem solving, and results in a representation that
is too inexact as a problem solution but is suitable for control. For example, although
the high-level clusters in Figure 4d indicate that there are four potential solutions, three
of these are actually impossible based on the more stringent constraints applied by the
KSs. The high-level view afforded by the abstraction hierarchy therefore does not provide
answers but only rough indications about the long-term promise of various areas of the
solution space, and this additional knowledge can be employed by the problem solver to

make better control decisions as it chooses its next task.

4. Incremental Planning

The planner uses the potential solutions found in the clustering hierarchy as long-term
goals when intelligently choosing and ordering problem solving actions. Even with the
high-level view, uncertainty remains about whether each long-term goal can actually be
achieved, about whether an action that might contribute to achieving a long-term goal will
actually do so (since long-term goals are inexact), and about how to most economically
form a desired result (since the same result can often be derived in different ways). The
planner reduces control uncertainty in two ways. First, it orders the intermediate goals for
achieving long-term goals so that the results of working on earlier intermediate goals can
diminish the uncertainty about how (and whether) to work on later intermediate goals.
Second, the planner forms a detailed sequence of steps to achieve the next intermediate
goal: it determines the least costly way to form a result to satisfy the goal. The planner thus
sketches out long-term intentions as sequences of intermediate goals, and forms detailed
plans about the best way to achieve the next intermediate goal.

A long-term vehicle monitoring goal to generate a track consisting of several time-
locations can be reduced into a series of intermediate goals, where each intermediate goal

(i-goal) represents a desire to extend the track satisfying the previous i-goal into a new
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time-location.* Because the results of a plan’s i-goals must be combined into an overall
solution, the problem solver can use the results of one i-goal to focus on actions that will
generate compatible results for other i-goals. By pursuing the i-goals in a particular order,
therefore, the problem solver can influence the time it takes to solve the problem (the
number of actions to achieve the i-goals) and the quality of the solution (how well i-goals’
results combine). To determine an order for pursuing the possible i-goals, the planner

currently uses three domain-independent heuristics:

Heuristic-1 Prefer common intermediate goals. Some i-goals may be common to several
long-term goals. If uncertain about which of these long-term goals to pursue, the
planner can postpone its decision by working on common i-goals and then can use
these results to better distinguish between the long-term goals. This heuristic is a

variation of least-commitment [19].

Heuristic-2 Prefer less costly intermediate goals. Some i-goals may be more costly to
achieve than others. The planner can quickly estimate the relative costs of developing
results in different areas by comparing their corresponding clusters at a high level
of the abstraction hierarchy: the number of event-classes and the spatial range of
the data in a cluster roughly indicates how many potentially competing hypotheses
might have to be produced. This heuristic causes the planner to develop results more
quickly. If these results are creditable they provide predictive information, otherwise

the planner can abandon the plan after a minimum of effort.

Heuristic-8 Prefer discriminative intermediate goals. When the planner must discrimi-
nate between possible long-term goals, it should prefer i-goals that most effectively
reflect the relative promise of each long-term goal. When no common i-goals remain,

this heuristic triggers work in the areas where the long-term goals differ most.

These heuristics are interdependent. For example, common i-goals may also be more
costly, as in one of the experiments described in Section 6.1. The relative influence of each

heuristic can be modified parametrically. Moreover, note that the heuristics do not give

4In general terms, an intermediate goal in any interpretation task is to process a new piece of information
and to integrate it into the current partial interpretation.
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preference to i-goals that involve more highly believed hypotheses. The rationale behind
not using belief is that all of the i-goals—those with highly believed and those with lowly
believed data—must be pursued to complete the plan. The planner should not focus on
forming highly believed partial solutions quickly since they may not lead to worthwhile
results. Instead, the planner should order the i-goals to most quickly determine whether
the overall track is worth pursuing and to most efficiently form that track.

Having identified a sequence of i-goals to achieve one or more long-term goals, the
planner must determine exactly what KSIs should be invoked to achieve these i-goals.
The planner uses coarse models of the KSs that roughly indicate both the costs of a
particular action and the general characteristics of the output of that action (based on
the characteristics of the input).® The planner uses these KS models to make reasonable
predictions about short short sequences of actions to find a sequence that satisfies an i-
goal.® To reduce the effort spent on planning, the planner only forms detailed plans for the
next i-goal: since the results of earlier i-goals influence decisions about how and whether
to pursue subsequent i-goals, the planner avoids expending effort forming detailed plans
that may never be used.

To find the detailed actions for an i-goal, the planner begins by scanning the abstraction
hierarchy for clusters whose data could contribute to achieving the i-goal. The characteris-
tics of this data (summarized by the cluster) are used as input to the KS models. Beginning
with this data, the planner models a sequence of KSs and predicts the results and time
needs for that sequence. If there are several ways that results satisfying the i-goal could
be generated, the planner can model each and choose the one that it expects will generate
the best results in the shortest time.” In addition, by modeling the sequence of KSs, the
planner develops expectations about the results of each action that it uses when monitor-
ing plan execution. When it has found an appropriate sequence of actions, the planner

matches the actions to specific KSIs on the KSI-queue: given the initial clusters of data, it

5The planner thus has models of KSs that predict a response frame based on a stimulus frame as in the
Hearsay-II system [9)].

SIf the predicted cost of satisfying an intermediate goal deviates substantially from the crude estimate
based on the abstract view, the ordering of the intermediate goals may need to be revised.

7The user can define a metric for balancing result quality with time needs when deciding which sequence
to select. In the experiments outlined in this paper, only one sequence can be found.
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finds the KSIs to work on this data and matches actions with KSIs. Since the hypotheses
used by later actions (KSIs) may be formed by earlier actions, KSIs must be associated
with these actions as the plan is pursued and the earlier actions are taken. When pursuing
the plan, the problem solver executes the KSI associated with the next action.

Given the abstraction hierarchy in Figure 4, the planner recognizes that achieving each
of the four long-term goals (Figure 4d) entails i-goals of tracking the vehicle through these
regions. Influenced predominantly by Heuristic-1, the planner decides to initially work
toward all four long-term goals at the same time by achieving their common i-goals. A
detailed sequence of actions to drive the data in R at level s to level v is then formulated.

The planner creates a plan® whose attributes (and their values in this example) are:
o the long-term goals the plan contributes to achieving (in the example, there are four);

e the predicted, underspecified time-regions of the eventual solution (in the example,

the time regions are (1 RjorR})(2 RzorR})(3 Rs) ... );

o the predicted vehicle type(s) of the eventual solution (in the example, there is only

one type of vehicle considered);

e the order of intermediate goals (in the example, begin with sensed time 3, then time

4, and then work both backward to earlier times and forward to later times);

e the blackboard-level where the results of i-goals will be integrated into tracks, de-

pending on the available knowledge sources (in the example, this is level v);

e a record of past actions (initially empty), used by the planner to keep track of the
results of past i-goals (so it can determine what results it must plan to integrate)

and used by the prediction mechanisms described in Section 5;

e a sequence of the specific actions to take in the short-term (in the example, the
detailed plan indicates the KSIs that use synthesis KSs s:sl:gl and s:gl:vl to drive

data in region R; at level s to level v);

8See Section 6.1 for more information about this plan.
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e a rating based on the number of long-term goals being worked on, the effort already
invested in the plan (based on the number of past actions), the average ratings of
the KSIs corresponding to the detailed short-term actions, and the predicted belief

of the solution that the plan is expected to form (see Section 5).

As each predicted action is consecutively pursued, the record of past actions is updated
and the actual results of the action are compared with the general characteristics predicted
by the planner. When these agree, the next action in the detailed short-term sequence is
performed by invoking the appropriate KSI. Because this KSI may have been triggered by
the previous action’s results, the planner may need to locate the KSI on the queue before
executing it. If the detailed actions have been exhausted, the planner develops another
detailed sequence for the next i-goal. In our example, after forming results in Rs at a high
blackboard-level, the planner forms a sequence of actions to do the same in R,. When
the actual and predicted results disagree (since the planner’s models of the KSs may be
inaccurate), the planner must modify the plan by introducing additional actions that can
get the plan back on track. If no such actions exist, the plan is aborted and the next
highest rated plan is pursued. If the planner exhausts its plans before forming a complete
solution, it checks to see if any new data has arrived that may alter the possible solutions,
and if so it incorporates this data into the clustering hierarchy, modifies any plans whose
top-level clusters have changed, generates any new plans for new top-level clusters, and
then pursues the new and modified plans.

The planner thus generates, monitors, and revises plans, and interleaves these activities
with plan execution. In our example, the common i-goals are eventually satisfied and a
separate plan must be formed for each of the alternative ways to proceed. After finding
a partial track combining data from sensed times 3 and 4, the planner decides to extend
this track backward to sensed time 2. The long-term goals indicate that work should be
done in either R; or Ry. A plan is generated for each of the two possibilities, and the
more highly rated of these plans is followed. Note, however, that the partial track already
developed can provide predictive information that, through goal processing, can increase
the rating of work in one of these regions and not the other. In this case, constraints that

limit a vehicle’s turning rate are used when goal processing (subgoaling) to increase the
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ratings of KSIs in R} (this is described more fully in Section 6.1). Because the plan rating
is based in part on the ratings of the KSIs that participate in the detailed actions, the plan
to work in R} next becomes more highly rated than the plan to work in R, S

The planner and goal processing thus work in tandem to improve problem solving
performance. The goal processing uses a detailed view of local interactions between hy-
potheses, goals, and KSIs to differentiate between alternative actions [13]. Goal processing
can be computationally wasteful, however, when it is invoked based on strictly local cri-
teria. Without the knowledge of long-term reasons for building a hypothesis, the problem
solver simply forms goals to extend and refine the hypothesis in all possible ways. These
goals are further processed (subgoaled) if they are at certain blackboard-levels, again re-
gardless of any long-term justification for doing so. With its long-term view, the planner
can drastically reduce the amount of goal processing. As it pursues, monitors, and repairs
plans, the planner identifies areas where goals and subgoals could improve its decisions
and selectively invokes goal processing to form only those goals that it needs. As the ex-
perimental results in Section 6 indicate, providing the planner with the ability to control
goal processing can dramatically reduce control overhead.

In summary, we have developed mechanisms that permit incremental planning of prob-
lem solving activities in a blackboard-based problem solver (Figure 5). These mechanisms
interleave planning and execution, monitoring plans and replanning when necessary. We
base these mechanisms on having a high-level, long-term view of problem solving and on
having acceptable models of problem solving actions. Furthermore, note that incremental
planning may be inappropriate in domains where details about actions in the distant future
can highly constrain the options in the near future. In these domains, constraints must
be used to detail an entire plan before acting [19]. However, in unpredictable domains,
incremental planning, plan monitoring, and plan repair are crucial to effective control since

plans about the near future cannot depend on future states that may never arrive.

In fact the turn to Ry exceeds these constraints, as does the turn to Rf, so that the only track that
satisfies the constraints is R{ R3 R3 R4 Rs R.
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The planner integrates short-term information about specific KSIs that can be performed
with the long-term goals found by the clustering mechanisms to form plans. The dispatcher
invokes the KS for the next KSI of the best plan. Any new hypotheses that the KS forms
are monitored by the planner to make sure that they meet expectations, and the planner
alters plans if needed. The cycle then repeats.

Figure 5: The Modified ProblenfgSolving Architecture of a Node.



b. Predictions About Plans

Before it expends effort on a plan, the planner should predict whether the plan is
worth pursuing and whether it can be completed in time to meet any deadlines. Using
these predictions, the planner can determine whether it should revise plans to better meet
any time constraints. In this section, the mechanisms for making and using predictions

are described.

5.1 Making Predictions

We have developed mechanisms that use information about the costs and results of the
plan’s past and current activities, and extrapolates over the future activities to predict the
overall costs and results of the plan. In general terms, for a future subgoal the mechanisms
find a similar past subgoal (a subgoal with the same basic differences between initial and
goal states) and builds expectations for the future based on the past. More specifically, the
mechanisms assume that i-goals (subgoals) with similar data (initial states) will be pursued
in similar ways: the planner bases predictions for a future activity on the past activity
that processed the most similar data. However, the costs of achieving a particular i-goal
and the quality of the result depend on the attributes of the data that must be processed
(such as how strongly it is sensed, its frequency distribution, and its spatial distribution),
and these attributes can vary from one i-goal to another [17].

The process of forming predictions for a simple plan to process the data shown in
Figure 6a is illustrated in Figure 6b. The plan will meet its long-term goal of forming a
track covering sensed times 1-4 by consecutively achieving its i-goals (generating partial
results for each time). When forming the abstraction hierarchy that it uses to develop
the plan, the planner clustered together the data for each i-goal. The cluster for an i-goal
summarizes the attributes of its data. To predict the costs and results for a future i-goal,
our mechanisms match its cluster against the clusters for the current i-goal and any past i-
goals, and then extrapolates based on the closest match. Since a plan always has a current

i-goal, the mechanisms always have some basis for prediction.

Figure 6 shows the plan in a partially completed state: the i-goal for time 1 was achieved
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(b)

(2) dy dy d3 dy

*—o—o—o
past current future future
known: expected: predicted: predicted:
ri=actual results  y,=r (KS,) ra=f1(cls) ra=fa(cls)
=f1 (Cll) =f2(CI2) c3=cC) cq4=cCa
¢y=actual cost C:FE?: ) c.(KS:)
1 r2 r3 T4
K 53T
KS, \ KS,
cluster=cl; cluster=cl, cluster=cl3 cluster=cly
at(cly)=abed at(cly)=aefg at(cls)=bcgh at(cly)=bfgh
match(cly)=cly match(cly)=cly

Overall predicted result (currently) = average(ry, 2,13, 14)
Overall predicted cost (currently) = ¢y + ¢z +¢3 + ¢4 = 2¢) + 2¢3

Definitions:

ri result satisfying intermediate goal 1

¢l initial clustered hypotheses for intermediate goal ¢
at(cl;) attributes of cl;, here simply represented as letters
match(cl;) closest matching past or current i-goal cluster for cl;

¢ cost (in time) of forming r; from cl;

fi function relating cl; with r; for past and current i-goals
KS; KS activity 7 for achieving current i-goal

re(KS;) expected result generated by KS; based on KS models
ce(KS;) expected cost of performing KS; based on KS models

The plan data is shown in (a). A partially completed plan to form a track connecting the
data is shown in (b): intermediate goal 1 (to form ry) has been achieved, intermediate goal 2
is currently being worked on, and intermediate goals 3 and 4 will be worked on in the future.
The results and costs for intermediate goal 1 are known and the expected results and costs
for intermediate goal 2 are derived using models of KSs. The results and costs for 3 and 4
are found by matching their clusters against those of 1 and 2, and applying knowledge about
the closest match. Note that when the plan started, only the expected results for 1 (the
current intermediate goal at that time) were known and predictions for 2-4 were based only
on these expectations. As the plan has progressed, the predictions have improved since, for
example, better predictions for 4 are made when the more closely matching intermediate
goal 2 becomes current. Finally, KS, and KS, independently process different subsets of
the data in cl to generate supporting hypotheses for KS3 (hence the representation); the
belief in K S3’s result is decreased if only one of the supporting KSs is executed.

Figure 6: Simple Example of Making Predictions.
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in the past, the i-goal for time 2 is currently being worked on, and the other i-goals are
still pending. For a past i-goal (time 1), the results and the cost of forming those results
are known. The mechanisms find the relationship between the attributes of that i-goal’s
cluster and the results achieved, representing the result as some function of the cluster’s
attributes. For the current i-goal (time 2), the planner has used models of the KSs to
estimate the attributes of the results of a KS action (based on the attributes of its input
data) and the costs of the action. The overall costs of the i-goal is the sum of the estimated
KS costs, and its result is simply the estimated result of the last KS action. Once again,
the relationship between this result and the i-goal’s cluster is found.

The first step in predicting the results and costs for a future i-goal is to match its cluster
against the past and current i-goals’ clusters to find the closest match. To simplify Figure 6,
we represent the attributes as letters, and the closest match is the past or current cluster
with the most letters in common: clg (with attributes bcgh) is closer to ¢y (abed) than
cl; (aefg) while cly (bfgh) is more like cl; (aefg). In our implementation, the attributes
currently considered are the clusters’ blackboard-levels, the volume of data hypotheses they
represent, and the time that the data was processed. Given a future i-goal’s cluster, the
algorithm scans the past and current clusters for those with the closest blackboard-levels
(because data at close blackboard-levels undergo similar processing). If only one is found
it is returned, but if two or more are equally close then of these the ones with the closest
volume of data are found (since more hypotheses may mean substantially more processing
is needed). Again, if only one is found then it is returned, but if several are equally close
then the one of these whose i-goal was most recently worked on is returned (because more
recent activity probably reflects future activity better).

When the closest match is found, the future i-goal’s cost is predicted to be the same as
the cost for the matching cluster’s i-goal—the processing time needed is expected to be the
same (Figure 6). To predict the result quality, the planner uses the relationship between
the matching cluster and its result (relating the average belief of the cluster’s hypotheses
with the result’s belief) and predicts that the same relationship will hold between the
future i-goal’s cluster and result (Figure 6). For example, say the matching i-goal’s result

has a belief twice that of the average of its cluster’s hypotheses (this happens, for instance,
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when the KSs see a known frequency distribution in the clustered hypotheses and thus have
high belief in their combination). Then the belief of the future i-goal’s result is predicted
to be twice the average belief of its cluster’s hypotheses.

The predicted overall cost of a plan is the sum of the i-goals’ costs. The predicted overall
result of the plan is also a combination of the i-goal’s results. When KSs combine data for
individual time-locations into a track, the belief of the track hypothesis is a combination of
the individual time-location beliefs—usually the average of these beliefs decreased by some
penalties for any unlikely vehicle movements (which can only be recognized over a sequence
of time-locations). Because the plan’s high-level view is too imprecise to recognize unlikely
vehicle movements, the prediction mechanisms estimate the overall result’s belief simply
as the average of the beliefs of the i-goals’ actual or predicted results. The predictions thus
tend to overestimate rather than underestimate the actual result.

As a plan is pursued, predictions about that plan will generally improve, both because
actual costs and results replace those predicted so that overall predictions improve, and
because more past experience increases the chances of finding more relevant past i-goals for
making predictions about future i-goals. The plan in Figure 6, when it was just starting,
could only base predictions on the expected result and cost of the i-goal for time 1 (which
was its current i-goal at that time). Since it now can also base predictions on the i-
goal for time 2, it can make better predictions about time 4’s i-goal (which matches 2
more closely than 1), and when time 3 becomes the current i-goal, the predictions for
4 will be even better (since it most closely matches 3). By interleaving planning and
execution, the predictions about future activities tend to improve as experience with the
plan is gained. In fact, by maintaining an extensive database of all its past problem solving
experience, the planner could gain enough knowledge to make very good predictions for any
contingency. However, techniques for efficiently acquiring, saving, and perhaps generalizing

this knowledge are machine learning tasks that our research does not address.

5.2 Using Predictions

A problem solver is seldom given exactly as much time as it needs to solve a problem,

especially when the costs of problem solving are initially uncertain. When given extra time,
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the problem solver should make intelligent decisions about when to terminate problem
solving: it should sufficiently explore the possible solutions to be reasonably confident that
it has found the best one, but should avoid wasting time generating solutions that could
not possibly be of use. When given less time than it needs, it should revise its plans to
generate some inferior but still acceptable solution if it can.

When a node has found a solution with time to spare and needs to decide whether to
terminate problem solving, the planner compares the solution with the predicted results
of competing plans. Since the node is attempting to form the best solution, any plans
that predict better results should be pursued. Any plans that predict much worse results
should not. Plans that predict somewhat worse results might still be worth pursuing, since
the predictions may underestimate the actual results, especially when the plan’s i-goals
work with very dissimilar data. Our mechanisms allow the user to specify how close a
competing plan’s predicted results must be to the best solution already found for the plan
to warrant further work. The planner can be conservative if the window of acceptable
plans is so large that it is unlikely to miss any good solutions, or if the window is very
small the node can more quickly propose a solution at the risk of missing a better solution
had it kept looking. Unlike our earlier termination technique of using statically defined
criteria such as generating a hypothesis with certain predefined characteristics, the new
mechanisms allow the node to dynamically compare the solutions it has developed with
those it predicts it could develop and decide when it has found the best solutions.

Instead of having extra time and needing to decide whether it is worthwhile exploring
alternative solutions, the node might have too little time to generate even a single solution.
The node might face tight deadlines. Without the ability to predict how long a plan will
take, the node would simply pursue a plan and hope to finish in time. Our new mechanisms,
however, allow the node to roughly predict how long a plan will take. Before it gets far with
a plan, the node can recognize that the predicted time needed by the plan will probably
exceed the time available, and can do something about it. The planner can respond to
this situation in any of a number of ways [15]: it can reduce the needs of the plan by
making the plan’s long-term goal less constrained (for example, it may plan to form a

shorter track); it may replace costly problem solving activities with less costly activities
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which may produce inferior but acceptable results; or it may choose another, cheaper plan
that can be finished.

Our current implementation has two simple mechanisms for revising a plan to meet
deadlines. The first mechanism is to reduce the scope of the plan’s long-term goals by
ignoring data for some of the sensed times. Because a vehicle’s more recent movements
are usually most important (for recognizing pending collisions with other vehicles, for
example), our mechanism simply drops i-goals for earlier sensed data until it predicts that
the plan to process the remaining data will meet the deadlines. The other mechanism is
to drop plan steps that corroborate hypotheses and increase the belief in the solution but
do not affect the scope of the solution. For the current i-goal in Figure 6, for example,
K S, and KS; both supply supporting hypotheses for KSs. The results formed by KSs
will be better (more highly believed) if both supporting KSs are executed, but an inferior
result can still be made if one of the two is dropped. In a given situation where a plan
will exceed deadlines, preferences about which of these mechanisms to try first depends on
whether the agent needing the solution (currently by the user) tells the node that belief is

more important than scope or vice versa.'®

6. Evaluation

We illustrate the advantages and the costs of our planner in three problem solving situ-
ations. To simplify the discussion, the situations emphasize certain aspects of the planning
mechanisms. The first presents an example of how the high-level view allows the planner to
rearrange problem solving activities so that it more quickly identifies promising activities
and more effectively solves the problem, all with an acceptable amount of overhead. The
second situation shows how incremental planning is advantageous when some goals cannot
be achieved so that plan monitoring and repair are needed. Finally, the third situation ex-
amines how the prediction mechanisms improve decisions about which plans to pursue and

allow the planner to decide when to revise plans to meet deadlines and when to terminate

10gince the KSs compute belief as essentially the average of the individual pieces of a track, belief does
not necessarily increase with increasing scope—belief is more a function of the amount of processing done
on each piece of a solution than of how many pieces have been processed. Thus, our two mechanisms can
treat scope and belief as being relatively independent attributes of a solution.
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problem solving since better solutions will probably not be found.

6.1 Situation 1: Planning to Resolve Uncertainty

The first problem solving situation is shown in Figure 7. This situation is the same
as in Figure 4 except that each region has one hypothesis. Also note that the data in
the common regions is most weakly sensed. When evaluating how the new mechanisms
perform in this situation, we consider two important factors: how well do they improve
control decisions (reduce the number of incorrect decisions), and how much additional
overhead do they introduce to achieve this improvement. Since each control decision
causes the invocation of a KSI, the first factor is measured using problem solving time:
since each KSI is simulated to take 1 time unit, generating a solution at an earlier time
means fewer KSIs were invoked so better control decisions were made. The second factor is
measured as the actual computation time (runtime) required by a node to solve a problem,
representing the combined costs of problem solving and control computation.

The experimental results for this problem solving situation are summarized in Table 1.
To determine the effects of the new mechanisms, the problem was solved both with and
without them, and for each case the simulated problem solving time (which equals the
number of KSIs) and the computation time were measured. We also measured the number
of goals generated during problem solving to illustrate how control overhead can be reduced
by having the planner control the goal processing. Finally, a variation on this environment
introduces noisy data into the common areas of the plans to determine how emphasizing
different heuristics for ordering i-goals can affect problem solving.

Experiments E1 and E2 illustrate how the new mechanisms can dramatically reduce
both the number of KSIs invoked and the computation time needed to solve the problem
in situation 1. Without these mechanisms (E1), the problem solver begins with the most
highly sensed data (dy, ds, di, and df). This incorrect data actually corresponds to noise
and may have been formed due to sensor errors or echoes in the sensed area. The prob-
lem solver attempts to combine this data through ds and d4 but fails because of turning
constraints, and then it uses the results from ds and d4 to eventually work its way back

out to the moderately sensed correct data. With the new mechanisms (E2), the planner

[
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d; = data for sensed time ¢  possible solutions: ps; = dyd2dsdsdsds
pPs2 = dldgdsd.;dgda
ps3 = dlldgadad.‘dsdc
@ = moderately sensed psq = dydjdad,dgdg

@ - strongly sensed

o = weakly sensed

acceptable solutions: pss

Time Plan Possible Solutions Current Result Pending I-goal Order

1 plan;  psy, psa, pss, psa none 3421586)

8 plan; psi, psg dsdy 21586)
plana pss, pss dady 21586)

16 plan; psi1, pse dady 21586)
plang P33 did’zdgd4 (5 6)
plan3 D84 dlld'gdad4 (5 6)

24 plan; psy, psz2 dads (2156)
plany pss dydydadydsds ()
plang  psy d\dydsds (5 6)

The first problem solving situation is displayed, along with the possible solutions found
by clustering the data and the acceptable solutions that can eventually be generated by
the problem solver. The plans at various problem solving times are shown to indicate the
evolution of the plans as problem solving progresses. For each plan is given the possible
solutions that it is expected to work toward, the result it has generated to this point, and
the pending i-goals in the order that they will be attempted.

Figure 7: Problem Situation 1.

Expt Plan? STime Rtime Goals Comments

E1l no 58 17.2 262 -
E2 yes 24 8.1 49 -
E3 yes 32 19.4 203  independent goal processing and planning
E4 no 58 19.9 284  noise in da, dg4
E5 yes 64 17.3 112  noise in ds, d4; Heuristic-1 predominant
E6 yes 38 16.5 71 noise in ds, dg; Heuristic-2 predominant
Legend
Plan?: Are the new planning mechanisms used?
Stime: The simulated time (number of KSIs invoked) to find solution.
Rtime: The total runtime (computation time) to find solution (in minutes).
Goals: The number of goals formed and processed.

Comments: Additional aspects of the experiment.

Table 1: Experiment Summary for Situation 1.
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recognizes that all four possible solutions share common data at ds and d4 and thus builds
a single plan to initially pursue all four possible solutions (Figure 7, time 1). When the
track dsds has been formed, the plan is divided into two separate plans: one to extend
toward data d; and the other to extend toward data d, (Figure 9, time 8). The track dsd,
is used by the goal processing mechanisms to form a goal indicating where good data for

sensed time 2 is most likely to lie, as is shown in Figure 8.

Figure 8: Expected Extension of Track dsd.

This goal overlaps only with the data in dj, so the KSIs to work on this data have
their ratings increased while the ratings for KSIs in d, are unchanged. Although originally
the KSIs for d, were more highly rated (since they work with more strongly sensed data),
the KSIs to work in d} are now more highly rated. The plan to work on d; is therefore
pursued because its more highly rated KSIs cause its rating to increase. Similarly, when
this plan is divided into separate plans to extend either to ds or to dy (Figure 7, time
16), goal processing affects KSI ratings so that the plan to work on dg is preferred. Since
the planner avoids processing the strongly sensed but noisy data in d,, ds, di, and dg, the
solution is found much more quickly (in fact, in optimal time [7]).

The planner controls goal processing to generate and process only those goals that
further the plan; if goal processing is done independently of the planner (E3), the overhead
of the planner coupled with the only slightly diminished goal processing overhead (the
number of goals is only modestly reduced, comparing E3 with E1) nullifies the computation
time saved on actual problem solving. Moreover, without the planner to control it, the goal
processing builds goals and subgoals based on less complete results, and these less precise
subgoals do not selectively increase the ratings of appropriate KSIs. For example, with the
planner controlling goal processing, a goal to find data for sensed time 2 is only generated

when the track covering dsd, is formed, and this goal selectively increases the KSI ratings
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for d; as described above. When goal processing is not controlled by the planner, a goal
to find data for sensed time 2 is formed earlier, based only on the result from ds. Without
information about later vehicle locations, the goal indicates that data in any direction
around ds is equally likely, and so increases the ratings of KSIs in both dz and dy—the
KSIs in d, remain more highly rated. The planner then prefers the plan to work on d;
over the correct plan. If the planner does not control goal processing, therefore, control
decisions deteriorate and more KSIs may be invoked (E3 compared to E2).

The improvements in experiment E2 were due to the initial work done in the common
areas ds and d4 triggered by Heuristic-1. In experiments E4-E6, areas d3 and d, contain
numerous competing hypotheses. If the planner initially works in those areas (E5), then
substantial time (KSIs) is required to develop all of these hypotheses—more time than
if the planner was not used at all (E4). However, by estimating the relative costs of the
alternative i-goals, the planner can determine that ds and dy, although twice as common as
the other areas, are likely to be more than twice as costly to work on. Heuristic-2 overrides
Heuristic-1, and a plan is formed to develop the other areas first and then use these results
to more tightly control processing in ds and ds. The simulated time needed to solve the

problem and the actual computation time are thus reduced (E6).

6.2 Situation 2: Monitoring and Repairing Plans

In the second problem solving situation, shown in Figure 9, two solutions must be
found, corresponding to two vehicles moving in parallel. Note that no areas are common
to all possible solutions. The experimental results for this environment are summarized in
Table 2. Without the planner (E7), problem solving begins with the most strongly sensed
data (the noise in the center of the area) and works outward from there. Only after many
incorrect decisions to form short tracks that cannot be incorporated into longer solutions
does the problem solver generate the two solutions.

The high-level view provided by the abstraction hierarchy allows the planner in exper-
iment E8 to recognize the six possible solutions, four of which pass through dj (the most
common area). The planner initially forms plan,, plan,, and plans, beginning in dg, ds,

and dj} respectively (Heuristic-1 triggers the preference for %, and subsequently Heuristic-3
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possible solutions: ps; = dydzdadsds

dy d2 d3 di ds| d; = data for sensed time i psz = djdhdsdyd
ps3 = dydadgdyds
# ® - strongly sensed psy = dy dpdldldl
3 o~ moderately sensed pss = djdodydds
—_ g
® —& ® | ¢ = weakly sensed Pss = dydadsddy
foodh  dy  dy  d acceptable solutions: ps;, ps;
Time Plan Possible Solutions Current Result Pending I-goal Order
1 plan; Ps3 — pSe none (32145)
plang psy none (32145)
plans psa none 32145)
4 plan, ps3, PS4 dy 2145)
plang PS5, PSa dy (2145)
8 plan1 ps3, P34 dzdg 14 5)
12 plan; * P33, D34 did; 45
20  plan;* Ps3, PS4 didz 45
plang* pss, PSe dyd, 4 5)
23 plang psy da 2145)
plang* pss, PSg didh 45
24 plang % DSy dydads 45
36 plang P31 d1d2d3d4d5
plans ps2 dy (2145)
37 plang*x* psy dydad; 45
45 plany* Ps3, PS4 dyda 4 5)
planz psy dydadsdyds ()
plang Ps2 dydydsdydy 0
plang*  pss, pse dydj (45)

The second problem solving situation is displayed, along with the possible solutions found
by clustering the data and the acceptable solutions that can eventually be generated by
the problem solver. The plans at various problem solving times are shown to indicate the
evolution of the plans as problem solving progresses. Plans not included at a given time
have not changed since the last time. For each plan is given the possible solutions that it is
expected to work toward, the result it has generated to this point, and the pending i-goals
in the order that they will be attempted. Plans marked with a * have been aborted, and
plans marked with ** have been repaired.

Figure 9: Problem Situation 2.
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indicates a preference for ds and d}). Since it covers the most long-term goals, plan, is
pursued first—a reasonable strategy because effort is expended on the solution path if the
plan succeeds, and if the plan fails then the largest possible number of candidate solutions
are eliminated. After developing dj (Figure 9, time 4), plan, is divided into two plans
to combine this data with either dj or d}. One of these equally rated plans, in this case
plan,, is chosen arbitrarily and forms the track d;d3, which then must be combined with dy
(Figure 9, time 8). However, because of vehicle turning constraints, only d;d; rather than
dyd,d! is formed (Figure 9, time 12). The plan monitor flags an error, an attempt to repair
the plan fails, and the plan aborts. Similarly, the plan to form d)d;ds eventually aborts
(Figure 9, time 20). Plan, is then invoked, and after developing ds (Figure 9, time 23) it
finds that d; has already been developed (by the first aborted plan). However, the plan
monitor detects that the predicted result, d,ds was not formed, and the plan is repaired
by inserting a new action (triggering a new KSI) that takes advantage of the previous
formation of dyd; (the KSI finds that hypothesis already on the blackboard) to generate
dydyds (Figure 9, time 24). The predictions are then more than satisfied, and the plan con-
tinues until a solution is formed. The plan to form the other solution is similarly pursued,
repaired (Figure 9, time 36, 37), and successfully completed (Figure 9, time 45). Finally,
note once again that, if the planner does not control goal processing (E9), unnecessary

overhead costs are incurred.

Expt Plan? STime Rtime Goals Comments

E7 no 73 214 3711 -

E8 yes 45 11.8 60 -

E9 yes 45 20.6 257  independent goal processing and planning

Legend

Plan?: Are the new planning mechanisms used?
Stime: The simulated time (number of KSIs invoked) to find solution.
Rtime: The total runtime (computation time) to find solution (in minutes).
Goals: The number of goals formed and processed.

Comments: Additional aspects of the experiment.

Table 2: Experiment Summary for Situation 2.
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d; = data for sensed time ¢
— st I d possible solutions: ps; = did2dadsdsdedrds
. = gtrongly sense pog = d'ldfzdédf;dsdcd7ds

o= moderately sensed

o = weakly sensed

best solutions: ps;

The third problem solving situation is displayed, along with the possible solutions found by
clustering the data and the best solutions that can eventually be generated by the problem
solver (since in this case both of the possible solutions are valid solutions but one is better
than the other).

Figure 10: Problem Situation 3.

6.3 Situation 3: Dealing With Time Constraints

In the third situation, shown in Figure 10, there are only two possible solutions: the
vehicle can start either in the upper-left or lower-left corner. The track extending to the
upper-left involves weak and strong data, but more weak than strong, while the lower
track is moderately sensed throughout. The overall belief of the lower track is higher
than the upper, and therefore represents the best solution. The experimental results are
summarized in Table 3. For each experiment is shown the time when the best solution was
found, the time the problem solving terminated (when appropriate), the sensed times of

the solution track, the belief of the solution track, and comments about the experiment.

We begin by showing that predictions can improve a node’s control decisions about
which plans to pursue. For experiment E10, the new prediction mechanisms are not
employed. The node begins by forming the common track dsdedsds and then extends
this track backward to earlier times. Because the d4 is more strongly sensed than dj, it
extends dsdgdsds toward the upper-left. Only when the node integrates the weak data (dy
and d,) does its belief in the overall track diminish so that it perceives the lower track
as a potentially better solution. It therefore forms both possible solutions. With the
new prediction mechanisms (experiment E11), the planner predicts that the upper track’s
weak data will reduce belief in that track, and that the overall belief of the lower track

will probably be better. Hence, after it generates dsdsdrds, it pursues the lower track and
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Expt STime TTime Track Belief Comments

E10 57 - 1-8 high No predictions

E1l1 40 - 1—8  high Predictions

E12 40 57 1—-8 high Explore all solutions

E13 40 40 1—-8 high Stop with best predicted solution

E14 - 36 - - No predictions, deadline = 36

E15 36 36 - mod  Predictions, deadline = 36, large scope

1-8
E16 32 32 1-8 low  Predictions, deadline = 32, large scope
E17 30 30 2-8 low Predictions, deadline = 30, large scope
E18 28 30 4—8 high Predictions, deadline = 30, high belief

Legend
Expt: The experiment
STime: Time at which the best solution was found
TTime: Time at which problem solving terminated
Track: Times spanned by best solution track
Belief:  Belief in best solution track

Table 3: Experiment Summary for Situation 3.

generates the best solution substantially sooner than in E10.

Depending on how conservatively it should solve the problem, the node may terminate
problem solving only after it has explored every possible solution, or it may end as soon
as it believes (based on its predictions) that it has found the best solution. In experiment
E12, the node explores all possible solutions, and therefore terminates problem solving
much later than in experiment E13 where it stops as soon as it predicts that it has found
the best solution. Although both experiments find the best solution equally fast, E12
spends a lot of time and energy verifying that it was the best solution. The predictions in
these experiments are sufficiently accurate so that E13’s decision to terminate is correct.
In other problem situations such a decision might be premature—the predictions might
underestimate the quality of potential results and the best solution might be missed. How
conservative a node’s termination decisions should be depends on the problem situation
and how much time it has.

In this environment, a highly believed hypothesis spanning the entire track cannot be
formed in less than 40 time units. A deadline of 36 time units was used in experiments E14
and E15. Since any partially developed track needs more work before it meets solution

criteria (it must be processed to the pattern blackboard-level), a node without prediction
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abilities has no solutions by time 36 (E14). When it can predict that there is insufficient
time to form the best solution (E15), the planner revises the plan to meet the deadline: told
by the experimenter (the consumer of the solution) to favor scope over belief, it removes
enough plan steps (KSs for supporting hypotheses) so that it still forms a solution covering
the entire track but with only a moderate belief. With only 32 time units to work with
(E16), the planner removes pia.n steps so that the solution covers the entire track but with
low belief.

Given a deadline of time 30 (E17), the planner must employ both mechanisms since it
still expects to exceed the deadline after it has removed all the unnecessary plan steps. It
reduces the scope of the goal, dropping the earliest sensed time (time 1), and generates a
hypotheses with low belief spanning times 2-8. Finally, given the same deadline of time 30
but told by the experimenter to generate a solution with high belief, the planner no longer
drops steps (that would reduce belief) but instead reduces the scope of the solution to
span times 4-8 (E18). Note that in these environments where each plan step (KSI) takes
one time unit, the planner can drop just enough plan steps to meet the deadline exactly
(E15 - E17). When it needs to get high belief and drops entire i-goals for less important
sensed times, the planner may not meet deadlines exactly (E18) since these i-goals take

several steps to achieve.

7. Conclusions

We have described and evaluated mechanisms for improving control decisions in a
blackboard-based vehicle monitoring problem solver. Our approach is to develop an ab-
stract view of the current problem solving situation and to use this view to better predict
both the long-term significance and cost of alternative actions. By recognizing and plan-
ning to achieve long-term goals, problem solving is more focused. By using the abstraction
hierarchy when making planning decisions, problem solving can be more cost effective.
Finally, by interleaving plan generation, monitoring, and repair with plan execution, the
mechanisms lead to more versatile planning, where actions to achieve the system’s (prob-
lem solving) goals and actions to satisfy the planner’s needs (resolve its own uncertainty)

are integrated into a single plan.
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This approach can be generally applied to blackboard-based problem solvers. Ab-
straction requires exploiting relationships in the data—relationships that are used by the
knowledge sources as well—such as allowable combinations of speech sounds (9] or how
various errands are related spatially or temporally [11].!! Planning requires simple models
of KSs (mapping stimulus frames to response frames (9]), recognition of intermediate goals
(to extend a phrase in speech, to add another errand to a plan), and heuristics to or-
der the intermediate goals. We believe that many blackboard-based problem solvers (and
more generally, data-directed problem solvers) could incorporate similar abstraction and
planning mechanisms to improve their control decisions.

By making predictions about its plans, a blackboard-based problem solver can perform
effectively when faced with time constraints. If it predicts that a plan will exceed a
deadline, the planner can revise the plan appropriately, while if it has time to spare, the
planner can more intelligently decide whether to terminate problem solving after finding
a solution if it predicts that pursuing alternative plans will be a waste of time. This paper
described how the prediction mechanisms work: how future activities are related to past
activities so that past experience can be used to estimate how things will go in the future,
and how predictions are used to meet deadlines and to make termination decisions. Basing
predictions on past experience assumes that past and future activities are somehow related.
Tf this assumption is false, then other mechanisms for prediction that get expectations some
other way are needed. However, in our system, as in typical blackboard-based problem
solvers, this assumption is generally true: the problem solver will usually go through fairly
repetitive actions as it extends and refines different partial solutions. Also, the quality of
the predictions depends on the characteristics of the situation and the past experiences of
the node. The planner should not expect the predictions to be completely accurate, and
thus should use the predictions only to influence its decisions, not dictate them, so that it
retains flexibility to explore alternative solutions that might be better.

Not only are the planning and prediction mechanisms important for building blackboard-

111y fact, the WORD-SEQ knowledge source in the Hearsay-II speech understanding system essentially
is a clustering mechanism: by applying weak grammatical constraints about pairwise sequences of words,
WORD-SEQ generated approximate word sequences solely to control the application of the more expensive
PARSE KS that applied full grammatical constraints about sequences of arbitrary length [9].
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based problem solvers that can work effectively by themselves, but they are also vital for
coordinating cooperating problem solvers. A network of such problem solvers that are co-
operatively solving a single problem could communicate about their plans and predictions,
indicating what partial solutions they expect to generate and when. With this information,
each problem solver can coordinate its activities with the others to generate and exchange
useful results more efficiently, thereby improving network problem solving performance
[6,5,7,8]. In essence, the problem solvers together form a distributed plan. The use of
incremental planning, plan monitoring, and plan repair is particularly appropriate in such
domains due to the inherent unpredictability of future actions and interactions.

Our new mechanisms, though they address issues previously neglected, should be inte-
grated with other control techniques to be fully flexible. The combination of our mecha-
nisms and goal processing has proved fruitful, and we believe that our mechanisms could
similarly benefit by being integrated with other control approaches such as a blackboard
architecture for control [11). We also expect to improve on the mechanisms that use the
predictions. Our techniques for modifying plans to meet deadlines are still rudimentary,
involving simply reducing the scope of the desired solution or dropping plan steps. We
want to explore a variety of mechanisms for replacing costly actions with less costly ones,
for developing less exact hypotheses when time is limited, and for deciding the best way
to modify a plan in a specific situation [15]. In addition, we want to better explore how
termination criteria can adapt to different problem solving states. Based on the results we
have outlined in this paper, we anticipate that the further development of mechanisms for
developing abstract views and incremental planning to control blackboard-based problem
solvers, as well as mechanisms for making predictions and using them to meet problem
solving deadlines, will greatly enhance the performance of these problem solving systems,
will lead to better coordination in distributed problem solving networks, and will increase

our understanding of planning and action in highly uncertain domains.
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