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ABSTRACT

A number of mechanisms have been created for controlling entity visibil-
ity. As with most language concepts in computer science, visibility control
mechanisms have been developed in an essentially ad hoc fashion, with no
clear indication given by their designers as to how one proposed mechanism
relates to another. This paper introduces a formal model for describing and
evaluating visibility control mechanisms. The model reflects a general view
of visibility in which the concepts of requisition of access and provision of
access are distinguished. This model provides a means for characterizing
and reasoning about the various properties of visibility control mechanisms.
Specifically, a notion of preciseness is defined in this paper. The utility of
the model is illustrated by using it to evaluate and compare the relative
strengths and weaknesses, with respect to preciseness, of the visibility con-
trol mechanisms found in ALGOLGO, Ada, Gypsy, and an approach we have
developed, called PIC, that specifically addresses the concerns of visibility
control in large software systems.



1 Introduction

For over twenty years, nesting has been the predominant visibility control
mechanism found in modern programming languages. It has been informally
argued elsewhere that nesting is not sufficient to describe the wide range of
possible visibility relationships among the entities composing a software sys-
tem [28,6,5,10]. A variety of languages, such as Ada (7], Clu [15], Euclid [13],
Gypsy (1], Mesa [17], MODULA-2 [24], and Smalltalk [9], have attempted to
compensate for the inadequacies of nesting by offering alternative or supple-
mental mechanisms for visibility control. As with most language concepts
in computer science, however, visibility control mechanisms have been de-
veloped in an essentially ad hoc fashion, with no clear indication given by
their designers as to how one proposed mechanism relates to another.

This paper introduces a model for formally describing and evaluating
visibility control mechanisms. The model reflects a view of visibility in
which the concepts of requisition of access and provision of access are dis-
tinguished. This model provides a means for characterizing and reasoning
about the various properties of visibility control mechanisms. With this
model, language designers can better Jjustify new mechanisms and software
developers can decide upon the suitability of a mechanism for controlling
entity visibility within their application programs. We have used the model
to formulate a definition of preciseness and applied that definition in the
evaluation of several visibility control mechanisms.

The next section presents the basic features of the model. The use of the
model for describing visibility control mechanisms is discussed in Section 3.
Section 4 illustrates the use of the model in evaluating such mechanisms.
Theorems are presented that serve to characterize the relative strengths and
weaknesses, with respect to preciseness, of the visibility control mechanisms
found in ALGOLGO, Ada, Gypsy, and an approach we have developed, called
PIC, that specifically addresses the concerns of visibility control in large
software systems [25,26,27].

2 Basic Definitions

Traditionally, the concept of entity visibility has been defined in terms
of declaration, scope, and binding (e.g., [19]). In many programming lan-
guages, an entity is a language element that is given a name. Thus, enti-
ties include such things as data objects, types, statements (labels), or sub-
programs. A declaration introduces an entity and associates an identifier



(name) with that entity. The scope of a declaration is the region of program
text over which that declaration is potentially visible. Many languages allow
a single identifier to be associated with more than one declaration and the
scopes of those declarations to overlap. Binding relates the use of an identi-
fier, at a given point in a program, to a particular declaration. A description
of a visibility control mechanism, then, is essentially a description of how
that mechanism controls scope.

The model presented here is based on the more general concepts of requi-
sition of access and provision of access, which are two different, yet comple-
mentary, points of view on visibility. Access to an entity is the right to make
reference to, or use of, that entity in declarations and statements. Requi-
sition of access occurs when an entity (implicitly or explicitly) requests the
right to potentially refer to some set of entities. Thus, for example, in most
programming languages a subprogram typically requests access to itself and
any locally declared entities, as well as certain non-local entities. Provision
of access occurs when an entity (implicitly or explicitly) offers, to some set
of entities, the right to potentially refer to that entity. Again, in most pro-
gramming languages, access to a subprogram (i.e., the right to potentially
invoke that subprogram) is typically provided to the subprogram itself and,
in languages supporting nesting, to the subprogram’s parent, siblings, and
descendants. Under this view of visibility, an actual reference by an entity
e; to an entity e; is only possible if e; requests access to e; and e; provides
access to e;.!

A visibility control mechanism is the means for specifying requisition
and provision. The distinction between requisition and provision reflects the
differences in the overall approaches to controlling entity visibility taken in
different languages. In languages such as ALGOLGO and Pascal, requisition
and provision are essentially mirror images; those entities requested by an
entity are always also provided to that entity and vice versa. In the designs
of languages intended for the construction of large and complex software
systems, the desire for greater control over entity visibility has resulted in
mechanisms that address requisition and provision in separate, and often
unequal, ways. For instance, such a language might allow one to specify

'In the remainder of this paper, when the intended meaning is clear, the word “access”
is dropped from certain phrases involving the terms “requisition” and “provigion”. Thus,
a “requested entity” is one to which access is requested, and the “requisition of an entity”
refers to the requisition of access to the entity. Similarly, a “provided entity” is one for
which access is provided, and the “provision of an entity” refers to the provision of access
to- the entity.
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Figure 1: A Visibility Graph.

that a module is provided to any other module although only a few of
those other modules may actually request it. Our model, by distinguishing
between requisition and provision, can expose such differences in visibility
control mechanisms.

The model centers on the construction and manipulation of a represen-
tation of entity visibility relationships. This representation takes the form
of a graph called the visibility graph.

Definition. A visibility graph ¢ = (N, A,, A,) is a directed graph
where

N is a finite set of nodes labeled by the (unique) names of
entities;

A, is a finite set of ordered pairs of nodes (ni, n;) denoting the
requisition relationship n; “requests access to” nj;

Ap is a finite set of ordered pairs of nodes (n;, n;) denoting the
provision relationship n; “is provided to” n;.

The ordered pairs in A, and A, determine the arcs in the graph. A visibility
graph may contain loops (arcs whose origin and terminus are the same node)
and cycles, both resulting from recursive requisition and provision relation-
ships. For languages, such as Ada, that include an identifier-overloading
feature, the “name” of an entity is sufficient to resolve any ambiguity; in
the case of Ada, the name of an overloaded subprogram would include Ly pe-
signature information. Figure 1 depicts an example visibility graph.

A visibility graph uniquely represents a particular set of visibility rela-

tionships among a set of entities. The visibility relationships of any entity e
are defined by the arcs from a node n, to that node’s nearest neighbors in



the graph (i.e., adjacent nodes). The absence of an arc between two nodes
indicates that no visibility relationship exists between the corresponding
entities.

To consider requisition and provision separately, we refer to two spanning
subgraphs of a visibility graph. One represents only the requisition relation-
ships of the entities in the visibility graph, while the other represents only
the provision relationships.

Definition. For a given visibility graph g = (N, 4, Ap), the corre-
sponding requisition graph is g = (N, A, 9).

Definition. For a given visibility graph g = (N, Ar, Ap), the corre-
sponding provision graph is g, = (N, 0, 4,).

These subgraphs are defined to span the visibility graph because we want
them to capture the requisition and provision of each (and every) entity in
the visibility graph.

Two useful relationships between visibility graphs can be defined.

Definition. A visibility graph g request-satisfies a visibility graph h
iff A, C gy.

Definition. A visibility graph g provide-satisfies a visibility graph h
iff hy C gp.

where we say h C g if Nn C Ny, Arp C Arg,s and Apn C Apy. Informally
stated, the desire for a set of entities s; to be requested by (provided to)
some entity e is satisfied by e requesting (being provided) any set of entities
8; of which s; is a subset.

A visibility graph can be derived from some representation of a pro-
gram, such as its text or its parse tree, by applying the rules of a particular
visibility control mechanism, or combination of mechanisms, to the entities
in the representation. More formally, we denote the collection of program
representations by R, denote the collection of visibility graphs by G. and
define a function that performs this mapping as follows:

Definition. A visibility function v : R — G is a function that maps
a program representation z € R to a corresponding visibility graph
g€QG.



A set of visibility functions V = {v,, v, ...} can be defined where v,, is the
visibility function implementing the visibility control mechanism m.

The model uses the visibility graph to record requisition and provision
relationships without insisting on a particular interpretation of the consis-
tency /inconsistency of those relationships. In Ada, for example, a minimum
condition for the consistency of a set of entity visibility relationships is that
the entities that each entity requests are in fact provided. In terms of visi-
bility graphs, this corresponds to the following property:

Definition. A visibility graph g = (N, A,., Ap) is well-formed for Ada
iff Y(ni, n;) € A,, (nj,n;) € A,.

An Ada interpretation of the graph in Figure 1 would then view the Q-R and
Q-S relationships as consistent; node Q might represent a library entity—an
entity, such as a sine function, provided to all other entities even though not
all those other entities request it. The R-S relationship, on the other hand,
would be interpreted as inconsistent. Of course, consistency /inconsistency
interpretations of the graph in Figure 1 other than the Ada interpretation
are also reasonable. For example, node Q might represent some sort of
“authorization” module; the fact that S does not request access to Q might
then indicate a problem in the system. In general, the appropriateness of an
interpretation can depend upon the language, the application domain, the
development method, or even the managerial discipline in force.

We should point out that our model is expressly intended to capture
the semantics of static visibility control mechanisms. Static mechanisms ac-
count for the vast majority of visibility control mechanisms found in modern
languages. This is probably because static mechanisms exhibit greater secu-
rity from (run-time) errors. Indeed, the trend in language design is clearly
away from dynamic visibility control. This can be seen, for example, in the
evolution of LISP; early dialects of LISP are based on dynamic scope rules,
whereas Common LISP (21] provides a static visibility control mechanism.

3 Describing Visibility Control Mechanisms

One of our primary goals in this work is to provide an elfective means of
describing visibility control mechanisms so that onc can reason about and
evaluate those mechanisms. Existing informal and formal descriptive meth-
ods have proven inadequate. The Pascal Report [12], for example, causes
many problems due to the ambiguity of its prose description of entity vis-
ibility [4,23]. The few formal approaches to describing visibility control



mechanisms are operational in nature and have appeared primarily in op-
erational and denotational semantic specifications, where a mechanism is
typically described by the manipulation of an (identifier) environment com-
ponent (e.g., [3]). This technique is unsatisfactory, however, because the
method for describing manipulation of that environment component is es-
sentially imperative (despite the use of a “functional” notation; see, for
example, [8]) and thus more difficult to reason about than a declarative de-
scription. Moreover, the information in the environment component is only
explicitly described from the perspective of entity requisition. Employing
such a description makes it difficult to understand the ramifications of using
a mechanism. With nesting, for example, a subprogram’s so-called “local”
entities are unavoidably made visible to other subprograms nested within
that subprogram, but this fact is only implicitly stated in existing formal
descriptions of nesting.

In the model presented here, a visibility control mechanism m is de-
scribed by its corresponding visibility function v,,. Each such function has
two components that explicitly address the requisition and provision as-
pects of entity visibility. The requisition function r,, describes requisition
by mapping a program representation to a requisition graph while the pro-
vision function p,, describes provision by mapping a program representation
to a provision graph. Thus,

vm(z) = rm(z) U pm(2)

where z is some program representation and the union of two visibility
graphs g and h is the visibility graph (Ny U Ny, Ar g U App, Apg U Ap ).
Component functions r and p can be further broken down into functions
operating on individual kinds of entities, such as subprograms and objects,
as follows:

'm(z) = tmE(Z) U+ Urng,(z)

pm(m) = Pm,E, (:L‘) U= UpmE, (z)

where E; denotes the entity kind upon which the requisition or provision
function operates. Hence, for each entity kind that is of interest, there is a
function that describes requisition and a function that describes provision.
Requisition functions are similar in nature to the “binding” functions of [11].
Provision functions, however, appear to have no counterpart in previous
formalisms.

The full description of a complex visibility control mechanism can of
course be quite lengthy. To provide a feel for the use of the descriptive
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method, without giving an excessively long example, we present, partial de-
scriptions of the visibility control mechanisms of two very different lan-
guages: ALGOLGO and the object-oriented language Smalltalk. For AL-
GOLGO, we describe the requisition and provision of subprograms as they
are controlled by nesting. This entails the definition of the requisition func-
tion TALGOLGO,subprograms and the provision function PALGOLGO,subprograma-
The discussion is further simplified by only considering the visibility of sub-
programs to subprograms. For Smalltalk, we describe the requisition and
provision of operations associated with class definitions, which entails the
definition of TSmalltalk,class—operations and PSmalltalk,class—operations- 10 keep
this example simple, other aspects of visibility control in Smalltalk, such as
access to instance and class variables, are not considered.

ALGOL60

Requisition and provision functions, as mentioned above, operate on a
representation of a program. One suitable representation for ALGOLGO
programs is a graph we call the nesting graph.

Definition. A nesting graph g = (N, Ap,) is a tree where

N is a finite set of nodes labeled by the (unique) names of
entities;

Apa is a finite set of ordered pairs of nodes (n;, n;) denoting the
relationship n; “parent of” n;, which means n; is directly
nested in n;.

For purposes of this example, N will consist only of nodes whose entities are
subprograms. Figure 2 shows the skeleton of a nested ALGOLGO program
and its representation as a nesting graph.

In the subsequent definition of the requisition and provision functions,
we make use of three auxiliary functions defined as follows, where n;, n;,
and n; are elements of N, the nodes in a nesting graph.



begin
procedure A;
procedure B;

procedure D;
begin ... end D;

®

procedure E;

begin ... end E / \
begin ... end B; @
procedure C;

procedure F;

begin ... end F;

© ® ©® ©

procedure G; |
begin ... end G

begin ... end C
begin ... end A
end
(a) (b)

Figure 2: A Nested Program (a) and its Representa-
tion as a Nesting Graph ().



if (nj,n;) € Apq then n;
otherwise |

(1) Parent(n;)

(2) Siblings(n;) = {n,- gf:’;e;t.("ni))nj)elqpa}

n; = Parent(n;)

or n; € Siblings(Parent(n;))

or In;, € Ancestors(n;) such that
n; € Ancestors(ny)

(3) Ancestors(n;) = {n;

For any n; € N, Parent(n;) will always be unique, since an entity can be
directly nested in at most one other entity.

The requisition function is now defined to transform a nesting graph
9 = (N, Ap,) into a requisition graph, explicitly describing the effect of
ALGOLG0’s nesting mechanism on subprograins’ requisition.

Definition. "ALGOLGO,oubprograma(g) = (N', Ay, 0) where
N' =N

i=j

or n; = Parent(n,)

or n; € Stblings(n;)

or n; € Ancestors(n;)

Ar = ( (ni,ny)

From this description it can be easily seen that (1) a subprogram is requested
by itself, (2) a subprogram is requested by the subprogram in which it is
directly nested, (3) a subprogram is requested by those subprograms with
the same parent, and (4) a subprogram is requested by those subprograms
nested within it as well as requested by those subprograms nested within its
siblings. Figure 3 depicts a requisition graph corresponding to the nesting
graph of Figure 2. For simplicity, self-recursive requisition is not shown and
pairs of oppositely-directed arcs have been drawn as single, bi-directional
arrows.

For ALGOLGO, the provision function is quite similar to the requisition
function.
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Figure 3: Requisition Graph for Nesting Graph of Figure 2.

Definition. PALGOLGO,aubprograma(g) = (N"o’ AP) where
N =N

i=j

or n; = Parent(n;)

or n; € Siblings(n;)

or n; € Ancestors(n;)

Ap = { (ni,nj)

These descriptions reveal the fact that in ALGOLGO requisition and pro-
vision are essentially mirror-image counterparts. In particular, the expres-
sion defining the set of tuples (n;,n;) in Ap of the provision function is the
same as the expression defining the set of tuples (n;, n;) in A, of the requisi-
tion function, except that the +’s and j’s are reversed. As illustrated below,
such a similarity is certainly not true of all visibility control mechanisms.

We contend that requisition and provision functions of the formal model
presented here are easier to comprehend than the manipulation of an en-
vironment component found in other formal models. As mentioned above,
for instance, those other models make it difficult to recognize that, with
nesting, a subprogram’s so-called “local” entities are unavoidably made vis-
ible to other subprograms nested within that subprogram. This problem is
clearly exposed using the model presented here; by simply looking at the
requisition and provision functions for subprograms it is immediately ev-
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ident that a subprogram’s supposedly “local” child subprogram is in fact
visible to any other subprograms nested within that subprogram.

Smalltalk

Smalltalk is based on the notion that the major building block of a pro-
gram is the class (i.e., type) definition. A class definition establishes for each
instance (i.e., object) of a given class a set of operation signatures,? a set of
code bodies (i.e., methods) to implement those operations, and some local
storage (i.e., variables). Classes are related in essentially two ways. The first
way is that a method in one class can “invoke” an operation/method in an-
other class, or in Smalltalk’s terminology, instances of classes communicate
by exchanging messages that request operations; the operations are realized
through the execution of the methods that implement the operations. The
second way that classes are related is by inheritance, which is a mechanism
that allows the operations and methods of one class, the so-called superclass,
to be shared with another class, the so-called subclass.

Here we describe the visibility control mechanism of Smalltalk that de-
termines the operations that are associated with a class. As always, the
description is based on a visibility function that maps a program represen-
tation to a visibility graph. The program representation we choose for this
aspect of Smalltalk programs is a graph we call the subclass graph.

Definition. A subclass graph g = (N, A,) is a tree where

N is a finite set of nodes labeled by the (unique) names of
classes;

A, is a finite set of ordered pairs of nodes (n;, n;) denoting the
relationship n; “subclass of” n;, which means n; is indicated
as the superclass of n;;

Notice that the subclass graph faithfully reflects how the Smalltalk language
indicates the inheritance relationship among classes. In particular, Smalltalk
syntax calls for a subclass to indicate its superclass in that subclass’s defi-
nition through what might be referred to as a subclass clause. There is no
way, however, for a superclass to indicate its subclasses. Notice too that the
subclass graph is a tree because Smalltalk uses single inheritance as opposed
to multiple inheritance.

*In the remainder of this discussion of Smalltalk, “operation signatnres” are referred
to simply as “operations”.
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Associated with a subclass graph is a finite set O of (unique) operation
names. The locally-defined operations of a given class, which form a subset
of O, are identified using the following function.

Definition. L : N, — P(O) is a function that maps a class ¢ € N, to
the power set of O.

Requisition and provision are quite different in this Smalltalk mecha-
nism. We begin by describing requisition. To do so, we make use of the
following auxiliary function, where n;, n;, and n; are elements of N, the
nodes in a subclass graph.

("’i’ nj) € A,
Superclasses(n;) = { nj |or In, € Superclasses(n;) such that
n; € Superclasses(ny)

This captures the fact that the superclasses of a given class are all the classes
along the path from that class to the root of the subclass graph, where the
path is determined by following the directed arcs in A,.

The requisition function is now defined to transform a subclass graph
g = (N., A,) and its associated set of operations O into a requisition graph,
explicitly describing the effect of Smalltalk’s inheritance mechanism on the
association of operations with a class.

Definition. TSmalltalk,class—operations (g) = (N; Ar, m) where

N = N UO
n; € N, andnjeO
and either nj € L(n;) or
A, = {(ni,n;)|In; € N, such that
ni € Superclasses(n;) and
n; € L(nk)

The requisition function thus indicates that the subclass clause appearing in
a class definition essentially serves as a request for all operations appearing
in the chain of superclasses leading up to the root of the subclass graph.

The provision function is almost trivial, since Smalltalk does not support
a capability for a class to itsell limit its subclasses. All operations are
(implicitly) provided to all other classes.

12
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Definition. PSmalltalk,class—operations (g) = (N’ 0: Ap) where
N = N.UuO

Ap = {(n,-,n,-)ln,' €0 and n; € Nc}

Our model highlights several interesting properties of Smalltalk. In par-
ticular, visibility control in this context amounts to the ability of a class
to indicate its superclass (requisition) but not the ability to indicate its
subclasses (provision). Moreover, while the only operations that can be re-
quested are those belonging to classes along the subclass path, all operations
along that path are unavoidably requested. In other words, Smalltalk sup-
ports no means for selective inheritance. Observe too that provision has no
effective impact on visibility, since all operations are provided to all classes,
and so the requested operations are always a subset of the provided opera-
tions. Some have suggested that finer control over inheritance is desirable
(e.g., [20]). We have begun to investigate the utility of such controls in sup-
porting different views of the abstraction presented by a class definition and
are using our model to guide the design of appropriate language features.

4 Evaluating Visibility Control Mechanisms

Visibility control mechanisms can be characterized in a number of ways
and these characterizations can then provide a basis for evaluating the
strengths and weaknesses of different mechanisms. This section presents
one such characterization that is possible within the framework of the model
presented above. Specifically, the notion of preciseness is defined for a visi-
bility control mechanism in terms of the mechanism’s accuracy in capturing
desired requisition and provision relationships.

It can easily be argued that a language’s visibility control mechanism(s)
m should be such that Yg € G, 3z € R such that v,,(z) request-satisfies and
provide-satisfies g. In other words, it should be possible to find a program
in the language that realizes any requisition and provision relationships that
a developer might wish to devise, although additional requisition and pro-
vision may be allowed as well. It is not surprising that the visibility control
mechanisms of all modern langnages that we have examined satisfy this
minimum requirement.? Stronger properties for evaluating mechanisimns are
needed, however, which leads to the following definitions.

Many pre-ALGOLGO languages do not satisfy this requirement since they do not
support recursion. For example, the FORTRAN standard 2] excludes recursion from the
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Definition. A visibility control mechanism m is requisition-precise
iff Vg € G, 3z € R such that rp(z) = g,.

Definition. A visibility control mechanism m is provision-precise iff
Vg € G, 3z € R such that pp,(z) = g,.

Definition. A visibility control mechanism m is precise iff it is both
requisition-precise and provision-precise (i.e., Vg € G, 3z € R such
that v, (z) = rp(z) U pn(z) = g).

Definition. A visibility control mechanism m is imprecise iff it is
neither requisition-precise nor provision-precise.

Intuitively, the definitions state that if for each possible visibility graph,
a program can be found with the property that the visibility relationships
among its entities are exactly those specified in the visibility graph, then the
mechanism is indeed precise. A mechanism is less than precise if the req-
uisition relationships or provision relationships cannot be exactly realized.
This suggests the following hierarchy of visibility control mechanisms based
on preciseness:

PRECISE MECHANISMS
4 N
REQUISITION-PRECISE MECH. PROVISION-PRECISE MECH.

N '
IMPRECISE MECHANISMS

If we disregard self-recursive visibility, which in most languages cannot be
fully controlled, then entries in this preciseness-characterization hierarchy
are exemplified by the mechanisms found in ALGOLGO, Ada, Gypsy, and
PIC. The following theorems position these mechanisms in the hierarchy.

THEOREM 1. ALGOLGO is imprecise.

PROOF. For a mechanism to be imprecise, a visibility graph must exist
for which a program cannot be found that results in exactly the desired
requisition and, similarly, a visibility graph must exist for which a program
cannot be found that results in exactly the desired provision. One such
graph, which reflects a very common situation in programming, conveniently

language, and therefore no z can be found such that vronTran(Z) request-satisfies or
provide-satisfies a g containing a loop in either its A, or A,.

14
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Figure 4: Visibility Graph. of a Common Program-
ming Situation.

exhibits both these properties. This graph, depicted in Figure 4, represents
two subprograms A and B, each not callable by the other, sharing exclusive
use of a third, utility subprogram C. This graph could correspond to a
complete program or could, and typically would, be a subgraph of the desired
visibility graph for a larger program. In.that case, this subgraph would
capture not only all the visibility relationships among A, B, and C, but
also all the relationships between C and any entity in the entire program.
From the. definition of TALGOL60,subprograms and ‘PALGOLGU, subprograms 1t can
be seen that for the two subprograms A and B to be hidden from each
other, and so not callable by each other, one.cannot be nested (directly or
indirectly) in the other nor can they be siblings. The. utility subprogram
must then be an ancestor (other than a parent) so that it is callable by both
subprograms. If this graph corresponds to a complete program, then it is
impossible for the utility subprogram to be an ancestor other than a parent,
and hence we have a contradiction, If the graph is a subgraph, then being an
ancestor other than a parent to A and B means that the utility subprogram
must unavoidably be requested by, and provided to, other ancestors of those
subprograms, thus violating the desired visibility relationships. 0O

THEOREM 2. Ada is requisition-precise but not provision-precise.

PROOF. Ada supports a nesting mechanism similar to ALGOL60’s, but,
in addition offers alternatives that can be nsed to avoid many of nesting's
shortcomings [5]. These alternatives are the private/visible mechanism of
Ada’s encapsulation construct, the package, and the with clause. The first
can be used in combination with nesting to achieve a greater degree of
provision control than is possible in ALGOL60: In particular, it can be
used to selectively hide nested entities that would otherwise be undesirably
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provided. That selection, however, is on an all-or-none basis; either an entity
is provided to all entities in the scope of the package or it is provided to no
entity. Therefore, Ada’s version of nesting is still not provision-precise. This
shortcoming with respect to provision extends to nest-free packages, where
the “scope” of a package is then the entire program. Entities provided by a
package (in Ada’s terminology, the visible packaged entities) are unavoidably
provided to all other entities in the program and hence their corresponding
nodes in provision graphs have arcs to every other node. (For example,
if either of the provision arcs in Figure 4 were omitted, then it would be
impossible to represent the resulting visibility relationships in Ada.) Thus,
Ada is shown not to be provision-precise. To show Ada is requisition-precise,
first observe that Ada programs can be constructed exclusively from nest-
free packages. Each such package employs the second alternative mentioned
above, the with clause, to specify the entities requested by its contents.
The with clause allows the realization of any arbitrary set ol requisition
relationships since, in the extreme, one package can be created for each of
the entities in the program.* (Figure 5 illustrates how such an approach can
be used to achieve the desired requisition relationships shown in Figure 4.)
In terms of visibility graphs and program representations, this means that
if only with clauses are used to induce requisition arcs, then for any given
visibility graph a program can be found that results in exactly the desired
requisition graph. Thus, Ada is shown to be requisition-precise. [0

THEOREM 3. Gypsy is provision-precise but not requisition-precise.

PROOF. Gypsy does not support any degree of nesting. To control
provision, Gypsy employs a construct called an access list, which specifies
for an entity just those other entities to which it is provided. In terms of
visibility graphs and program representations, this feature solely determines
provision arcs. Hence, for any given visibility graph, a program can be found
that results in exactly the desired provision graph, with the consequence that
Gypsy is provision-precise. (Figure 6 illustrates how Gypsy can be used to

40f course, purely local entities need not be packaged. but can be left, for instance,
in the subprograms in which they are nsed. Recursive subhprograms referencing shored
entities introduce some minor complications, but thesr can be handled by appropriate use
of parameters and packages [25]. Finally, types that are mutually dependent cannot be
separately packaged. It can be argued, however, that while this special cage involves two
or more syntactically separate type declarations, only one genuine type is being defined; it
makes no sense to request (or provide) access to one component of the definition without
requesting (or providing) access to the others.
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package CPack is
procedure C ( ... );
end CPack;

with CPack; -- request for C
package APack is

procedure A ( ... );
end APack;

with CPack; -- request for C
package BPack is

procedure B ( ... );
end BPack;

Figure 5: Use of Ada to Achieve Requisition Relation-
ships Shown in Figure 4.

achieve the desired provision relationships shown in Figure 4.) Gypsy does
not, however, have Ada’s concept of the with clause. Indeed, there is no
way to control requisition in Gypsy; all provided entities are unavoidably
requested. Therefore, aside from visibility graphs having pairs of nodes
connected by both a provision arc and a requisition arc, desired requisition
relationships cannot be realized. (For example, if either of the requisition
arcs in Figure 4 were omitted, then it would be impossible to represent the
resulting visibility relationships in Gypsy.) Thus, Gypsy is not requisition-
precise. 0O

The languages positioned by the previous three theorems illustrate each
of the entries in the preciseness-characterization hierarchy except the high-
est. That entry is illustrated by the family of languages based on the PIC
language framework [25|. The framework was developed using the model
described in this paper. Thus, it should not be surprising that it constitutes
a precise visibility control mechanism.

PIC, which stands for Precise Interface Control, was designed to sup-
port the variety of inter-module relationships required in large software sys-
tems. Interface control is concerned with that aspect of visibility control
that addresses inter-module relationships. The framework provides support
for the explicit specification of both requisition and provision across mod-

17



procedure < A, B > C(...) = (* C provided only to A and B *)
en.d;

procedure A (...) =

en.d;

procedure B (...) =

end;

Figure 6: Use of Gypsy to Achieve Provision Relation-
ships Shown in Figure 4.

ule interfaces. The language features used to capture these two aspects of
entity visibility are the request clause, for specilying requisition, and the
provide clause, for specifying provision. Below, we refer to a language called
PIC/Ada, which is a version of Ada enhanced with (among other things)
request and provide clauses.

PIC/Ada, just like Ada, provides little control within a module over the
visibility of entities declared in that module. This lack of control, which is
based on the presumption that entities are declared together because they
are strongly interrelated, can be viewed as a notational shorthand for a
commonly occurring situation. If more control is desired, then it can be
“achieved through the creation of additional modules to hold the appropriate
entities. This limitation in PIC/Ada is not one that is inherent in the PIC
language features. For example, it would be feasible to extend the semantics
of request and provide clauses to support intra-module control. Doing so in
PIC/Ada, however, would not be in keeping with the spirit of Ada; a level
of control such as that might be more appropriate in a language based, for
example, on BEuclid.

Details of the PIC langnage framework and the henefits of this straight-
forward, yet powerful, mechanism for controlling entity visibility are given in
[25,26,27]. The aspects of PIC/Ada described above are sufficient, however,
to illustrate the highest entry in the preciseness-characterization hierarchy.

"THEOREM 4. PIC/Ada is precise.
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package CPack is
procedure C ( ...)
provide to A, B;
end CPack;

package APack is
procedure A ( ...)
request C;
end APack;

package BPack is
procedure B ( ...)
request C;
end BPack;

Figure 7: Use of PIC/Ada to Achieve Both the Req-
uisition and Provision Relationships Shown
in Figure 4.

PROOF. PIC/Ada permits the description of arbitrary graph struc-
tures of requisition and provision relationships using request and provide
clauses. By definition, these clauses can be used to completely determine
the requisition and provision of individual entities and, therefore, can be
used to realize the requisition and provision of any desired visibility graph.
(Figure 7 illustrates how PIC/Ada can be used to achieve both the desired
requisition and desired provision relationships shown in Figure 4.) This is
true despite the fact that PIC/Ada provides little control within a mod-
ule over the requisition and provision of entities declared in that module,
since, in the extreme, one package can be created for each of the entities
in a system (cf., proof of Theorem 2) and the requisition and provision of
those entities controlled individually and precisely using request clauses to
determine requisition arcs and provide clauses Lo determine provision ares.
PIC/Ada is thus shown to have a precise visibility control mechanism. [ |

To summarize, the theorems given in this section allow us to rank the four

languages in terms of the preciseness of their visibility control mechanisms,
as follows:
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It turns out that the Smalltalk mechanism described in Section 3 falls in the
same position as ALGOLGO.

This characterization clearly demonstrates and justifies how Ada and
Gypsy have managed to improve upon the visibility control found in AL-
GOLGO, and reveals the differences in their approaches to this improvement.
It also shows that the PIC language framework is essentially a combination
of the approaches taken in Ada and Gypsy, one that allows precision from
either or both the requisition and provision perspectives. Our model not
only facilitates this evaluation, but it was also instrumental in leading us
to the definition of the request and provide clauses of the PIC language
framework.

In addition to preciseness, there are other characterizations of visibil-
ity control mechanisms that are useful for performing rigorous evaluations.
For instance, one would like to be able to understand the kinds of situations
that lead to imprecise realizations of entity visibility when using a particular
mechanism. This would aid the development of appropriate programming
styles for use with that mechanism. We also recognize that there are other
considerations that affect how a visibility control mechanism is used. For
instance, the package in Ada, besides being used in the control of entity visi-
bility, is used as a primary modularization tool; there are practical situations
in which modularity and visibility control constraints conflict. The proof of
Theorem 2 in particular suggests that precision of requisition in Ada can be
achieved by placing entities in separate packages. Such a separation may
interfere with the colocation of entities that, while perhaps not requested in
the same way, are otherwise logically related. The implications of this and
other considerations, as well as the development of additional characteriza-
tions of visibility control mechanisms, are topics for future study.

5 Conclusion

Graphs have been used elsewhere to describe concepts related to visibil-
ity. For instance, graphs are used informally for describing nesting’s effect
on data and control flow in Ada programs [5]. Thomas [22] uses graphs
more formally to analyze “resource information flow”. The usefulness of
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Thomas’s approach is restricted by its strong orientation to the particular
module interconnection language developed in [22]; it was never intended
as a general, descriptive formalism. Moreover, it lacks the useful concept
of provision. Lipton and Snyder [14] use a graph model to study a partic-
ular protection mechanism, the take and grant system, in which arcs in a
graph are labeled with the access rights one node has to another. Although
oriented toward control of access, the purpose of ‘this model is to under-
stand the effect of rewrite rules that dynamically add and delete nodes and
arcs, and thus addresses a different problem domain. Ossher [18] presents
an extremely complicated, albeit general, graph model for describing en-
tity relationships at multiple levels of abstraction, which was developed for
specifying VLSI fabrication processes. While it would certainly be possi-
ble to recast that model to describe requisition and provision relationships,
the complexity inherent in the model hinders its usefulness for our current
purposes.

We have defined a model that can be used both to formally describe
visibility control mechanisms and to reason about those mechanisms in order
to provide characterizations of their strengths and weaknesses. In this paper,
we have shown how the model can be used to characterize the preciseness of
visibility control mechanisms. In so doing, we have pointed up the different
approaches to controlling entity visibility employed in four such mechanisms.
Based on examples such as this, we believe that the model can be a valuable
aid to software developers and language designers as they try to decide upon
the suitability of visibility control mechanisms.
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