‘s,

s

The GRAPPLE Plan Formalism

Karen E. Huff and Victor R. Lesser

COINS Technical Report 87-08

April, 1987

Computer and Information Science Department
University of Massachusetts
Ambherst, MA. 01003

This work was supported in part by the Air Force Systems Command, Rome Air Development
Center, Griffiss Air Force Base, New York 13441-5700, and the Air Force Office of Scientific
Research, Bolling AFB, DC 20332 under contract No. F30602-C-0008. This contract
supports the Northeast Artificial Intelligence Consortium (NAIC).

Table of Contents

1.0 Introduction , 1-1
1.1 Requirements 1-1
1.2 Guide to Organization of Report 1-5
2.0 Formal Definition of GPF 2-1
2.1 Overview of Operator Definitions 2-1
2.2 Major Operator Clauses 2-3

2.2.1 Goal Clause
2.2.2 Effects Clause

2.3 The Semantic Database 29

2.3.1 Modeling the Semantic Database
2.3.2 Formalizing the Semantic Database
2.3.3 Relationship Between SDB and Effects Clause

2.4 Decomposition Clause 2-20

2.4.1 GPF Plan Networks
2.4.2 Style of Decomposition
2.4.3 Final Subgoals

2.4.4 Tterated Subgoals

2.5 Constraints 2-33

2.5.1 Underconstrained Operators
2.5.2 Special Use of Constraints with Iterated Subgoals

2.6 Other Features ‘ 2-37

2.6.1 On-line versus Off-line Operators
2.6.2 Interface to Real-world Observations
2.6.3 Protection Intervals

2.6.4 Operator Libraries

2.7 Use of Predicate Calculus 2-51
2.7.1 Evaluation of Plan Formulas _
2.7.2 Role of Bindings in Recognition and Execution

2.7.3 Interpretations and Multiple Database States
2.7.4 Construction Interpretations

Huff and Lesser iii April, 1987

3.0 Extensions to GPF 3-1

3.1 Decomposition 3-1
3.2 Ordering and Forced Execution 3-2
3.3 Semantic Database Extensions 3-3
3.4 Specialization Hierarchies 34
3.5 Improved Notation 3-6
3.6 Specifying Operator Costs 3-6
3.7 Non-atomic Primitive Actions 3-7
3.8 Declaration of Variable Names 3-7
4.0 Review and Conclusions 4-1
4.1 How Requirements were Met 4-1
4.2 Relationship to Other Plan Formalisms 4-2
4.3 Acknowledgments 4-3
5.0 References 5-1
Appendix A: Formal Grammar for Operator Definitions A-1
Appendix B: An Operator Library B-1

Huff and Lesser ii April, 1987

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:

Table 1;

List of Figures and Tables

Architecture for an Intelligent Assistant
A Basic Operator

Static Precondition Examples

Blocks World

Semantic Database Formalized
Extended Blocks World Blocks
Primitive Operations for Extended Blocks World
Extended Blocks World Structures
Operators for Building Towers
Expanding a GPF Plan Network
Pathological Plan Net Expansion
Pathology Resolved

Net Expansions with Non-Final Subgoals
Iterated Subgoal Examples

Successful Realization of Make-tower
Use of Constraints

Constraints in Iterated Subgoals

Use of the Observe Clause

A Recognition Scenario

Time Line

State/Time Diagram

Operator Definitions by Specialization

Achievers for Subgoals and Preconditions

Huff and Lesser iii

1-2

2-2

2-7

29

2-10
2-11
2-12
2-13
2-21
2-23
2-26
2-27
2-30
2-31
2-33
2-34
2-36
2-44
2-52
2-54
2-55
3-5

2-49

April, 1987

1.0 Introduction

The GRAPPLE plan formalism was designed to support the central paradigm in the
implementation of an intelligent assistant. That paradigm involves performing both plan
recognition and planning for a user working in a computer-based, professional domain. Two
examples of these types of domains are software development and the automated office. Using
a planning paradigm, the intelligent assistant can provide such help as:

» maintaining agendas (by enumerating the states yet to be satisfied in a plan),

* detecting errors (such as when a new user action cannot be recognized or
violates a protected condition),

* correcting errors (for example, by informing of the need to satisfy a missing
precondition or substituting the nearest expected action instead or suggesting
that another action be performed first),

* answering user questions (which are interpreted as queries on either the state of
the domain or the state of the plan), and

* automatically executirig user tasks (by performing planning and execution
monitoring).

A schematic architecture for such an assistant is given in Figure 1. The assistant itself is
domain-independent. Its domain knowledge is embodied in a set of operators (written in the
GRAPPLE Plan Formalism GPF) which describe the actions possible in the domain. Using
these operator definitions, complete plans can be constructed to explain a series of user actions
(plan recognition) or to achieve a desired user goal (planning).

The GRAPPLE project is described in [2]. It has evolved from an earlier effort called POISE,
described in [1,3,5]. The application of POISE to office automation tasks is discussed in [6];
its application to the software development environment is described in [8]. The results of the
POISE project demonstrated the viability of a planning approach to intelligent assistance, and
GRAPPLE is intended to build on and extend those results.

1.1 Requirements

In this section, we discuss the requirements that an intelligent assistant application places upon
a plan formalism. We also mention the rationale for choosing an underlying formalism that is
different from that used in POISE.

Huff and Lesser 1-1 April, 1987

Figure 1: Architecture for
An Intelligent Assistant

User System

In the domains of interest, there are three distinct parties with distinct capabilities. The first
party is a dumb agent (in this case, a computer system), capable of carrying out actions from a
specific repertoire on explicit command, but without any facility for judging the global sense or
advisability of those actions. The second party is a human user directing the agent, capable of
planning and understanding the actions, but fallible; the fallibility arises from the complexity of
the world state coupled with the complexity of the actions themselves. The final party is the
intelligent assistant, with incomplete knowledge of the domain, but with the ability to operate
accurately within that part of the domain where its knowledge is complete. Thus the intelligent
assistant compensates for the fallibility of the user, but cannot entirely replace the user. To the

Huff and Lesser : 1-2 April, 1987

user, it appears that the intelligent assistant augments the facilities of the dumb agent, in effect
giving the dumb agent an acceptable level of "smarts".

A unique requirement derives from the fact that it is too complex to build a fully autonomous,
automated agent to replace the user. For these domains, it simply is not possible to codify all
the knowledge necessary to make the intelligent assistant as knowledgeable as the user -- what
the expert user knows is not well-enough understood. Therefore, the plan formalism must
allow the definition of incomplete plans, which cannot be executed without cooperative input
from the user. The formalism must make a distinction between decisions which the intelligent
assistant can make independently and those for which the assistant must have recourse to the
user. This aspect of GRAPPLE plans represents a departure from previous planning work,
where the planner has all the knowledge needed to be fully autonomous.

Another set of requirements stems from the fact that the human user remains in the picture,
unlike the usual situation where the user is simply replaced by an automated agent. The
intelligent assistant must be able to converse with the user, especially to answer user questions.
GRAPPLE plans should reflect the user's view of the hierarchical levels of activities. Thus,
use of hierarchical plans is motivated by a desire to have consistency between the assistant's
and the user's pictures of the relationships between activities, independent of the traditional
motivation of controlling search space to make planning more efficient. A related concern has
to do with answering questions posed by the user about the world state. We want the world
description to encompass the user's interpretation, in addition to the simple facts about the
physical reality of the world. Thus, the world description in GPF will be richer than that of
traditional planning systems. It will include not just the bare facts (block A rests on block B
which rests on block C), but the interpretations placed upon those facts by the user (blocks A,
B, and C form a structure which is some kind of column).

Additional requirements stem from the fact that even small applications in our target domains
require the operator definition language to be engineered for real-world situations. This
includes requirements for operators with large numbers of variables, repeated actions,
complex constraints on operator variables, and "underconstrained” variables. Further,
operators must be able to create new world objects (when a programmer uses the editor to
create a new file, the effect on the world state is to create a new object of type file); such a
feature is not commonly implemented in operator definition languages.

Huff and Lesser 1-3 April, 1987

Finally, the plan formalism must support plan recognition as well as planning. Occasionally,
these two applications require different sorts of information, and these differences must be
accommodated. However, in both cases, the execution of plans is monitored by the intelligent
assistant, so an interface is needed by which information on success or failure can be acquired.
Such an interface has further uses: performing actions can lead to the acquisition of new
information about the world (not just changed world states). One interface can serve as the
conduit between the real world and its description within the intelligent assistant.

We wanted to act upon the insight gained from our work with the POISE system: namely, that
more knowledge was needed in operator definitions. In particular, additional knowledge was
required to deal with exceptional situations arising from multiple top-level goals being achieved
in parallel. POISE could handle multiple, concurrent top-level plans, and that capability had to
be preserved. But, POISE had insufficient information to reason about interactions among
on-going plans, at any hierarchical level. Take a POISE plan of the form A <- B C (D / E)
which is read as "plan A consists of performing action B, then action C, then either actions D
or E". We needed to add information to know when C might be redundant, because its goal
had been already been achieved by other on-going legal actions; or, when C could not directly
follow B, because certain effects of B were subsequently wiped out prior to C starting; or,
what to do if C failed -- perhaps D is provided for the C-succeeding case, and E for the
C-failing case. This last issue requires that we be able to decide whether C has in fact failed,
which POISE had insufficient information to do.

We also knew from the POISE experience that the more complex a domain is, the more
important it is to consider the difficulties of providing a complete operator library. It is
important that the library be modular, so that one can add new operators without having to
rewrite existing operators.

As a result of all these requirements, the GRAPPLE plan formalism has all the characteristics
of a full-featured plan formalism suitable for the standard planning algorithms of the literature.
It should be noted that traditional planning techniques cannot be transferred directly to this
application due to many factors including:

» multiple top-level plans can be executing concurrently, implying that plan
interactions cannot be reliably predicted because new top-level plans can start at
any time,

Huff and Lesser 1-4 April, 1987

* the planner is not fully autonomous (it lacks complete knowledge, as explained
above),

* the goal of plan recognition is to recognize the user's actual plan, which may be
different from an optimal plan,

* the goal of plan recognition is to recognize the user's actual plan as it is being
performed, not after it is complete, so as to maximize the opportunity for
detecting errors while they are still readily correctable.

1.2 Guide to Organization of this Report

The remainder of this report is divided into three parts. In Section Two, we give a precise
definition of the GRAPPLE Plan Formalism GPF, the language in which operators are defined;
the GRAPPLE semantic database, which is not separable from GPF, is also defined. In
Section Three, we consider useful extensions which could be made to GPF. In Section Four
(the final part), we summarize how the requirements for GPF were met and compare
GRAPPLE to other plan formalisms.

A formal grammar for GPF appears in Appendix A. An operator library for a single,
complete example domain appears in Appendix B. A companion technical report [9] describes
how GPF is used to model the software development domain; an extensive set of software
development operators written in GPF is given there.

It is traditional that no plan formalism may be properly introduced to the field without a
blocks-world example; therefore, we follow tradition and present various plans for stacking
and unstacking blocks. The simplest of these plans have appeared in the literature many times,
and thus serve as a straightforward way for the reader to compare GRAPPLE to other plan
formalisms. We also present more complex blocks-world examples which serve to show the
strengths of GPF for complex domain modeling.

The blocks world was originally conceived as a robot problem. For the application of an
intelligent assistant, it is more appropriate to think in terms of a small child playing with a robot
manipulating blocks, while an adult looks on. The intelligent assistant acts the role of the adult:
interpreting the child's commands to the robot as attempts to build meaningful structures (thus,
performing plan recognition), or demonstrating to the child how to build meaningful structures
(thus, planning and executing the necessary primitive actions).

Huff and Lesser 1-5 April, 1987

2.0 Formal Definition of GPF
2.1 Overview of Operator Definitions

GRAPPLE provides for the hierarchical definition of operators. An aggregation hierarchy is
used, where multiple, lower-level operators are aggregated into a single higher-level operator.
Each lower level operator is a part of the higher level operator. (This is in distinction to a
generalization hierarchy, where lower level operators are specializations of higher level
operators.) At the lowest levels of the hierarchy, we have primitive operators which
correspond to the atomic actions in the domain. Operators at all other levels are complex
operators, defining activities at higher levels of abstraction.

GRAPPLE operators are fundamentally state-based. They follow the state transition approach
introduced with the earliest planning work. This is in contrast to event-based (also called
behavioral) formalisms, of which POISE plans are an example. In an event-based system, the
empbhasis is on sequences of actions; in a state-based system, the emphasis is on sequences of
states.

Every GPF operator includes clauses which define the goal, the precondition, and the effects of
the operator. An example of a (partial) GPF operator showing just these clauses is given in
Figure 2; this is the traditional example of the primitive operation to stack one block on another.
(Throughout, we follow the convention that the operator template, including GPF reserved
words, is given in uppercase, and the details of this specific operator appear in lowercase.)
The interpretation of the basic GPF clauses is as follows:

* If the operator is executed in an initial state A in which the precondition is true,
then the effects are realized causing a transition to state B.

« If the execution of the operator succeeded, then the goal will be true in state B;
otherwise, it will be false. (The Figure 2 example does not yet deal with failure
-- we will expand the example later to show how it is handled.)

While the goal, precondition and effects clauses are the core of a operator definition, there are
other operator clauses. All operators have a constraints clause which describes relationships
among operator variables. If the operator is primitive, it has an observe clause, which is part
of the interface to the real world necessary for both plan recognition and plan execution.
Complex operators have a decomposition clause, which shows how the complex operator is

Huff and Lesser 2-1 April, 1987

FIGURE 2: A Basic Operator

(OPERATOR stack IS-PRIMITIVE

; This is an operator for moving a single block on top of another;

; the block to be moved must be available directly to the robot arm
; (i.e., must have no other blocks on top of it)

; and must also be on the table.

; The block which is to serve as the base must have its top clear

; 10 receive the block being moved.

(GOAL on(xy))
(PRECOND (clear(y) AND clear(x) AND ontable(x)))
(EFFECTS (ADD on(x,y))

(DELETE clear(y))

(DELETE ontable(x))))

broken down into simpler parts. That completes the overview of operator clauses.

As would be expected in a state-based formalism, there is a database which is used to describe
the state of the domain world. Domain-specific predicates, functions and initial constants are
predefined, and constitute the schema of the database. Queries on the state of the world are
then expressed as formulas in first order predicate calculus. Since the database serves as both
the state definition and the description of all domain objects, we call it a "semantic database" or
SDB.

Huff and Lesser 2-2 April, 1987

2.2 Major Operator Clauses
2.2.1 Goal Clause

The goal clause identifies the particular database state which is meant to be achieved by the
execution of this operator. Obviously, this is a family of database states, since a typical goal
will mention a small subset of the database predicates, leaving the truth value of other
predicates unspecified; the specific member of the family is immaterial to the operator. The
goal is a formula whose truth may be determined by querying the database. Other operators
may have identical or similar goal clauses, in which case there are alternate ways to achieve this
goal.

We make a distinction between the goal of a operator, and its purpose. While the goal is
predefined and static, the purpose is decided dynamically when operators are instantiated and a
plan hierarchy is constructed. The purpose of a operator consists of contributing to goal and/or
precondition satisfaction for other parts of the plan hierarchy. If the plan hierarchy includes an
operator P whose precondition is A, and if another operator Q whose goal is A appears in the
hierarchy as part of the expansion of P, then the purpose of Q is to satisfy the precondition of
P. There might be another plan hierarchy with an operator R, whose goal is A AND B, and Q
might appear in the hierarchy as part of the expansion of R; then the purpose of Q would be to
contribute to the satisfaction of the goal of R. In each case the purpose is different, but the goal
of Q is always the same.

In some sense, the goal clause in GPF is redundant because the purpose of an operator is the
real determiner of success or failure, and because an explicit effects clause is provided. The
presence of the goal clause in GPF is intended to give the operator designer the opportunity to
provide some focusing information. The goal clause lists the important effects of the operator,
and thus distinguishes between the "main" effects of an operator and its "side" effects. The use
of this information in constructing plan hierarchies is described in Section 2.6.4.

2.2.2 Effects Clause
The effects clause defines a state transition (from an initial state to a final state) which occurs as

a result of executing this operator. If execution of the operator was successful, then the goal
will be true in the final state of this transition. The effects clause is expressed as a set of atomic

Huff and Lesser 2-3 April, 1987

database operations such as making predicates true or false or creating new database objects;
taken together as a single, uninterrupted database transaction, these atomic operations define
the state transition. In the case of a complex operator, the state transition takes place after all
subgoals are achieved.

The effects clause will usually include more than just those database operations which make the
goal true. The effects clause is the means of updating the semantic database, including bare
facts and interpretations of those facts; so, all knowledge to be gained from executing a
particular operator should be described in the effects clause: goal-related "main effects" as well
as "side-effects". We give a few examples:

« In the simple stack operator of Figure 2, the deletion of clear(y) and ontable(x)
are side-effects of achieving on(x,y) . However, they cannot be omitted if we
are to have an accurate state description for the state after a stack action for x and

y.

 We might imagine that in the process of stacking (or unstacking a block), we
would have access to information about the weight of the block; for the sake of
argument, let us assume that this information is accessible only at this time.
Then, we would want to record it in the semantic database, so that it was
available later. For example, we might have other operations on blocks which
were conditional on certain weight constraints.

« If we had operators to build structures (towers, bridges, fences, etc) out of the
blocks at our disposal, we might want to record the color of a structure, based
on the blocks of which it was composed. The color might be red, blue, ... or
multi-color (for the case where mixed colors of blocks were used.) Recording
the color of the structure might not be information needed by any other operator,
but it might facilitate discussion with the user about the domain state.

2.2.2.1 Conditional Effects We allow the database operations of the effects clause to be
conditional. Thus the effects clause actually defines a family of transitions; the goal of the
operator will be true for some family members, and false for the rest.

Conditional effects can be used in two ways. First, we can define generic operations, and
leave the fine distinctions to the effects clause. To do so, we make one or more database
operations conditional upon some fact in the state prior to execution of the operator. This
allows us to get extra mileage from a single operator: without conditional effects, we would
have to make multiple operator definitions. Second, we can make the outcome of a operator
dependent upon observations from the real world; this means that we have the ability to make
the appropriate database updates both in the case of a operator succeeding as well as in the case

Huff and Lesser 2-4 April, 1987

R

of a operator failing. In this case, the database operation is conditional upon feedback from the
real world. Examples of these two uses of conditional effects are as follows:

* Suppose we assume that when we stack one block x on another block y, x can
come either from the table or from on top of another block z. Then, in the stack
operator, the "side-effects" involving the new status of x will be either deleting
ontable(x) or deleting on(x,z) . The choice of "side-effect" is conditional on the
status of x prior to the stack action.

* Suppose the child's robot could not lift blocks whose weight was greater than a
certain threshold, and suppose further that the only way to gauge the weight of a
block is to attempt to stack or unstack it. Then it is possible that a stack
operation would fail if the block were too heavy. In this case, either the effects
as given in Figure 2 would be achieved (along with an effect recording that the
weight of the block is below the threshold) or the blocks would remain in their
original position and we would achieve a single effect: namely, recording that
the weight of the block is above the threshold.

2.2.2.2 Effects of Complex Operators Although one might suppose that complex
operators should not have effects clauses, we not only allow this, but believe that effects
clauses for complex operators provide for more accurate domain modeling. Of course, if the
goal of operator P was A AND B, and the decomposition of P was to achieve A and achieve B,
then P itself would not strictly require any effects. When a complex operator does have an
effects clause, it generally involves recording some higher-level semantic concept‘in the
semantic database. For example,

* If we were building structures and had operators to paint blocks, then we might
have a operator to make a structure red, consisting of painting all blocks in the
structure red. The blocks are marked red (in the SDB) as each of the subgoals is
accomplished, and the structure is marked red (in the SDB) as an effect of the
paint-structure-red operator.

* If we are building a vertical structure with three blocks, then we can do so with
two stack operations. The effects of the stack operations show x on y and z on
x. As effects of the vertical-structure operator, we can introduce an object
representing the structure, and show that blocks x, y and z are part of it. These
effects give a higher-level semantic interpretation to the world state than is
possible with just on(x,y) and on(z,x).

2.2.3 Precondition Clause

The precondition clause establishes constraints on the initial state in which operator execution
can start; these constraints must be met in order for the state transition defined in the effects

Huff and Lesser 2-5 April, 1987

clause to be valid. Another way to look at the precondition clause is to say that it defines an
appropriate start state from which the goal may be achieved via this operator.

2.2.3.1 Use in Ordering Actions Operators must be executed in the order dictated by
their preconditions. Ordering of operators is not specified in any other way; in particular, the
temporal ordering rules found in an event-based formalism are not used. Preconditions allow
an implicit concurrency among Operators: if two complex operators have true preconditions,
then both can be executing at the same time.

In the case of a complex operator, the precondition must be true before any subgoal is to be
achieved. Therefore, it is good operator writing style to push preconditions down to the lowest
possible operators in the hierarchy, so as to allow as much concurrency of higher-level tasks as
makes sense for the domain. For example, we might have a set of operators including some to
build structures of various types and others to take them apart. From such operators, we can
define another operator to build a new structure out of the blocks of some existing structure.
During execution of this re-use-blocks operator, we need not complete the dismantling prior to
starting to re-build; if blocks are available in the right order, we can interleave dismantling with
re-building. In this case, we do not want to have a precondition on re-building that requires
that all necessary blocks be available. Availability should be a precondition on individual
stacking operations, which satisfy the subgoals of re-building.

2.2.3.2 Types of Preconditions We make a distinction between two types of
preconditions: normal and static. An operator may have both types, or only one type, or none.
The precondition of a operator is understood to be the conjunction of the normal and static

preconditions when both are present.

The normal precondition for an operator takes the form of a list of formulas, which are
implicitly joined by the AND operation. Thus if the operator writer states:

(PRECOND (A,BANDOC))
the complete normal precondition is understood to be the formula:

AANDB AND C

Huff and Lesser 2-6 April, 1987

By dividing the entire normal precondition into separate parts, the operator writer is providing
some heuristic information to the planning system about how to break the precondition into
separately achievable parts. For the example above, the information indicates that A can be
achieved separately but B and C can be achieved together. The use of this information is
described in Section 2.6.4.

If a normal precondition is found to be false, it will be appropriate to take explicit steps to make
it true. For static preconditions, this is not the case; a static precondition specifies universal
conditions of applicability for the operator. A static precondition may involve some aspect of
the database which is not changeable, or it may cover a case where it does not make sense
(given the domain) to attemnpt to make the precondition true when it is false.

FIGURE 3: Static Precondition Examples

(OPERATOR stack IS-PRIMITIVE

; this is another way to move a single block on top of another. Here we
;assume that blocks come in two types: those with flat top surfaces, and
those with other types of top surfaces. We add the static precondition

that the base block must have a flat top in order for the other block to sit on it.

(GOAL on{x,y))
(PRECOND (clear(y) , clear(x) , ontable(x)))

(STATIC flattop(y))) ; here is the required condition
(EFFECTS (ADD on(x,y))

(DELETE clear(y))

(DELETE ontable(x)))

(OPERATOR unstack IS-PRIMITIVE
; this is the basic operator for taking one block off the top of another

(GOAL ontable(x))
(PRECOND (clear(x))
(STATIC on(x,y)))
(EFFECTS (DELETE on(x,y))
(ADD clear(y))

(ADD ontable(x)))

Huff and Lesser 2-7 April, 1987

Two examples of static preconditions are given in Figure 3. The examples use an extended
blocks-world example which includes blocks of two types: cubes and pyramids. No blocks can
be stacked on top of a pyramid, because its top isn't flat. In the first Figure 3 operator, we see
that the precondition requiring a flattop is a static precondition: the "flattop-ness" of a block is
predetermined for a given block, since we are not dealing with a domain in which there are
operators to turn cubes into pyramids, etc. In the second Figure 3 operator, we define the
action of unstacking blocks. The precondition requires that the two blocks to be unstacked are
presently stacked. If not, it doesn't make sense to stack them, since the operation unstack will
simply undo that action. Hence, the precondition on the unstack operator is static.

Note: static preconditions involving unchangeable aspects of the world must be used carefully.
They restrict the modularity of the operator library, in the sense that some operators are written
in ways which are dependent on knowledge of what the other operators in the library do or
don't do. They prevent the later, straightforward addition to the operator library of operators
which do make this aspect of the database changeable. In the first Figure 3 operator, we would
have to change the static precondition into a normal one if we decided to extend the world

modeling to include the reshaping of blocks (as in a Lego system, where blocks are
composable.)

Huff and Lesser 2-8 April, 1987

e

2.3 The Semantic Database

A state description mechanism, which we have called the semantic database, is central to any
style of state-based plans. In this section, we discuss how the semantic database can be
informally modeled, and how it may be formalized from this model. We also discuss the issue
of formalizing assumptions about the valid states represented in the semantic database.

2.3.1 Modeling the Semantic Database

We have found that the ER (entity-relationship) model of data [4] is a useful way to plan how

to model the domain world. The ER model is appealing during the process of writing plans
because it is highly intuitive, and it lends itself to an attractive graphical representation.

FIGURE 4: Blocks World

< ORIENT)

BAR CUBE PYRAMID

I1S-A I1S-A IS-A

T/F

CLEAR
ON-TABLE

ON ‘ T/F

IN

STRUCTURE

Huff and Lesser 29 April, 1987

FIGURE 5: Semantic Database Formalized

Predicates (Extensional) Predicates (Extensional, from ER
attributes)
on(block, block) type-struct(structure, {unknown,tower,
ontable(block) column ...})
in(structure,block) type-block(block, {cube, pyramid, bar})
clear(block) color(block, {red, green, blue})
top(structure,block) orient(bar, {horizontal, vertical})
base(structure,block) name(block,string)
Functions Predicates (Intensional)
in-struct(block) : structure : committed(b: block):

in-struct(x) = y IFF in(y,x) THEREEXISTS s |
top-of(structure): block in(s,b)

top-of(x) = y IFF top(x,y)
base-of(structure): block
base-of(x) = y IFF base(x,y)

Constraints

IF in(s1,b) AND in(s2,b) THEN equal(s1,s2)
; "in" is many to one
IF on(b1,b2) AND on (b1,b3) THEN equal(b2,b3)
IF on(b1,b2) AND on(b3,b2) THEN equal(b1,b3)
; "on" is one to one
IF equal(name(x),name(y)) THEN equal(x,y)
; block names must be unique
on-table(x) XOR THEREEXISTS y | on(x,y) ;law of gravity
NOT on(x,x) ; on is not reflexive
IF on(x,y) THEN (THEREEXISTS s | in(s,x) AND in(s,y))
; any stack of two or more blocks must be a structure
IF top(s,x) THEN clear(x) ; what it means to be on top
NOT committed(x) IFF (clear(x) AND ontable(x))
;what it means not to be in a structure
IF top(s,x) THEN in(s,x)
; the top of a structure must be in the structure
IF base(s,x) THEN in(s,x)
; the base of a structure must be in the structure
IF base(s,x) THEN ontable(x)
; the base of a structure must rest on the table.

Huff and Lesser 2-10 April, 1987

With ER, there are objects called entities, these entities have attributes, and the entities
participate in relationships. Attributes are typed; we expect to handle strings, booleans,
enumerations and numbers. As a further convenience in the ER schema, we allow the
distinguished transitive relationship is-a between two entity types (as opposed to entity
instances). This relationship is used to define a generalization hierarchy; it has the usual
meaning that the one entity inherits all attributes and relationships defined on the other.

In Figure 4 we give an ER schema of a simple, but interesting blocks-world; in Figure 5, the
predicate calculus formulation of this world is given (the translation from ER to predicate
calculus is discussed in the next section). This example has been chosen to give the flavor of
domain modeling which is appropriate for and possible with GPF plans. In this world, we
have three types of blocks: cubes and pyramids and bars; they are shown in Figure 6. The
blocks can be assembled into structures. (We will be limiting this world to vertical structures
with tops and bases, in order to keep the examples to a manageable size.)

Since we will use this extended blocks world for all our remaining plan examples, we give in
Figure 7 the primitive operations of this world. (A few operator features are used which have
yet to be introduced.) Each stacking or unstacking action must now take the structure into
account. This leads to two variations on stacking: start-struct (which introduces a new
structure) and extend-struct (which builds on an existing structure). To keep the example
simple, we assume that bars cannot be re-oriented (if they appear in the initial world in vertical
position, so they stay, and similarly for horizontal position.) Examples of the kinds of
structures which can be built using these primitive operations are given in Figure 8.

Figure 6: Extended Blocks World Blocks

Types of Blocks In the Domain

Cube Bars Pyramid

Huff and Lesser 2-11 April, 1987

FIGURE 7: Primitive Operators for Extended Blocks World

(OPERATOR start-struct IS-PRIMITIVE
; this is an operator for moving a single block on top of another, thereby starting a new
; structure.

(GOAL top(s,x) AND base(s,y) AND on(x,y))
(PRECOND (NOT committed(y) , NOT committed (x))
(STATIC not type-block(y, pyramid)))
(EFFECTS (NEW s structure) (ADD on(x,y))
(DELETE ontable(x)) (ADD top(s,x))
(ADD in(s,x)) (ADD base(s,y))
(ADD in(s,y)) (SET (type-struct s unknown)))

(OPERATOR extend-struct IS-PRIMITIVE
; this is an operator for moving a single block on top of another, as part of extending an
; existing structure. Structures cannot be extended if they have a pyramid at the top.

(GOAL top(s,x) AND on(x,y))
(PRECOND (NOT committed(x) , top(s,y))
(STATIC NOT type-block(y, pyramid)))
(EFFECTS (ADD on(x,y)) (DELETE ontable(x))
(ADD top(s,x)) (ADD in(s,x))
(DELETE top(s.y)) (SET (type-struct s unknown))))

(OPERATOR remove-from-struct IS-PRIMITIVE
; this is the basic operator for taking one block out of a structure. If there were only two
; blocks in the structure, we disband the structure.

(GOAL NOT committed(x))

(PRECOND (top(s,x))
(STATIC on(x,y)))

(EFFECTS (DELETE top(s,x)) (ADD clear(y))
(DELETE in(s,x)) (ADD ontable(x))

(ADD IF (OLD(NOT base(s,y))) THEN top(s,y))
(DELETE IF (OLD(base(s,y))) THEN in(s,y))
(DELETE IF (OLD(base(s,y))) THEN base(s,y)
(SET (type-struct s unknown))))

Huff and Lesser 2-12 April, 1987

Figure 8: Extended Blocks World Structures

Types of Vertical Structures To Build

Tower ¢ Others e

Tower

2.3.2 Formalizing the Semantic Database

2.3.2.1 Predicate Calculus Representation If we start with the ER model, then we
need to transform entities, relationships, and attributes into predicates and functions of the
predicate calculus in order to write the operator clauses as formulas. We make the obvious
translation between the ER model and predicate calculus, as follows:

* For each relationship, define a predicate of the same name with arguments of
number and type as in the relationship.

* For each attribute with a true/false value, define a (one-place) predicate of the
same name; its argument must be an entity of the appropriate entity type.

* For each attribute whose value is other than true/false, define a predicate of the
same name which takes as its arguments an entity of the appropriate entity type
and a literal representing the attribute value of interest.

* Define functions for certain relationships, taking one or more entities as
arguments and returning the entity which completes the relationship. (This must
be done only where the result is unique. Two such functions can be defined for
1-1 relationships; one such function can be defined for a many-1 relationship; no
functions can be defined for a many-many relationship.)

* Define further functions, if needed, to retrieve attribute values. If entity type E
has an attribute named A, then a function named, say, get-A can be defined with

Huff and Lesser 2-13 April, 1987

a single argument which is an entity of type E. The result of the function is the
value of attribute A for that entity.

« Define arbitrary predicates with n arguments to represent interesting formulas
with n variables composed from the foregoing (extensional) predicates and
functions, with qualifiers as needed. We call these predicates intensional,
because they are not directly recorded in the database; their truth/falsity can be

computed from the facts recorded in the semantic database.

« Predefined predicates are provided for basic relationships on attribute values
(strings, integers, and booleans): equal is overloaded for all attribute value
types. The usual substring, greater-than, less-than, etc. can also be used.
These predicates are also intensional.

The predicate calculus formulation of the blocks world was given in Figure 5.

2.3.2.2 Database Constraints Included in Figure 5 are a set of SDB constraints. These
constraints must hold for any state of the database. (We do not allow the testing of these
constraints in the course of an update transaction, during which time the constraints will
almost certainly be violated.) The constraints record all assumptions being made about how the
domain is being modeled. If a constraint fails to hold for some state of the database, then either
there has been an error of interpretation, or there is an error in the effects clause of some
operator. Additionally, when choices are being made between alternative interpretations, those
interpretations which lead to the violation of SDB constraints can immediately be rejected. For
example:

« The "law of gravity" constraint of Figure 5 states that for all blocks, either they
rest on the table or they are supported by another block, but not both. If the
operator start-struct had the error of omitting the (DELETE ontable(x)) from the
Effects, then such an error would be caught by testing the law of gravity
constraint on the state after a start-struct action.

« Suppose our domain included an entity type E with at least two different
attributes (A1 and A2), and we had separate plans which set these attributes.
Suppose we had a constraint FORALL x: greater-than(Al(x),A2(x)). During
recognition, we may see an action involving Al with a particular value VA, but
not know for certain which entity was involved. If A2(E1) is greater than VA,
then we can rule out E1 right now, thus using the constraint to reduce the
number of possible interpretations. But if A2(E1) is not set, El is a valid
possibility. Suppose we choose to guess El. Later, we see an action setting
A2, and suppose we know for certain that entity El is involved. Now suppose
that this leads to a state where, for E1, A2 is greater than A1l. We must have
made a mistake in guessing E1 on the action setting Al.

Huff and Lesser 2-14 April, 1987

7Y

An alternative use of the database constraints would be to achieve implied database updates.
For example, the law of gravity constraint could be interpreted to mean that any time we
delete/add on(x,y), we must add/delete ontable(x). This has the advantage of reducing the
number of separate effects which must be written in an operator. definition (which might
reasonably be assumed to reduce the possibility of the writer making errors in writing the
operators.) This is a legitimate issue. However there are other (more direct) ways of achieving
this goal, which are described in Section 3.3.1 under extensions. Therefore, we retain the
interpretation that database constraints are not to be violated, and if violated, indicate an error
(of interpretation or operator writing.)

One special use of constraints is to validate the initial state of the semantic database. In the
blocks-world of Figure 5, the initial state will contain no structures if and only if there are no
stacked blocks. In particular, the correct state description of an initial state where there are
four blocks arranged 1n two stacks will contain two structures. If an initial state description
fails to satisfy the SDB constraints, then there is no guarantee that the operators will work
correctly.

A final use of constraints involves their applicability to formal reasoning about operator
formulas. The constraint which establishes the equivalence of NOT committed(x) with
clear(x) AND ontable(x) could be used to match a precondition of the first form with an
operator whose goal has the second form. This application of database constraints is important
to maximizing use of the operators in an operator library. It is discussed further in Section
2.6.4.1 on computing which operators can be used to achieve subgoals and preconditions.

2.3.3 Relationship between SDB and Effects Clause

The effects clause of an operator specifies the state transition to be made when the operator is
completed. A state transition consists of individual operations which include creation of new
objects in the database, addition of new relationships (predicates), deletion of existing
relationships, and setting of attribute values. These database changes are denoted by NEW,
ADD, DELETE, and SET operations respectively. The collection of individual operations in
an effects clause defines a complete transaction on the database. As has been mentioned
previously, some of these operations may be conditional.

Huff and Lesser 2-15 April, 1987

23.3.1 NEW The NEW operation allows the representation of a state change which
includes the creation of new objects in the semantic database. A NEW operation takes as its
argument a (variable) name for the new object instance. An example of the NEW operation
appears as the first effect of start-struct in Figure 7. Note that the type of the object must be
specified in the NEW operation.

In very simple domains, the NEW operation is not needed. The textbook blocks world, with a
fixed number of block constants and with no explicit representation of the block structures,
does not require a facility to create new database objects. However, most complex domains do
need such a facility. Some domains are inherently constructive (software development for
one), so that the NEW operation is central to being able to model the domain.

It is sometimes necessary to have the NEW operation be conditional on the existence of objects
in the database; for example, the operator writer often wants to say "make a new database
object only when one meeting such-and-such a description does not already exist." So, as an
optional part of the NEW clause, attribute values and/or predicates can be given to serve as the
description of the desired object. If this additional information is given, then it is assumed that
an actual new object will be created only when no object already exists with exactly these
attribute values and for which the predicates are true; if such an object already exists, then it is
bound to the variable name. For example:

(NEW x type WITH (attr(x,val), rel(x,y))

will not result in a new object being created if there is an object x whose attribute artr has the
value val and for which rel(x,y) is true. If there is no x satisfying the WITH condition, then a
new object x will be created and two implicit database operations will be performed:

(SET attr x val)
(ADD rel(x,y))

NOTE: The omission of the converse operation, to delete objects in the database, means that
the database is not "garbage collected". Such an operation could easily be added to GPF.

2.3.3.2 ADD/DELETE The ADD and DELETE operations take as arguments an
(extensional) predicate or a conditional (extensional) predicate. (Limitation to extensional

Huff and Lesser , 2-16 April, 1987

predicates is necessary because those are the ones explicitly recorded in the database -- the
intensional predicates are computed from the extensional ones » and thus can be used for
querying but not updating the database). Thus, their form is:

ADD/DELETE <extensional predicate>

or ADD/DELETE IF <cond> THEN <extensional predicate>
ELSE <extensional predicate>

If the condition evaluates to true, then the relationship of the THEN part is added to or deleted
from the database; otherwise, the relationship of the ELSE part is added or deleted. (The else
clause is optional.)

ADD and DELETE are used in the all the plans of Figure 7.

The use of ADD and DELETE follows the terminology of the earliest planning work, and
evokes the "frame problem". We take DELETE P(x,y) to be equivalent to ADD NOT p(x,y).
Further, we assume that it is not an error to ADD a predicate which is already true in the
database, nor to DELETE a predicate which is already false in the database. The actual
implementation of the semantic database can use either the closed or open world assumptions;
this implementation issue is not constrained by the plan formalism.,

2.3.3.3 SET The SET operation has the form:
SET <attr spec>
or SET IF <cond> THEN <attr spec> ELSE <attr spec>

The attribute specification is a triple, consisting of the attribute name, an object (of a type with
that attribute), and an attribute value. The database change is to set the given attribute of the
given object instance to the given value. A set operation is actually a shorthand notation for
two operations: one to delete the existing value of that attribute for that object, and one to add
the specified value as that attribute for that object. This notation insures that attributes are
single-valued. By providing the special SET syntax for manipulating attribute values, we are
also insuring that the attribute be set to a specific value, rather than being constrained to a range

Huff and Lesser 2-17 April, 1987

of possible values. (Relaxation of this restriction is discussed in the Section 3.3.2.) An
example of an unconditional SET operation appears in all the plans in Figure 7.

2.3.3.4 OLD Because the effects clause deals with a state transition involving a start state
and an end state (as opposed to dealing with a new state only), there is a need to refer to
attribute values and predicates in the old state or to objects identified by relationships in the old
state. Otherwise, for example, it is impossible to phrase a database operation which adds a
fixed value to the existing value of a numeric attribute. To accommodate this, we provide a
distinguished function OLD, which takes as its argument a database predicate or a database
function returning an attribute value or an object instance.

The <cond> construct used in the ADD/DELETE and SET database operations can be
conditional on the prior state, but not on the final state. (That is because the purpose of the
effects clause is to define a computation of a new state from an existing state). Therefore, this
construct must take the form OLD(<formula>). We require the OLD to be explicit (see the
Observe clause discussed in Section 2.6.2.2 for an alternative use of the conditional in
Effects.)

The remove-from-struct operator of Figure 7 has some conditional effects using the OLD
construct. There can be two different outcomes of the remove-from-struct operator: that the
structure simply has one fewer block, leaving a different block at the top, or that the structure is
disbanded, and has no blocks in it at all. Thus, the effects clause takes into account whether or
not, in the prior state, the block y (which is under block x) is or is not the base of the structure.

2.3.3.5 Semantics The semantics of the effects clause is defined by the following
operational model. Before any part of the effects transaction takes place on the database, each
instance of OLD is located, its argument is evaluated (in the context of the current database
state) and the entire OLD construct is replaced by the value returned (which could be a database
object, an attribute value, or a true/false value). Then the NEW operations are performed as
follows: first, all WITH specifications are evaluated in the current database state; then all new
objects (for which the corresponding WITH failed to evaluate to true) are created . Then, all
other operations (including any implied ADDs, DELETES, or SETs from the NEW operation)
are performed in any order according to the condition given for each operation. That completes
the transaction.

Huff and Lesser 2-18 April, 1987

With this interpretation, some care must be taken in using OLD in a complex operator. The
OLD will be evaluated in a state in which all the (final) subgoals are true, not, for example, in
the state in which the precondition was true. However this is the right interpretation of OLD
for complex plans. For example, it is possible to write correct plans to keep an accurate count
of the number of each different type of structure in the world, even when two or more
structures of the same type are being built concurrently. Those problems which do arise can be
avoided by writing multiple operators with different (static) preconditions, obviating the need
for effects conditional on prior states of the database.

Huff and Lesser 2-19 ~ April, 1987

2.4 Decomposition Clause

Complex operators are decomposed into subgoals, such that if each subgoal is achieved, then
the goal of the complex operator can be achieved (via the addition in the SDB of the effects, if
any, of the complex operator). Thus, complex operators are not defined in terms of other
operators, but indirectly through states of the database to be achieved by other operators. This
makes for a modular operator library -- new operators can be added without having to change
existing operators to mention the new operator names.

To make an interesting blocks-world example, let us define a tower to be a stack of blocks
three units high where the top block is a pyramid; we exclude the use of horizontal bars in the
tower to ensure its columnar shape. One operator for building a tower is a complex operator
with a decomposition clause, constructing a tower from two cubes and a pyramid. This
operator has two subgoals, one defining the state where the foundation (a two cube stack) is in
place and the other defining the state where the pyramid is on top of the foundation. This
operator is given in Figure 9 (it does use some operator features which we have not yet
discussed.) An alternative operator with the same goal is also given there; the alternative
operator builds a tower from a vertical bar (2 units high) and a pyramid (adding the third unit of
height). Alt-make-tower has a subgoal decomposition with a single subgoal.

When trying to achieve a complex goal, any of the subgoals which are already true need not be
re-achieved. This interpretation of the meaning of the subgoals makes the operators applicable
in more circumstances (i.e., larger families of world states). It saves the writer from having to
write additional operators which are minor variations of other operators providing for minor
variations in the circumstances in which they will be applied.

We treat preconditions as attributes of operators, not of goals or subgoals. So, if there are two
operators which achieve the same goal, they need not have the same preconditions. Therefore,
no information on subgoal ordering is given in an operator. Subgoals must always be achieved
in the order dictated by the preconditions of the operators which are chosen to achieve them.
On the principle that a plan formalism should not require duplicate information from the writer
(thereby avoiding the need both to check for and to resolve inconsistencies), subgoal orderings
are not allowed even when all operators for achieving a subgoal have the same preconditions.
Orderings are always computed from the relevant preconditions.

Huff and Lesser 2-20 April, 1987

FIGURE 9: Operators for Building Towers

(OPERATOR make-tower IS-COMPLEX
;we make tower from two cubes and a pyramid.

(GOAL

(PRECOND

(DECOMP

(CONSTRAINTS

(EFFECTS

tower(s))
(TRUE))

(FINAL SUBGOAL build-foundation
(in(s,x) AND base(s,y) AND on(x,y))

(FINAL SUBGOAL add-pyramid
(in (s,z) AND on(z,x))

(type-block(y,cube)) ; base-is-cube
(type-block(x,cube)) ; middle-is-cube
(type-block(z,pyramid)) ; pyramid-at-top

(SET (type-struct s tower))))

(OPERATOR alt-make-tower IS-COMPLEX
; we make a stack with a vertical bar and a pyramid -- an alternative type
; of tower also 3 units high.

(GOAL
(PRECOND
(DECOMP

(CONSTRAINTS

(EFFECTS

Huff and Lesser

tower(s))
(TRUE))

(SUBGOAL build-it
(in(s,x) AND base(s,y) AND on(x,y))

(type-block(y,bar)) ; base-is-bar
(orient(y,vert)); bar-is-vertical
(type-block(x,pyramid)) ; pyramid-at-top

(SET (type-struct s tower))))

2-21

April, 1987

2.4.1 GPF Plan Nets

The standard way to represent hierarchies of plans is through a hierarchical plan network [11].
At each level in a GPF network, there are nodes representing states of the world, tied together
in some temporal order (typically a partial order rather than a true linear sequence). Each state
is defined by a condition formula: if the condition is true, then the state holds (is achieved.)
The states are to be achieved in a sequence dictated by these orderings. If state A has an arrow
to state B, then state B must be achieved after state A; when a state has several predecessors, its
achievement must take place after all the predecessor states have been achieved. (See also
Section 2.6.3 which discusses the durations over which states must be preserved.)

At the highest level in the plan net is a single state representing the goal to be (or being)
achieved by this plan net. Top-down expansion from one level to the next is made by selecting
an operator to achieve each state appearing at the higher level. The first node of the expansion
inherits the predecessors of the higher-level node, and the last node of the expansion inherits
the successors of the higher-level node. Certain states, representing effects of operators, are
terminal and not subject to further expansion. Other states, whose conditions are already true,
also do not need to be expanded (established terminology denotes these as phantom nodes; see
also Section 2.6.3 on protection intervals.) Nodes which are not expanded are simply copied
from one level down to the next level.

Figure 10 shows the two cases of network node expansion from a higher level to a lower level:
via a complex operator and via a primitive operator. In the case of expansion via a complex
operator, the expansion includes an operator-head node, followed by multiple nodes in parallel
representing the separable parts of the precondition, followed by a precondition-true node,
followed by all subgoals in parallel, followed by a operator-end node representing the effects
of the operator. (Operator-head and precondition-true nodes act like SPLIT and JOIN nodes
[see 11]; their condition formulas are TRUE). In the case of expansion via a primitive
operator, the expansion includes an operator-head node, followed by multiple nodes in parallel
representing the separable parts of the precondition, followed by a precondition-true node,
followed by an operator-end node representing the effects of the operator. In either case, if the
precondition is not divided into multiple parts, the nodes preceding the precondition-true node
can be omitted and the precondition formula attached to the precondition-true node in lieu of the
formula TRUE.

Huff and Lesser 2-22 April, 1987

Figure 10:

N srate Expanding a GPF Plan Network

/\

ope;?tor Node Expansion by

Complex Operator

Precond
1of X

Precond
20of X

Precond |
Mof X

STATE
Operator
X

Precond
Tof X

Node Expansion by
Primitive Operator

' :’,:‘l:'rua Precond
e 20f X

Huff and Lesser : - 2-23 April, 1987

One side-effect of the lack of subgoal ordering in complex operators is that the ordering
between the states of the world as seen at any given level in the procedural net may be more
permissive than is strictly correct; the orderings that are given are correct, but some orderings
may be missing. (These missing orderings are in addition to the missing orderings which result
from not yet having considered operator interactions; generating these additional orderings
requires further expansion of the plan net.) This permissiveness will be removed at the next
lower le