Meta-plans That Dynamically Transform Plans

Karen E. Huff and Victor R. Lesser

COINS Technical Report 87-10
November 1987

Computer and Information Science Department
University of Massachusetts
Amherst, MA. 01003

ABSTRACT: We present a general approach to augmenting the representational
power of hierarchical plan formalisms. In complex domains, this additional
power is needed to capture knowledge dealing with such issues as special cases of
operators and strategies for recovering when operators fail. We describe
limitations inherent in operator definitions and show that they can be overcome by
expressing domain knowledge as transformations on plans. These trans-
formations reformulate a (partially developed) plan, tailoring it rather than
contributing directly to its completion. Since transformations are operations on a
world state representing the plan network, they can be formalized as meta-
operators and synthesized into meta-plans. The advantage of this approach is
expressive completeness as compared to introducing special-case constructs into
the operator definition language.

10 Introduction

Planning and plan recognition systems derive their power from having general-purpose
algorithms that bring domain-specific knowledge to bear; their power is directly related to
the extent of the domain knowledge that can be supplied. A limiting factor on providing
this knowledge is the representational adequacy of formalisms for defining domain
operators. Particularly in the case of complex domains, there are problems in capturing
relevant domain knowledge such as how to recover when an operator fails or when to use
special case operators. The challenge is to provide this knowledge in a way that is tractable
both to the planning algorithms and to the author of the domain operators.

We encountered these issues as part of designing and developing an intelligent assistant,
named GRAPPLE, based on a plan recognition and planning paradigm [1,2,3,5,6].
GRAPPLE provides passive assistance by monitoring user actions, performing plan
recognition to detect and correct errors in the user's plan; it provides active assistance by
cooperative generation of plans to meet user-stated goals. The test domain for GRAPPLE
is software development [8], specifically programming performed in a traditional language
such as C. A partial library of (simplified) operators for this domain is sketched in Figure
1. These operators have the usual clauses stating goals, preconditions, effects (generally, a
superset of the goals), and constraints. Primitive operators correspond to the atomic
actions in the domain; complex operators have subgoals that decompose the operator into
simpler steps.

1.1 Limits on Representational Power

Hierarchical plan systems, based on NOAH [12] and NONLIN [14], are particularly
appropriate for handling the operator libraries of complex domains. The use of non-
primitive operators allows activities to be defined at multiple levels of abstraction, with
more or less detail as appropriate; this provides an orderly approach to covering all domain
activities. The modularity of operator libraries facilitates several aspects of working with
large numbers of operators. Following the principles of information-hiding[11], certain

-1-

OPERATOR bulld A OPERATOR reloase

GOAL: status(?system,buiit)) GOAL: status(?system,released)

PRECOND: true g PRECOND: Status(?system,bulit)

SUBGOALS: created(?system,?baseline) i CONSTR: current-rolease{?¢c)
status(?system,compllied) EFFECTS: SET status(?systoem,released)
status(?system,linked) DELETE curront-roelease(?c)
status(?system,tested) N SET current-release(?systom)

EFFECTS: SET status(?system,bulit) SET customer-reloase(?system)

OPERATOR link
GOAL: status(?system,linked)
PRECOND: status(?system,compliled)
EFFECTS: NEW load-module ?Im

SET status(?system,linked)
ADD Im-for{?system,?Im)
SET time(?systom,?time)

OPERATOR test

GOAL: status(?system,tosted)

PRECOND: true

SUBGOALS: unit-tests{?system,ready)
unit-tests(?system,run)
SET status(?system,tested)

EFFECTS:

Figure 1: Relatlonships
A Partial Library of Builld satisfles precondition of Release
Simplified Software Link satisfles subgoal of Build
Process Operators Test satisties subgoal of Build

details can be encapsulated in one or a few operators; later, if those details must change, the
effects are local, not global. Great flexibility is obtained if the decomposition of operators is
always stated in terms of states to be achieved, not directly in terms of the operators that
achieve those states; the operators of Figure 1 follow this style. The advantage is that when
a new operator, satisfying a state required in other operators, is added to the library, the
existing operators do not have to be modified to mention the new operator. This capitalizes
on the fact that operators are potentially applicable in any context where their goals match
the preconditions or subgoals of other operators. In general, operators can be written
without knowledge of the other operators — either those operators that achieve the same or
similar states, or those operators that require particular states in their decomposition.

In complex domains, cases arise where appropriate expressive power is lacking in the
operator formalism; attempts to describe certain operators accurately can jeopardize the
library modularity, or fail outright. We discuss several such problems, using examples of
special cases of operators and failure recovery strategies taken from the software

development domain, in the remainder of this section.

2-

Adding special case operators to a library may require that preconditions or subgoals of
existing operators be rewritten. For example, when testing a system that is intended to fix
certain bugs, the programmer should run the official testcases associated with those bugs,
in addition to those testcases that would otherwise be selected. One solution (that keeps
testing considerations local to the set of testing operators) is to write a separate operator
covering all testing needed when bugs are bein g fixed; its precondition restricts its
applicability to systems intended to fix bugs. Now there are two operators for testing that
are intended to be mutually exclusive. Therefore, the normal operator for testing must
specify in its precondition that it is not applicable to cases where bugs are being fixed'.

To accommodate other types of special cases, existing operators may have to be rewritten
in artificial ways. Consider testing a system that is about to be released to a customer; such
testing should include running the testcases in the regression test suite? (again, in additional
to normally selected testcases). The precondition for this special operator concerns the
existence of a goal to release the system; while the goal formula is expressible using
domain predicates, the fact that a goal with this formula is currently instantiated is not
expressible in domain terms. The only recourse is to write separate operators with
artificially different goals. Then, operators (like build) that have testing subgoals will be
affected, defeating the aim of encapsulating testing considerations within the testing
operators. Thus, the desigher of the operators must produce not only a normal test
operator and a test-for-release operator, but also a normal build operator and a build-for-
release operator, to ensure that the right type of testing is performed in all cases.

Expressing special cases with this brute force approach, already attended with
disadvantages, breaks down entirely when multiple special cases affect a single operator;
the combinatorics are intolerable from the designer's perspective. Special cases are not

1 One could institute a fixed preference strategy to select the operator with the most specific
precondition that can be satisfied. However, in general this is overly restrictive — it would
prevent a car buyer from financing his purchase by selling stock to raise funds because
taking out a car loan is the most narrowly applicable operator.

2 In software engineering, regression testing is performed to ensure that bugs have not
been introduced into functions that were previously shown to work correctly.

3.

guaranteed to be simply additive with respect to the normal case. At worst, separate
operators must be provided for all combinations of special factors.

In dealing with recovery from operator failure, there are problems both in connecting the
right recovery operator with a failure situation, and in simply expressing the recovery
strategy itself. Sometimes special operators are used for failure recovery, and only for
failure recovery; for example, one of the actions for dealing with a compilation failure due
to bugs in the compiler is to report the compiler bug. Report-tool-bug can be written as an
operator, but how will such an operator get instantiated? Missing are the constructs
indicating what goals (and therefore what operators) should be instantiated when a failure
occurs. At other times, the recovery strategy may involve executing some normal operator
in a special way. If the build operator fails because the system being built is faulty (as
would be the case if the linker detected programming errors), then one recovery strategy is
to restart the build process using the faulty system as the baseline from which to edit.
Expressing such a strategy requires access to the variable bindings of operator instances;
again, this is beyond the scope of domain predicates.

1.2 Extending Representational Power

These problems have previously been tackled separately on a case-by-case basis,
introducing special operator-language constructs covering selected cases and providing
domain-independent strategies that can be tailored in fixed ways. McDermott's policies
[10] represent one approach to the issue of matching special case operators to the
appropriate ckrcumstances. These policies derive their power from the fact that the NASL
language allowed the writer to use plan-oriented constructs, such as <policy> IMPLIES
(TO-DO <task> <operator>) or <policy> IMPLIES (RULE-OUT <operator>), in addition
to domain-oriented constructs. Recovery from failure of operators is addressed in SIPE
[16]. There, a special error recovery language is defined; domain-independent strategies,
such as reactivating a goal (RETRY in SIPE terms), are parameterized to allow deployment
in operator-specific ways.

In this paper we describe a single formalism that extends the representational power of
hierarchical planning paradigms. Our approach is based on abandoning the notion of
predefining all operators; instead, we define transformations to be applied to instances of
operators within a plan to create variations in response to special circumstances.
Transformations are operations on some world state; in this case, the world state is the plan
network. Therefore such transformations can be formalized as meta-operators and
synthesized into meta-plans. This approach has the desired generality; it also adds to the
role of meta-plans, which have been previously use to implement control strategies [13)
and to capture domain-independent knowledge [15].

The primary advantage of this method is expressive generality, as compared with a
collection of ad hoc operator language extensions. Any aspect of an operator definition
(such as preconditions, subgoals, constraints, or effects), as well as any aspect of an
operator instance (such as bindings of variables or ancestor operator instances) can be
accessed or modified. The transformational approach also addresses some practical
problems associated with developing and maintaining a complete library of operators.
Because knowledge of exceptions is partitioned from knowledge of normal cases, the two
issues can be tackled separately. The process of writing operators is further improved
because multiple transformations can apply to a single operator, thereby preventing
combinatorial explosion in numbers of operators.

In the remainder of the paper, we introduce the transformational approach with some
specific examples from the software development domain. Then, we discuss how the
transformations are formalized and expressed as meta-operators; both the state description
and required operator constructs are covered. Finally, we present status and conclusions.

2.1 Plans As Networks

The basic data structure of a planner or plan recognizer is a hierarchical plan network as
first developed in NOAH[12]. An example of such a network (using some of the plans of

Figure 1) is given in Figure 2. There, a vertical slice through a network covering three
hierarchical levels is shown, with the highest level at the top of the figure. Downward

arrows between levels connect desired states with operators chosen to achieve them. Such

System
Released

System
Croated

System

Complled

System
Linked

System
Tosted

System Unit-
Tests Ready)

System Unit-
Tests Run

System
Tested

FIGURE 2: Example Hierarchical Plan Network

An operator with
the name A.

Formula

A state Internal to
an operator (either
a precondition,
subgoal, or effect
of the operator)
defined by the
given formula.

4

A link betwaen a
state at one level
and an operator

at a lower lavel,
where the goal of
the cperator
achloves the state.

Temporal constraint [
between two

states, indicating
that state C must
follow state B.

instantiated operators consist of additional states describing the internals of the operator:
preconditions, subgoals, and effects. Arrows within levels show how the achievement of
certain states is partially ordered with respect to time (some orderings are specified by the
operator definitions and other orderings are imposed to resolve interactions). Orderings are
propagated from level to level, but have been omitted to simplify the figure.

Both planning and plan recognition involve building a complete plan network. This is done
by actions such as choosing operators to achieve states, instantiating these operators, and
resolving conflicts between newly revealed states and existing states. Each such action can
be thought of as taking the plan network one step closer to completeness. In contrast, a
transformation will reformulate the current state of the network, with the effect of changing
the solution set that will be pursued to complete the network. Such a reformulation is
necessary either because the existing state of the network does not accurately reflect special
circumstances or because other actions have reached a dead end (for example, a plan failure
has occurred). Reformulating the network represents a permanently- instantiated objective
of the planner/recognizer. Thus, the execution of (top-level) transformations will be data-
driven: they will be applied whenever the current state of the network indicates an
opportunity to do so.

2.2 Example: A Special Case

Software development is an example of a domain where a large part of the knowledge
about how actions are carried out is concerned with special cases. Consider a
transformation that implements the requirement to do regression testing before a release.
When expressed precisely, the transformation affects an instance of test occurring as part of
the expansion of release. To be entirely safe, one additional restriction should be given: that
the system being tested is the same as the system being released. This will allow other
testing instances to occur in the same expansion (such as running a testcase to help decide
what editing changes are needed), while ensuring that regression testing is required on the
right one. Expressing this condition requires access to the dynamic correspondence
between the variable names used in the two operators. The BEFORE case of Figure 3

shows one situation in which this transformation is applicable.

-

. R L S
FIGURE 3: Implementing Regression Testing Before Reloase

ORI o00sS R

Release Roloase

System System Systom | System
Built Roleased Bullt Released

V4 y 4

Same Same
Systom System

System
Tosted

/ /

System Unit- System Unit-
Tests Ready 3 Tests Ready

System
Toested

System Unit- System

System Unit- Tests Run
Tests Run Tosted

System
Regression
Tests Run

Additional Nowly added
constralnt subgoal.

Assuming the test operator of Figure 1, the effect of the transformation is to add an
additional subgoal to run the regression test cases. The formula defining the new subgoal
is supplied explicitly in the transformation -- it need not have appeared previously in the
plan network. Only the one operator instance is modified; the basic operator definition for
test is unchanged. The results of applying this transformation are shown as the AFTER
case in Figure 3.

2.3 Example: Failure Recovery

Software development is also a domain where there are many causes of failure, including
system problems, tool problems and programmer error. In particular, given that much

work is carried out on a trial-and-error basis, failures due to programmer error are to be

-8-

expected frequently. Consider the case of the link operator failing to produce a load
module because errors made by the programmer were detected. In fact, decisions about
recovery from this failure are not made at the local level of the link operator; a link operator
failure implies that the parent operator has failed, and the appropriate recovery strategy is
dictated by what that parent operator is.

The parent operator will usually be the build operator. If the build operator has failed and
the system that was built is faulty, one recovery scenario is to go through the whole build
process again; but, instead of starting from the same baseline used in the original build
instance, this new build instance will start with the faulty system as the baseline. That is,
the new build instantiation will use as the binding of its baseline variable the binding of the
system variable from the failed build instantiation.

These strategies can be expressed in two separate transformations. The first transformation
applies to instances of /ink that have failed; its effect is simply to mark the parent operator
instance as failed. The second transformation applies to instances of build that have failed,
its effect is to create a new instantiation of the build operator, and to fix the binding of the
baseline variable in that instantiation to be equal to the binding of the system variable from
the "superseded” instantiation of build. This is shown in Figure 4.

2.4 Other Examples

The software development domain is particularly rich in examples that demonstrate the
generality of the transformational approach. Some additional generic uses of
transformations, beyond representing special cases and straightforward failure recovery
strategies, are these:

* Transformations can be used to maintain desirable domain states in a flexible
manner (McDermott used policies this way[10]). That is, whenever an
undesirable state obtains, a goal can be posted to reestablish the desired state.
This is more forgiving than preventing the undesired state absolutely. Asan
example, programmers generally follow a set of rules about how files are
allocated to directories. However, in the heat of activity, a file may be created

9.

Figure 4: Recovery From Failure of Link and Build

Original,

Bindings: Multilevel
System=S1 Expansion
Baseline=B1 of Build

Bindings:
Falled Baseline=S1
STATE System=?
. S1 faulty

in the "wrong" directory. A transformation could trigger on this and
instantiate a goal to move the file to the proper directory.

One method of handling an adverse interaction between operators for
achieving parallel goals is to place temporal constraints on the order in which
the operators are executed. This method has the advantage of being domain-
independent, but there may be domain-dependent techniques as well. These
can be captured in transformations whose preconditions are that adverse
interactions between two planned actions have been detected. In the software
domain, the operator that copies the contents of one file into another can be
inserted into a plan to correct some types of interactions. However, some
explicit clue, such as a transformation, is needed to ensure that copy is
considered for handling interactions.

Transformations can be used to apply shortcuts in just those situations where
the shortcut is safe. A shortcut amounts to substituting one goal which is
"easier" to achieve for another which is "harder"” to achieve. The safety of the
shortcut may involve the context in which the goal is instantiated, so the meta-
level constructs of the transformation are doubly necessary. In the software
domain, if editing a source module consists of cosmetic changes only, then an
alternative to recompilation is simply to acquire (and place in the appropriate

-10-

directory) the object module of the previous version (assuming no include
modules were also changed). However, it is bad practice to do this on a
release to a customer. Only by expressing this in a transformation can we
ensure that good practice is followed.

In some cases when operators fail, the recovery strategy may involve
rephrasing the goal in order to proceed with the overall plan. In these cases, a
failure indicates that the goal itself (in all its detail) cannot be accomplished;
but there may be a related goal that will suffice. A transformation, whose
precondition is that an operator failed to achieve its goal and whose effects are
to substitute a different goal for the original goal, can express this strategy. A
software example arises if the compiler blows up when directed to compile at
its highest optimization level. A well-established strategy is to try again with
optimization turned off. If this results in a successful compilation, the
programmer will settle for a load module which is only partially optimized.

Transformations can apply to a specific operator (such as the test operator
examples given earlier), or to any operator having a particular characteristic,
such as a specific goal or subgoal formula. They can also apply to arbitrary
characteristics of operator definitions, such as any operator having a particular
type of parameter or parameter binding. In a multi-user system, when the
number of users logged-in is below a certain threshold, then commands will
be submitted for foreground execution rather than to a background queue.
Suppose all operators representing CPU-intensive commands are written with
an explicit parameter set for background execution. Then, one
transformation, applying to any operator utilizing the background queue, can
handle foreground/background selection. This transformation saves the
author of operators from writing an additional version of each CPU-intensive

operator.

The examples of transformations given so far are relatively simple, most often
requiring one operation on the plan net. However, transformations can be
arbitrarily complex. In the software domain, recovering from failed operators
includes deleting extraneous files. One transformation could identify certain
files created by operators in the expansion of a failed operator and instantiate
goals to delete them. This transformation applies one change (instantiate a
goal with specific variable bindings) many times (for each selected file).

Another complex transformation in the software domain applies to the
conservative editing style of frequently saving a snapshot of the file being
edited; here the intermediate snapshots must eventually be deleted. This is a
complex transformation involving two separate (but related) changes in the
plan net: one change instantiates goals to save snapshots, and the other
change instantiates goals to delete all but the desired version.

-11-

« A final use of transformations is to allow sharing of a generic operator library
among several applications, where each application has special requirements.
In the software domain, several projects can share a generic operator library,
if each expresses project-specific policies as rransformations. Then, one
project can require that a particular analysis tool be run before a customer
release, without affecting whether other projects use the same tool in the same
way.

Because transformations are operations on the plan network, they can be formally
represented as meta-plans, synthesized from meta-operators. Meta-plans are not a new
idea. Procedurally-implemented meta-plans were introduced by Stefik[13] to pursue
control issues in planning. Declarative meta-plans were defined by Wilensky[15] in order
to share knowledge between a planner and a plan recognizer. Neither of these meta-plan
systems was used to modify operator instances by adding new subgoals, changing
constraints and so forth. Meta-plans that could modify steps or change parameter bindings
were defined for a natural language dialog understanding system[9]. In these meta-plans,
the modifications were meta-plan parameters which were bound from information in the

utterances.

3.1 The Meta-level State Schema

The meta-level state schema covers most of the internal data structures used in planning.
The entity-relationship (ER) model of data [4] provides a useful way to visualize such a
complex state schema. In the ER model, there are entities which have attributes and
participate in relationships with other entities. There is a straightforward translation
between the ER model and predicate calculus, whereby relationships and attributes
correspond to predicates. Semantic constraints can be expressed as axioms in predicate
calculus. Other axioms can be used to define additional predicates and to define appropriate
functions.

-12-

The ER diagram of the meta-level state schema is given in Figure 5. The objects and
relationships shown are representative, not exhaustive. The schema describes operators as
they are defined in the GRAPPLE formalism, and addresses the requirements of plan
recognition (the context in which we are currently implementing the meta-plans).

The state schema for the meta-plans contains objects and predicates organized into three
subspaces: operator library, plan network, and the domain state. The operator library
subspace describes all components (preconditions, effects, etc.) of all operators, and their
formulas and (static) variable names. The plan network subspace describes the hierarchy
of operator instances: their dynamic status (started, completed, failed...), their internal

S

ure S: Meta-Lovel State Schema

SRR R LN Nl N A i O e L R T e e

oo, [|| B e S

Operat I 1 Operator
or nstence-o s
Goal
[_ Goal :
Gosl=¥{ Clause NaSescope @
»{ Effoct O Ettect Part-of Dynamic
Effect Entry Achlever Namescope
c 44— Con-
on-
Constraint streint
~— straint — P
strain Entry State Instance
i Pro-
condition Pre-
condition
Subgoal Entry
@ i Subgoal Instance
g Iter Entry - -of Crntlnd.by
; Mamee | M Source-of
Spec Domatn
ts-a ls-a Objoct \
Possible- A
b ——— Achlever ——| < o .@
c- Assoc- Tomplate ‘@
State - Pl
-
Variable
Correspondence

-13- .

states and status (pending, achieved, protected...). Also associated with operator instances
are the dynamic name scopes and variable binding information needed to evaluate operator
formulas. The domain state represents the truth value of all domain predicates. Additional
predicates cross subspace boundaries, relating operator instances back to their definitions,

and operator instances to the domain predicates they affected.

The state schema is designed so that it represents a single choice from among the competing
interpretations of a series of actions. Thus, if an operator can achieve the subgoals of two
other operators, this will be represented using two states, each in a separate context.
During recognition, there will usually be multiple contexts that are active; an important
component of the recognizer comprises strategies for focusing among these alternatives, as
well as for selecting the operations applied to an alternative. Thus we make the same
distinction as in [13] between operations in planning space and the control strategies by
which those operations are selected. The transformational meta-operators add to the
number of operators subject to control decisions.

3.2 Meta-operator Constructs

Because the transformations are complex, expressing them as operators requires a language
engineered for "real-world" use. Clearly, effects of operators must be able to create new
objects (for exémple, a new subgoal instance). Some transformations (such as the one to
delete extraneous files) require a facility for iterating subgoals: that is, for repeatedly
achieving a subgoal formula over a set of bindings. Conveniently, all the needed facilities
were already available in the formalism we designed to handle the complex domains
anticipated for GRAPPLE [7]. No new facilities (except a keyword to distinguish between

operators and meta-operators) were needed.

The transformation for regression testing before release is shown as a meta-operator
(expressed in GRAPPLE notation) in Figure 6. This will be a top-level operator assuming
that its goal does not match the precondition or subgoal of other meta-operators; therefore,
it will be executed when its precondition becomes true. That will happen when there is an

instance of fest whose ancestor is an instance of release AND when the system variables of

-14-

Figure 6: Meta-operator for Regression Testing
(METAOPERATOR regressions-before-release

(GOAL applied-to(regressions-before-release, ?test-op))

(PRECOND (STATIC Instance-of(?test-op,test) AND
ancestor(?test-op,?rel-op) AND
instance-of(?rel-op,release) AND
same-dynamic-name(system,?rel-op,

system,?test-op)) AND
NOT appllied-to(regressions-before-release,
test-op)))

(EFFECTS (NEW state-Instance ?regressions)

(NEW subgoal-entry ?regr-subgoal)

(NEW Hteration-spec ?iterate-info)

(ADD part-of(?regresslons, ?test-op))

(ADD Instance-of(?regressions, ?regr-subgoal))

(ADD iterator(?regr-subgoal, ?iterate-info))

(ADD source(?regressions, metaplan))

(ADD role(?regresslons, subgoal))

(ADD protection(?regressions, not-protected))

(ADD satisfaction(?regressions, unknown))

(ADD formula(?regr-subgoal,
testod-on(?system, ?regr-case)))

(ADD formula(?iterate-info,
In-regression-suite{?regr-case)))

(ADD applled-to(regresslons-bofore-telpase,

est-op))))

both operators correspond (e.g., are mapped to the same dynamic name). The precondition
carries the keyword STATIC, meaning that no explicit attempt should be made to render it
true. A state in which the transformation precondition is true is diagrammed in Figure 7.

-15-

Figure 7: Example Meta-level State Satisfying
Precondition of Transformation

release:
operator instance-of 2rel-op: | s
op-instance \
name-""] \
map :
@ namescope parent :
bindings / :
dns-i: anonymous: am:estor
dyn-name-scope op-instance :
\
namescope parent :
\
name- _, \
map ?test-op: “\\:
test: op-instance [
operator instance-of
NOT

—KEY ' applied-to

Entity Attribute

regressions-

: before-
~wxxwxxw Intensional relationship release:
Extensional relationship meta-op

Performing the transformation is simply a matter of realizing the effects of the meta-

operator in this case, because there are no subgoals to be achieved. These effects are all

directed at creating a new state instance as part of the fest operator instance. The new state
instance has a supporting subgoal entry that defines the state formula and, since it is an

iterated subgoal, the iteration formula. Note that the meta-operator contains these formulas

explicitly; they consist of domain predicates and variable names in the static name scope of
the zest operator definition. After the transformation has been executed, the precondition

will no longer be true for this instance of zest; thus, this transformation is not meant to be

applied more than once to the same situation. The state shown in Figure 7 becomes the

state diagrammed in Figure 8 after the transformation is applied; changes are highlighted.

-16-

Figure 8: Meta-level State after Transformation

release:
\ operator instance-of ?ro:-op: SCCY
o ° -
amo. e p-instance \
ma N
P \
namescope parent :
bindings / \
\
dns-i: anonymous: 2
dyn-name-scope op-inystanco ansastor
\
:
namescope parent :
name- N
map ?test-op: :
test: op-instance [FN™M™
' instance-of
operator

tested-on
?system,?regr-case

source:
metaplan

?regressions:
state-instance

role:
subgoal

?regr-subgoal
subgoal-entry

satisfact:
unknown

protect:
none

iterator 3

in-regression-suit

applied-to
(?regr-case) 14

?iterate-info: regressions-

iteration-spec before-
reloase:
meta-op

The transformation exporting the failure of the link operator to its parent operator is shown
in Figure 9, to show how a goal for failure recovery is expressed.

-17-

Figure 9: Meta-operator for Link Failure
(METAOPERATOR propagate-link-fallure
(GOAL status(?link-op,fallure-processed))

(PRECOND (STATIC status(?link-op, falled) AND
Instance-of(?link-op,link) AND
query(?link-op, faulty(?system))))

(CONSTRAINTS (parent(?link-op,?parent-op))

(EFFECTS (DELETE status(?parent-op,in-progress))
(DELETE status (?link-op,falled))
(ADD status(?parent-op,falted))
(ADD status(?link-op,fallure-processed)))

(50—

Transformational meta-plans provide a powerful means of capturing and applying
additional domain knowledge, which is key to achieving more powerful planning systems.
Defining domain knowledge about special cases and failure recovery via meta-operators
provides an expressively complete approach, which obviates the need for special-purpose
language extensions. This approach also expands the role that meta-planning plays in a
planning architecture. The resulting transformations represent a special class of operations
on plan networks: operations that reformulate a network rather than solve it. As an
additional benefit, this approach eases the writer's task of providing thorough coverage of
domain actions. We are currently implementing the transformations as part of the
GRAPPLE plan recognizer. This implementation uses Knowledge Craft™ and capitalizes
on its facilities for context management, object schema, and integrated Prolog features. We
are continuing to explore the role of deeper domain knowledge in planning systems, with
particular emphasis on its relationship to control.

Knowledge Craft™ is a trademark of Carnegie Group Incorporated.

-18-

(1]

[2]

3]

4

[3]

[6]

[7]

(8]

5.0 _References

Broverman, C.A., and W.B. Croft, "A Knowledge-based Approach to Data
Management for Intelligent User Interfaces", Proceedings of Conference for Very
Large Databases, 1985.

Broverman, C.A., K.E. Huff, and V.R. Lesser, "The Role of Plan Recognition in
Intelligent Interface Design, Proceedings of Conference on Systems, Man and
Cybernetics, IEEE, 1986, pp. 863-868.

Carver, N., V.R. Lesser and D. McCue, "Focusing in Plan Recognition",
Proceedings of AAAI, 1984, pp. 42-48.

Chen, P.P., "The Entity-relationship model: Toward A Unified View of Data,"
ACM Transactions on Database Systems, vol. 1, no. 1, March 1976, pp. 9-36.

Croft, W.B,, L. Lefkowitz, V.R. Lesser and K.E. Huff, "POISE: An Intelligent
Interface for Profession-based Systems", Conference on Artificial Intelligence,
Oakland, Michigan, 1983.

Croft, W.B., and L.S. Lefkowitz, "Task Support in an Office System”, ACM
Transactions on Office Information Systems, vol. 2, 1984, pp. 197-212.

Huff, K.E. and V.R. Lesser, “The GRAPPLE Plan Formalism", Technical Report
87-08, Department of Computer and Information Sciences, University of
Massachusetts, Amherst, 1987.

Huff, K.E. and V.R. Lesser, "A Plan-based Intelligent Assistant That Supports
the Process of Programming", Technical Report 87-09, Department of Computer
and Information Sciences, University of Massachusetts, Amherst, 1987.

-19-

91

(10]

[11]

[12]

(13]

[14]

[15]

(16]

Litman, D., "Plan Recognition and Discourse Analysis: An Integrated Approach
for Understanding Dialogues”, PhD. Dissertation (also TR 170), Department of
Computer Science, University of Rochester, 1985.

McDermott, D., "Planning and Acting", Cognitive Science, vol. 2, 1978, pp. 71-
109.

Parnas, D., "On the Criteria to be Used in Decomposing Systems into Modules",
Communications of the ACM, vol. 15, no. 3, March 1972.

Sacerdoti, E.D., A Structure for Plans and Behavior, Elsevier-North Holland,
New York, 1977.

Stefik, M., "Planning and Meta-planning", Artificial Intelligence, vol. 16, 1981,
pp. 141-169.

Tate, A., "Project Planning Using a Hierarchical Non-linear Planner”, Dept. of
Artificial Intelligence Report 25, Edinburgh University, 1976.

Wilensky, R., "Meta-Planning: Representation and Using Knowledge About
Planning in Problem Solving and Natural Language Understanding”, Cognitive
Science, vol. 5, 1981, pp. 197-233.

Wilkins, D.E., "Recovering From Execution Errors in SIPE", TN 346, SRI
International, January, 1985.

This work was supported in part by the Air Force Systems Command, Rome Air
Development Center, Griffiss Air Force Base, New York 13441-5700, and the Air Force
Office of Scientific Research, Bolling AFB, DC 20332 under contract No. F30602-C-
0008. This contract supports the Northeast Artificial Intelligence Consortium (NAIC).

-20-

