A Reconsideration of the Termination
Conditions of the Henschen-Naqvi
Technique

David A. Briggs
17 September 1986

COINS Technical Report 87-11

Abstract

Henschen and Naqvi describe a sophisticated technique for trans-
lating queries on recursively defined relations of a Horn clause data
base into iterative programs that invoke a query processor for conven-
tional select-project-join queries of the relational algebra. In a recent
comparison of methods for evaluating recursive queries the Henschen-
Naqvi technique is cited as one of the most efficient currently avail-
able. Nevertheless, the technique is flawed in that there exist recursive
queries for which the answer computed from the translated program
will be different from the correct answer under the usual semantics for
Horn clause data bases. The problem is that the termination condi-
tions as given are premature; the iteration may stop before all of the
answers have been obtained. In this paper we review the Henschen-
Naqvi technique, exhibit a recursive query and database instances for
which the technique fails, note why in general the termination condi-
tion is premature, and describe a condition sufficient to guarantee that
all answers are obtained. We also offer a variation of their algorithm
that should be more efficient for some data base instances.

In [HENS84] the authors describe a sophisticated technique for translat-
ing queries on recursively defined relations of a Horn clause data base into
iterative programs that invoke a query processor for conventional select-
project—join queries of the relational algebra. In a recent comparison of
methods for evaluating recursive queries ([BANC86]), the Henschen-Naqvi

technique is cited as one of the most efficient currently available, and this
author admires the insight that led to the method. Nevertheless, the tech-
nique as presented in [HENS84] is flawed in that there exist recursive queries
for which the answer computed from the translated program will be differ-
ent from the correct answer under the usual semantics for Horn clause data
bases (for a description of those semantics, see [LLOY84]). The problem is
that the termination conditions as given are premature; the iteration may
stop before all of the answers have been obtained. In this paper we review
the Henschen-Naqvi technique, exhibit a recursive query and database in-
stances for which the technique fails, note why in general the termination
condition is premature, and describe a condition sufficient to guarantee
that all answers are obtained.

In the interest of clarity much of the terminology and discussion pre-
sented in [HENS84] will be repeated here, with occasional amplification or
shifts in representation. The paper presumes in the reader some familiar-
ity with logic, logic programming, and the relational model of data; for
example, unification and resolution are not explained here.

1 Preliminaries : Logic, Data Bases, and
Recursion

A Horn database (without function symbols) consists of a finite number of
clauses, each with exactly one positive literal and zero or more negative
literals. A clause with zero negative literals is termed a unit clause, and if
all of its arguments are constants rather than variables, then it is a ground
positive literal, or ground positive unit.! For each distinct predicate (we
will use ‘predicate’ and ‘relation’ as synonyms), a ground positive literal of
that predicate asserts that the tuple of constants is in its relation, and we
will imagine that all ground units for a particular predicate are stored as
in a conventional relational data base. The collection of all relations with
ground units will be collectively referred to as the eztensional data base, or
EDB, and a particular relation that has a ground unit will be regarded as

1Clauses whose positive literals contain variable arguments not mentioned in any of the
negative literals, and this includes non-ground unit clauses as a special case, complicate
the semantics, so we will assume that no clauses of that ilk are allowed.

an EDB relation.

A clause that contains some negative literals is a rule that indicates a
way to infer that a tuple is a member of the relation for the positive literal.
For example, the clause

uncle(x,y), —brother(x,z), —parent(z,y)

under the appropriate interpretation of the components, can be seen to
express the rule

For any x and y, if there is a z such that x is z’'s
brother and z is y’'s parent, then x is y’s uncle.

Alternatively, the rule can be viewed as asserting that the uncle relation
is a superset of a select-project—join expression involving the brother and
parent relations, the negative literals mentioned in the clause. The rules
will be collectively referred to as the sntensional data base, or IDB, and any
predicate that occurs as the positive literal in a rule (also termed the head
of the rule), is regarded as an IDB predicate.

A particular predicate may be an IDB predicate, an EDB predicate,
or both an IDB and an EDB predicate, depending upon the clauses in
which it appears as the positive literal. It is always possible to construct
an equivalent Horn data base in which the IDB and EDB predicates are
disjoint (see [BANC86] for details), so for simplicity we will assume they are
disjoint in our data base. Now, the extensions of the EDB predicates are
just the tuples asserted to be in them by the ground units. The extensions
of the IDB predicates are those tuples that can be inferred to be in them
from the contents of the EDB relations and the rules. In the absence of
function symbols the extensions of the IDB predicates will be finite and
computable (see [LLOY84] for details).

A query on a Horn clause database is a set of negative literals, and can
always be expressed as a select—project—join expression? over the extensions
of the relations of the literals. For example, the query

2]n fact, the negative literals define a select—join expression, but it may be that some
extraneous variables have been introduced by rule applications, and they will be projected
away. For example, in answering the query -uncle(‘Fred’,x), if the earlier rule is
used, the subquery -brother(‘Fred’,z) -parent(z,y) contributes to the answer, but
the values for z are not of interest, and will be projected out.

-parent(x, y), —parent(‘Nary’, y), —parent(w, x)

when projected on w will obtain the grandparents of Mary’s children.

The problem in evaluating queries is that the IDB extensions are not
explicitly stored, and queries against an IDB relation must therefore com-
pute enough of its extension to guarantee that all the answers are obtained
that would be obtained if its extension were fully computed. In [REIT78] a
method is given to translate queries involving IDB relations into relational
algebra queries involving EDB relations, but the method fails for a relation
that is ‘recursive’, loosely, a relation whose definition involves itself. The
method of [HENS84] was offered as an extension of Reiter’s work to handle
queries involving recursively defined relations. Before going into the details
of the method, one should recall that the overall goal is to determine, for
queries against recursively defined relations, a program that can be run
against the EDB and obtain the same results that would be obtained if the
IDB relation were fully computed and added to the data base as an explicit
EDB relation. In this sense, the rules that determine the extensions of the
IDB relations are “compiled away”, and the overhead of rule application
avoided.

Following the Henschen-Naqvi paper, we will represent the rules of the
database in a Connection Graph, with a few changes for clarity. Each rule
will have a node in the graph. The nodes of the graph are complex in
that they have identifiable parts, viz., the literals of the rule. Arcs between
nodes will specify not just the nodes at the head and tail of the arc, but
the particular literals within the nodes. We include in the graph a directed
arc from a negative literal =P(...) of node n to a literal P(...) of node m,
for P any predicate, if the two literals unify (this immediately forces that
the only literal that can be the target of an arc is the head of the clause
represented by node). This characterization is slightly different from the
one given in the paper, but is readily grasped and makes the next definition
simpler. ‘

Given a connection graph for a database, a potential recursive loop
(PRL), is a cycle of edges (ey, ..., €,) in the graph such that

1. The substitutions required to unify the literals that occur at the heads
and tails of all of the edges are consistent with one another, that is,
one could unify around the cycle.

4

-

2. If one resolves the clauses at the tails of the arcs e, through e,, re-
solving on the literals suggested by the arcs, and then resolves in a
distinct instance of the clause at the tail of arc e,, resolving on the
literals suggested by e,, the result is not merely a renaming of that
clause. This condition ensures that resolving around the loop changes
the clause in some way.

3. The resolution of any subset of the clauses included in the cycle does
not yield a tautology.

The conditions identifying PRL’s are precisely those for identifying rela-
tions whose extensions are recursively defined, since traversing an arc cor-
responds to applying the rule at the head of the arc, and in a PRL it is
apparently possible for a rule contributing to the extension of a relation to
ultimately invoke itself.

Consider Figure 1, adapted from [HENS84], of a PRL as it would be used
in evaluating a query against a recursively defined relation. The following
terminology will be used here, as in their paper.

The query literal, or goal, is the negative literal that attaches to the
loop. It may have some of its arguments bound to constants, but it must
be unifiable with the head of the clause to which it attaches. In our diagram,
the query literal is the —D node.

The start literal/start clause is the literal/clause to which the query
literal attaches. In the diagram, the start literal is Dy and the start clause
is the clause it belongs to.

The literal/clause within the loop whose successor is the start literal is
the end literal/end clause. —~D, is the end literal of the diagram.

The closing edge is the arc that connects the end literal to the start
literal.

The literals =D; and D! at the tail and head of all arcs other than the
closing edge are called cycle literals.

An edge leading from a cycle literal out of the PRL is called an ezt
edge, for example, the edge from =D, to Dj is an exit edge.

The augmented loop residue (ALR) is the resolvent obtained by resolving
the start clause with its successor clauses in the cycle, up to and including
the end clause. For the loop of the example, Dy, ~E;, -E,, ..., -E,, =D, is
the ALR.

=D

D, —C,
D, —D, -k,
/ 5 |
D; -D; | —E;
4
D,_, —D, -E,

Figure 1: A PRL with attached query literal, =D

<

An augmented ezit ezpression (AEE) is any resolvent obtained by re-
solving the start clause up to some clause containing an exit edge, and then
resolving out the edge. The AEE’s of the example are D}, ~E,, ~C, and
Dy, -E;, ~E;, ~C,, and so forth.

The ALR will have the form

P(...), some negative literals, -P(...)

where P is the predicate of the start literal, and under the conditions of the
PRL, it is possible to resolve the ALR with a distinct instance of itself by
unifying the end literal with the start literal of the distinct instance. The
resulting clause will still contain instances of the start and end literals, and
another instance of the ALR could be resolved with it. It may be possible
to be repeat this process indefinitely.

Resolving the query literal with any of the resolvents obtained from
the above process will remove the start literal and may provide constant
bindings for some of the variables, but the result is still not evaluable against
the EDB because it contains an IDB relation, namely the end literal. If we
resolve the end literal with an AEE, however, we remove it from the clause,
and assuming for the sake of the discussion that the cycle literals and start
literals are the only IDB relations, we have a select-project-join expression
against the EDB whose result contributes to the answer for the query. The
complete answer is the union, over all expressions obtainable by resolving
around the loop zero or more times and out an exit, of the evaluation of
the expression against the EDB.

2 The Henschen-Naqvi Method

The key insight of the Henschen-Naqvi technique is that under certain
conditions, knowledge of which of the query literal’s arguments will be
bound to constants can be profitably used in evaluating these expressions.
For each distinct specification of bound variables in the query literal, their
technique derives a distinct program that is tailored for that pattern. Of
course, for an n-argument relation, this means 2" distinct programs, so one
hopes for small n, but the idea is really quite clever. To fully explicate it,
we need some more definitions.

A query form is a literal in which each argument is either a variable or
a dummy constant. An tnstance of a query form is a the query form with
the dummy constants replaced by actual constants.

For a particular query form of the start literal, the determsined variables
of the ALR are defined as follows.

1. The variables of the start literal in the positions of the dummy con-
stants of the query form are determined variables.

2. If z is a determined variable, and -L is a literal of the ALR other
than the end literal, and -L has z as an argument, then any variable
y occurring in -L is also a determined variable.

The literals of the ALR containing determined variables, excluding the
start and end literals, are called the determined part of the ALR.

The literals of the ALR other than the determined literals and the start
and end literals are called the induced part of the ALR.

Intuitively, the determined part of the ALR is the largest subclause
that allows the selection conditions, the constants, to propagate through
what will be EDB relations, under the assumptions we will make. The
selection conditions inhibit the size of the join results, but they cannot be
propagated through the end literal, because its extension is not explicitly
stored. Also, under the simpliflying assumptions we will make, evaluation
of the determined parts of successive answer expressions will be subject to
a significant economy.

By rearranging the literals of the ALR, it can be expressed as four
clauses : Q, —A, —Q, and -B, where Q is the start literal, -A is the in-
duced part, —Q is the end literal, and -B is the determined part. To precisely
characterize the resolvents we would obtain by resolving around the loop
and out an exit, we need to identify the overlap of variables among these
parts, so we define the following sets of variables.

Z the set of determined variables of the ALR
Z' the determined variables occurring in the start literal
Z" the determined variables occurring in the end literal

W the set of non-determined variables of the ALR

8

‘W' the set of non-determined variables of the start literal
W" the set of non-determined variables of the end literal
X=Z2-7

Y=W-W

Employing these terms, the variables occurring in the parts of the ALR can
be identified as follows$

QawW', 2'), -ACY, W), -Q(w", z"), -B(X, 2V
An augmented exit expression can be written as
Qw, z'), -E(v, W, 2

where V are variables of the exit expression that are not in W' or 2.

In the discussion that follows, we make all of the simplifying assumptions
stated on pps. 62-63 of the original paper and repeated here, and one final
assumption not mentioned there.

1. There is only one exit edge from the PRL.

2. Except for the start and end literals, the ALR consists entirely of
EDB literals.

3. There is no proper subset of the literals of the ALR which has no
variables in common with the remaining literals of the ALR.

4. There is only one PRL in the connection graph.

3This notation suggests that all of the variables of 2’ appear in the determined part,
and that all of the variables of W appear in the induced part. If this is not true one
can imagine them as added arguments whose bindings are irrelevant to the truth value
of the subclause. This tack is theoretically sound, but to materialize the relation of the
augmented subclause one would have to take the Cartesian product of the set of tuples
satisfying the original clause with all constants mentioned in the data base, as many times
as there are missing variables. There are other, less costly measures that are difficult to
describe briefly.

5. The unifiers of the arcs in the PRL do not force any of the variables of
the start literal to be constants, nor do they equate distinct variables
of the start literal.

6. The determined variables of the start and end literals are equal in
number and occupy the same positions.

7. The end literal is a renaming of the start literal.

In a nutshell, the assumptions constrain the set of expressions to be evalu-
ated against the EDB to be a particularly tractable one, and as the authors
state, most can be relaxed without difficulty.

We want to characterize the expressions evaluable against the EDB that
might produce answers. As mentioned above, such an expression is obtained
by resolving around the loop zero or more times and out the exit, and we
can describe them by specifying how we will perform the resolutions of the
ALR or AEE with the end literal. In resolving in additional instances of
the ALR (or AEE, as the case may be), there must be no overlap of its
variables and those of the clause with which it is being resolved. We will
effect this by maintaining superscripts on the variables. All the variables of
the ALR or AEE will be superscripted by 1. When we prepare to resolve
in another instance of the ALR, or the AEE to leave the loop, we will
increment the superscripts of the variables in the resolvent obtained so far
and unify the start literal of the ALR or AEE with the end literal of the
result. In computing the unifier, we will always replace variables of the
start literal of the ALR with variables of the end literal of the other clause,
so the variables of the other clause will not be affected by the resolution. To
completely characterize the resolvents we need to consider the unification
of the start literal of the ALR with the end literal. Supposing that distinct
variables of the ALR are distinguished by subscripts, that is, all are of the
form z} for {e{1,...,| WU Z |}, and placing the end literal above the start
literal matches them as follows

-:Q(x},l,z},z, ceyZ})

Q(z}-l,x}z, ceey "’;'..)

10

define a mapping 4 : {1,...,|WUZ |} — {1,...,|WUZ|} as

t else

Now we can inductively define the substitution used to resolve in the ith
instance of the ALR, o;, as follows,

0(i) = { {cm if § = 3,, for some m

o, = identity substitution

x} if z}- isnotinwu?
1 —
oini(z}) =

[05(1'5(;))](“) else

where the superscript operator (+n) means that all variables mentioned in
the expression should have their superscripts incremented by n. In words,
the ¢ + 1st substitution makes no change to a variable that does not occur
in the start literal, and replaces a variable that does occur in the start
literal with its correspondent in the end literal of the clause obtained so
far. That end literal was derived from the most recent ALR to have been
resolved into the expression, so the variable in that position will be the
result of incrementing the superscript of the result of applying the previous
substitution to the original variable in that position, zg(,-).
Employing this notation, the resolvent obtained by circling the loop ¢

times and out the exit, RES;, can be expressed as follows

i+1

[@W,Z)]*) vV [0i42-;(-A(Y, W))|HG-D) v
-
0ir1(CE(V,¥,2) V 'V [0i42-i(-B(X, Z))|+6-1)

=2
When this expression is resolved with the query form instance, the (2')(+1)
variables will be bound to the specific constants, and the variables of (¥')(+1)
will be projected on to obtain the answer tuples.

For convenience, let’s identify a particular instance of —A or =B within

such a resolvent by the value of the index j. Ignoring the start literal, which

will vanish when the query literal is resolved with the expression, we list
the literals in the suggestive pattern

ﬁAi-Hy Ay, ... ’ _‘A2y ﬁE, ﬂB?) ..., By, -'BI-H

11

Matching subscripts for a pair of clauses —A; and Bj indicate that they
were derived from the same instance of the ALR, the (i +2 — j)th instance,
and later instances will be nearer the —E clause, which forms a bridge be-
tween the determined and induced part of the expression. The determined
variables of the start literal, (2')+1), will occur in —Bj41, and perhaps in
other instances of the determined part. The non-determined variables of
the start literal, (4')+%), will occur in —A;44, and perhaps other instances
of the induced part. Now, under the simplifying assumptions and using
the formal notation detailed above, it can be shown that the pattern of
overlap between —A; and —A;, is the same regardless of the resolvent ¢ or
the value of 5. In other words, if we were to place successive instances of
the —A clause in 2 column

-‘Aj+l(”h B2y, ”ﬂ)
"Aj (Vh Vz2y..up V")

=, J'—l(vl’ U2y...y vn)

we would observe that if p; and v; were the same variable, then v; and v;
would also be the same variable. The same remark holds for the instances
of the determined part within a particular resolvent, and for the overlap
of the —E clause with its “nearest” —A and -B clauses, ~A; and -B,. The
regularity of the answer producing resolvents has a number of consequences
that can be exploited in an iterative computation. First, note that the
determined part of resolvent RES; is a subclause, up to renaming, of the
determined part of RES;,,. Since the constants of the query are fixed for
all the resolvents, in evaluating the determined part of RES;4,, results from
evaluating the determined part of the previous resolvent can be used, rather
than evaluating the whole determined part from scratch, surely a savings.
Moreover, the remainder of the expression that will be evaluated against
the EDB also exhibits a predictable pattern for successive resolvents, al-
though the description of its computation given in the paper is in error*.
In the discussion that follows, we would like to regard the determined
part, induced part, and exit expression as single relations of the EDB rather

41f the non-determined variables of the start and end literals are not disjoint, modifying
what Henschen and Naqvi term the G expression from one iteration to the next may require
more subsitutions than their algorithm indicates. More than one literal of the clause may
be affected.

12

than clauses. Since they are presumed to consist entirely of EDB predi-
cates, they could in theory be computed from their constituents and stored
separately. .

Given that the pattern of variable overlap between neighbor instances
of the determined or induced parts is the same for all resolvents and for all
neighbors, we can view the instances as computing functions from tuples
provided as input to tuples produced as output. We describe the function
for the instances of the determined part. Each input tuple provides bindings
for certain of the components of the B relation, precisely those components
which would overlap with the next higher indexed instance. The input
tuple thus provides a selection condition on the B relation. The tuples
which satisfy the selection condition are then projected on the components
which overlap with the next lower indexed instance of the clause, and this
is the output for the single input tuple. The output for a set of tuples
as input is the union over all of the input tuples of the result each would
produce.

If we dub this function f, then RES; will provide the determined variables
of the —iE clause with bindings from f¢({¢}) where 'is the tuple of constants
from the query form instance.

We can similarly regard the exit expression instance for RES; as a func-
tion, fixed for all ¢, on the tuples it receives to a set of tuples to be used
for the induced part, and each of the —A instances as functions from sets of
tuples to sets of tuples. The exact nature of these functions is determined
by the pattern of overlap and the particular extensions of the A, B,and E
relations, but the ith resolvent can be viewed as a 2{ + 1 stage pipeline com-
posed of ¢ B units, followed by a single E unit and ¢ A units (see Figure 2).

Al DA; [oo] DA, u mE [7Bz [o e 0B; [Bigafe-C

Figure 2: Pipeline representation of RES; with input &

Now one can readily see how the economy of computation of the deter-
mined part is justified. From one resolvent to the next, we are inserting
an additional B unit into the functional pipe before the E component, but

13

the results from the earlier stages are not affected, since the input from
the query form instance has not changed, and the functions are constant
regardless of resolvent index.

The exit expression and induced parts do not exhibit a similar economy
because although the functional components of the pipe are the same from
one to the next except for the addition of another A unit, the input to the
pipe at successive iterations may be different. If, however, a value d fed in
at iteration ¢ reappears at iteration ¢ + k, then the results obtained from d
at iteration ¢ could be fed through k more A units to obtain d’s contribution
at iteration ¢ + k. This fact is noted by the authors when they describe the
data structures for detecting cycles, and will be discussed again below.

It remains to consider termination conditions. It is impossible to deter-
mine the number of iterations necessary independently of the extensions of
the relations, so we must look for some behavior during successive iterations
which implies that further iterations will yield no new answers. The most
obvious condition is that the B pipe “runs dry”, that is, at some iteration ¢,
JF({¢}) = 0. A moment’s consideration convinces one that given the nature
of the functions computed by these components, no more answers will be
produced.

There is no guarantee, however, that the B pipe will run dry and Hen-
schen and Naqvi suggest that the program look for cyclic behavior in the
answers it produces to ascertain that the iteration can stop. Their descrip-
tion of exactly what cyclic behavior is sufficient grounds for termination is
vague, and in our reading, incorrect. We will describe their scheme, exhibit
cases where it fails, and discuss why it fails.

Following Henschen and Naqvi, we will call the tuples presented to the
E unit by the B units of the pipeline at each iteration of the loop driver
tuples. Since the B relation is presumed finite, if driver tuples are produced
at every iteration, some must be repeated. The authors suggest that the
program maintain a tree for each driver tuple that is produced. The tree
will have as its root its associated driver tuple, and for each iteration in
which that driver tuple is produced by the B pipeline, the tree will have a
level recording the yield from the E-A units of the pipe for that iteration
if given that driver tuple as input. The tree is arranged to facilitate the
computation of answers as follows. Suppose driver tuple d first appears
at iteration ¢ and produces answers a,,...,a,. The tree for d is created

14

with the root d, and first generation children (a;, ¢) for all je{1,...,n}. If
d is next produced as a driver at iteration ¢ + k, instead of feeding d into
the pipe consisting of E and ¢ + k A’s, one may feed the a;’s into a pipe
consisting of k A’s and obtain the same results with some savings. If doing
this for a specific a; yields some answers, then those answers are added
to the tree as children of a;, along with the iteration number ¢ + k. If an
a; fails to produce any answers, its node may be marked as a dead end,
and ignored in subsequent iterations that turn up driver d. Again, this is
justified by the fact that if a k length pipe of A’s fails to produce an answer
when fed a;, any longer pipe would also fail to produce an answer, so the
node (a;,{) can make no further contributions to the set of answers.

The previous remarks indicate one condition under which a leaf of the
tree may be marked as a dead end, but this condition by itself is not suf-
ficient to ensure that ultimately all leaves of the tree will be marked, since
there may be cyclic behavior in the answers produced as well. The paper
does not describe in general terms how a cycle of answers is recognized,
but from its example it appears that if an answer tuple a is produced from
driver d at iteration ¢, so that (a,t) is a node in d’s tree, then if at a sub-
sequent iteration, ¢ + k say, d is produced as a driver and the answer a
recurs as a descendent of node (a,t), the node (a,¢ + k) is added to the
tree, but marked as dead. Presumably any answers it would generate would
be obtainable from node (a, ¢). If all the leaves of a driver tuple’s tree have
been marked as dead ends, then that driver can be ignored in future itera-
tions. Processing can terminate at the first iteration which turns up no new
drivers with all the old drivers marked dead. Clearly, this is guaranteed to
eventually occur, since the relations are finite. That this condition stops
the iteration too quickly can be seen from the following examples.

RULES
Q(x.y) -EQ(x,y)
Q(x,y) -B(x,2) —Q(z,w) -A(w,y)

EXTENSIONS

A = {(p:b)v(b’ C), (c,p)}

15

B = {(0, f)r (0’ 8), (fs 8)1 (8, h))
(b,2), (a,p), (p,9), (,7), (r,2)}

EQ = {(x,x)| xis a constant mentioned in A or B }

Consider the processing of the query form instance -Q(‘e’,?).

From resolving the query against the first rule, we would obtain the
answer . The exit expression with the determined variable bound to the
input e is ~B(‘e’, z) -EQ(z, w) -A(w, y) with y the variable to be
projected on. It produces no answers.

The following table shows the driver tuples produced at each iteration
of the loop, the answer sequences that would be stored in the tree for each
driver, and points at which sequences and driver tuples are marked dead.

Iterations Drivers Sequences

1 f null - mark f as dead
a (p:1)

2 P null - mark p as dead
g null - mark g dead

3 h null - mark h as dead
q null - mark q as dead

4 - a (p,1) (p,4) — a cycle, so mark
the sequence as dead; since this is the
only sequence for a, mark a dead

r null - mark r as dead
5 a already dead
P already dead

Since at iteration 5 we produced no new driver tuples, and all those pro-
duced have been marked dead, the processing would stop at this point.
However, a’s tree was incorrectly marked dead. At iteration 5, a should
produce the answer b, and at iteration 9, a would again be produced as

16

a driver, and should yield the answer c. Another data base instance for
which the program would fail, for a somewhat different reason, is

{(b3,c1), (c1, c2), (c2, c8), (3, c4), (¢4, c5),
(<8, c6), (c6, c1), (c2, c7), (7, ¢B), (¢8, c9),
(¢9,¢10), (c10, c11), (c11, €12), (c12, c13)}
{(e,b1), (e, b2), (b1,13), (b2, b1), (b2, ba),

(b4, bB), (b5, b6), (b6, b7), (b7, b1), (b7, b2)}
{(x,x) | xis a constant mentioned in A or B }

A

EQ

Again, the answer e is produced from the first rule. Evaluating the exit
expression produces no answers. The table is as follows.

Iterations
1

Drivers

bl
b2

bl

b3
b4

b3
b5

b6

b7

bl

b2

bl

Sequences
(c2, 1)
null - mark b2 as dead

(<2, 1) (c3, 2)
(c2, 1) (c7, 2)
null - mark as dead
null - mark as dead

already dead
null - mark as dead

null - mark as dead
null - mark as dead
(c2, 1) (c3, 2) (c1, 6)
(c2, 1) (c7, 2) (c11, 6)
already dead

(c2, 1) (c3, 2) (c1, 6) (c2, 7)

17

a cycle, so mark the sequence dead
(c2, 1) (c7, 2) (cl1, 6) (c12, 7)

b3 already dead

b4 already dead

8 b3 already dead
b5 already dead
9 b6 already dead
10 b7 already dead
11 bl (c2, 1) (c7, 2) (c11, 6) (c12, 7)

produces no new answers, so it can be marked
as dead. Thus, bl can be marked as dead.
b2 already dead

12 bl already dead
b3 already dead
b4 already dead

Since this iteration produced no new drivers, and all drivers have been
marked dead, processing would halt. The first sequence was prematurely
marked dead at iteration 7, and should have gone on to yield additional
answers c4, c¢b, c6 ¢8, c9, c10, and ci3.

3 Correct Termination Conditions for the
Cyclic Case

To elucidate the problem we shall shift to a graphical representation of
the computation. Construct a graph G with a node ng for each S C B,
and a distinguished node, ny. Draw a directed edge from ns to nr, for
S,T C B, if the projection of the tuples of S on the components that a B
pipe unit projects on, when fed into a B pipe unit, would select the tuples
of T. Draw an arc from n, to the unique node ng that corresponds to the

18

o

subset of B that would be selected by the vector of constants of the query
form instance. In effect, the graph mimics the behavior of the of the B pipe
unit, but carries along the components of B that would be projected away.
Evidently, the driver tuples produced at the ith iteration would be derived
from the set S of the unique node ¢ arcs from n,. We will denote the subset
of B reached at the ith iteration by D;.

Since B is finite, this graph must also be finite, and since every node has
a unique successor, at some point the sequence of driver tuples must cycle,
with some period p®. Let Dy, Dy, ..., Diyp = Dy be the cycle, with ! and p
the least values that determine a cycle. The tuples that will be repeatedly
presented to the non-determined part of the pipeline will be in

I+p-1
UDi=0»

=l

For a particular tuple d in D, there is nothing to prevent d from occurring
in several of the cycle D;’s, so for each d we define the cycle set for d, Kz =
{ie{0,...,p — 1} | deDyy;} Now, future iterations at which d is presented
to the non-determined part of the pipeline have a precise characterization,
specifically,

{l+ mp+ k| mew and keKy}

For each driver tuple d produced, define the occurrence set for that tuple,
O, to be the set of iterations at which it is produced as a driver. Evidently
the occurrence set of a driver tuple will either be finite, if the tuple is not
in D, or will consist of the a set describable as above and perhaps finitely
many other numbers, if the tuple is contained in some of the driver sets
before the cycle.

Our second graph G4 has a node for each tuple in A+ B, the disjoint
union of A and B. For a node n, derived from some b¢B, draw directed arcs
to nodes n, derived from aeA, if tuple @ would be selected by an A unit
when given the result of an E unit fed the appropriate components of b.
Draw an arc from node n,, to node n,,, derived from a,, az€A, if a; would
be selected by an A unit fed the appropriate components of a;,. Again, the
graph mimics the action of the pipeline, although in this graph the action

51f the pipe runs dry, it cycles on ng.

19

is recorded at the individual tuple level, rather than at the subset level, and
so some nodes may have no successors and some may have many successors.

Now, the answers produced at iteration ¢ are the tuples in the union over
all d in D; of the tuples of A corresponding to the nodes of G4 reachable
from ng4 in exactly ¢ arcs, projected onto the components corresponding to
the non-determined variables of the start literal.

Henschen and Naqvi’s suggestion for recording a tree for each driver
tuple represents part of the G4 graph. A typical node in their tree, (a,f),
indicates that the answer tuple @ is ¢ arcs from the node for the driver
tuple at the root of the tree. Ancestors of this node in the tree identify
other nodes along that length ¢ path. The only nodes of the paths that
are explicitly recorded in the tree, however, are those that are at distances
from the driver tuple node which are also in its occurrence set. To correctly
terminate the algorithm, we need a condition for marking a leaf node dead
which will not lose any answers, and which is also certain to eventually
become true. A sufficient condition for safely marking the node (a, f) dead
is that for all nodes b of the underlying graph reachable from a in &k arcs
with (¢ + k)eO4, where d is the driver tuple root of the tree, either

1. b has already been recorded as an answer, or

2. there is another leaf node (¢, f), say, with b reachable from ¢ in r arcs,
and (1 +r)eOsand r < k

The examples illustrate that correct termination depends upon an ac-
curate description of occurrence sets for the driver tuples. Drawing the
graphs for the first example, one can see that the second occurrence of the
driver tuple a is not within the cycle of driver sets, which begins at the
next iteration (see Figure 3). Its period is relatively prime to the period
of the cycle in the second graph, and so ultimately all of the nodes of the
second cycle should produce answers.

In the second example the driver tuple b1 is in two of the sets of the
cycle, so the first repetition of the answer is not actually representative of
its future cyclic behavior.

The correct test for marking a leaf node dead is not only that the leaf
node repeats an answer given by an ancestor, but also that the iterations of
the ancestor and the leaf correspond to the same set within the driver set

20

o

cycle. More specifically, it is sufficient that the two iterations are congruent
(mod p), where p is the period of the driver set cycle, provided that the
ancestor was produced after the cycle had been initiated. In fact, if K,
consists of the union of some of the cosets of the cyclic subgroup of Z,
generated by some teZ, it is sufficient that the iterations be equivalent
(mod ¢). Under those conditions the cycle from a node to itself revealed in
the tree is an integer multiple of the period of the cycle of the driver sets,
and as such, it is extraneous to the computation of answers. If,in G,, a
is a node that lies on a length ¢ path from the driver tuple node n4 that
includes the cycle, with i€0j,, then there is a shorter path that doesn’t use
the cycle, of length j, with jeO;. H K; consists of the union of some of
the cosets of the cyclic subgroup of 2y, generated by some § in Z,, then, in
effect, the driver d cycles on a smaller period within the larger period, and
the smaller period can be used in the test. Since the sets are finite, this
test must eventually become true on each path.

This test requires determining values for I, p, and perhaps Ky, and so
the algorithm must be augmented to check for a cycle in the driver sets. It
can be shown that if Dy, C D;, for some ¢,k > 0, then

1. Forall j >¢+k,D; C Dj_;
2. The period p of the driver set cycle will be a divisor of k

A plausible strategy for detecting the driver set cycle is to check the
current set for inclusion in previous sets, to determine the ¢ and k¥ mentioned
above. If an accurate accounting of the cardinalities is maintained, a simple
cardinality check may rule out a lot of possibilities. Once an ¢ and k for
which D;yx C D; have been found, keep track of the cardinalities of every
set and its kth successor. As soon as one of them holds equality with its
predecessor, the cycle has been entered. It still remains to determine if the
actual cycle is a divisor of k. Again, cardinality checks may rule out some
possibilities without the expense of comparing the sets for equality, or the
smallest set of the cycle may be chosen as the guinea pig to be compared
with the sets that are a divisor’s distance from it in the list.

Given that correct termination in the presence of cycles requires deter-
mining the period of the cycle of driver tuple sets, we offer the following

21

variation of the Henschen-Naqvi algorithm, which in effect merges the in-
formation recorded in the separate driver tuple trees into one structure,
and may lead to earlier termination.

Before computing any answer tuples, we identify all driver tuples and
their associated occurrence sets. As noted above, these sets consist of a
finite part and, if the tuple is one of the cycling drivers, an infinite part
that can be represented by the subset of Z,, where p is the period of the
cycle, specifying the sets of the cycle that contain it as an element.

With the drivers and occurrence sets in hand, we next walk through
the G4 graph in a wave front, calculating for each node we reach as we
go two sets. For node a, we will denote these sets R, and S,. The first
set is computed afresh for a node each time we reach it, and is meant to
specify the set of forward distances from the node at which answer tuples
lie. The second set is the union of all values that the first set for the node
has received whenever the node has been reached. It is initially null for each
node, and is updated each time a node is reached. It is used to prevent
duplication of effort, in a manner to be described shortly.

On the first iteration, for each node a reachable from some driver d via
some arc, we compute R, as the union, over all the driver tuple predecessors
of a, of the occurrence set for the driver, decrementing the values of the set
by 1 to record the traversal of the arc. Letting E denote the edge set for
G4, the computation for the first iteration is

R, = U 04-1
(d,a)eE
d a driver

where O; — 1 signifies that each element has its value decreased by one. If
OcR,, then a is an answer, so pack it off to answer-land, and discard 0 from
R,. We then update R, and S, as follows

R, — R, - S,
Se — S,UR,

The first time a is encountered, S, = @, so the effect is simply S; — R,.
For the next iteration, traverse out from all nodes a just reached if R, is
not null. For each node b reachable from such a node, compute R, from the

22

<y

R sets of its predecessors, in the same way that the R sets were computed
from the occurrence sets on the first iteration.

Ry — U R, -1
(a,b)eE
a reached at
last iteration

Again, if OcRy, then b is an answer, and should be processed as above. In
any event, the Ry and S, sets should be updated as before. The iteration
continues in this fashion until all the updated R sets for the tuples reached
during the last iteration are empty.

Intuitively, the R set for a node records the arc radii from the node at
which answer tuples lie, as determined from its predecessors in the previous
iteration. The propagation of R set values across arcs should need no
justification. The subtraction of the current S set value before continuing
the propagation is justified by noting that if a value ¢ is in S, then at some
previous iteration, ¢+ was computed to be an R set value for the node, and
the walk to those answers ¢ arcs distant was initiated at that iteration.

For the finite parts of the sets the operations are all straightforward,
but the infinite part requires slightly different treatment. If we assume that
the driver set cycle is initiated at the Ith set and that the occurrence sets
contain the elements of Z, that when added to !, identify the driver sets
of the cycle in which the tuple appears, then until the Ith iteration the
infinite part of the S sets should be left null. The infinite parts of the R
sets should be propagated, without decrementing the values of the elements
(the decrement is actually implicitly applied to the initial segment,). At
the lth iteration, at which time all finite parts must be empty, the set
operations are continued with the infinite parts alone. At this time, the
infinite part of the S sets for all tuples reached should be allowed to receive
the infinite part of the corresponding R set during the update to S. The
only differences in the operations are that 0 is no longer discarded from the
R sets and the decrementing is now done (modp)so0—-1=p-1,a
value that should be propagated. The set difference operation is performed
as for the finite part.

The correctness of this algorithm can be rigorously established by a
reductio ad absurdum argument showing that if a is one of the answers,

23

then the shortest path from one of the drivers to a, whose length is also in
the driver’s occurrence set, must be traversed in the walk and will be used
to identify a as an answer.

In this alternative to the Henschen and Naqvi algorithm, the redun-
dancy of recording nodes in separate trees and the potential for marking
nodes dead perhaps several times over is traded for a proliferation of set
operations. Surely, example graphs can be constructed that favor one or
the other method. If the graphs are highly connected with many cycles and
the values of [and p small enough that a bit vector representation of the
finite and infinite parts of the sets can be employed, it seems likely that
this alternative would fare well.

We have reviewed the Henschen-Naqvi technique for the simplest case
and noted an error in the termination condition whose correction may in-
volve some expensive set comparison operations. Of course, if one is certain
that no cycles exist in the G4 graph, or that the Gp graph cycles on @, their
method is adequate.The findings of [BANC86] indicate that even with this
addition, their method is likely to remain competitive with alternatives. We
have also offered a variation on their algorithm that may be more efficient
for some data base instances. In presenting the Henschen-Naqvi technique
we employed some different representations of the computation, and it is

our hope that this description will render their idea accessible to a larger
audience.

References

[BANCS86] Bancilhon, F., and Ramakrishnan, R., “An Amateur’s Intro-
duction to Recursive Query Processing”, Proceedings of SIGMOD
‘86 International Conference on Management of Data, pps. 16-52.

[LLOY84] Lloyd, J., Foundations of Logic Programming, Springer-Verlag,
1984.

[HENS84] Henschen, L., and Nagvi, S., “On Compiling Queries on Recur-

sive First-Order Data Bases”, JACM, Vol. 31, January 1984, pps.
47-85.

24

<)

[REIT78] Reiter, R., “Deductive Question Answering on Relational Data
Bases”, in Logic and Databases, Gallaire, H., and Minker, J, eds.,
Plenum Press, New York, 1978, pps. 149-177.

25

na B(e,0) B(h,a) B(r,a)

{(ea a)’ (0, t)} (C.P)

{(a,p), (£,8)} (p.b) (b,c)

{(p,q), (g, b)}

{(q,x), (b,a)}

{(r,a), (a,p)}

{(a,p), (p.9)}

{(p.9), (a,7)}

{(a,1),(r,2)}

Figure 3: Relevant parts of the graphs Gp and G4 for the first example

26

