Reasoning About Exceptions
During Plan Execution Monitoring

Carol A. Broverman
W. Bruce Croft

COINS Technical Report 87-16
February 1987

Computer and Information Science Department
University of Massachusetts
Ambherst, Massachusetts 01003

In a cooperative problem-solving environment, such as an office, a hierarchical plan-
ner can be incorporated into an intelligent interface to accomplish tasks. During plan
execution monitoring, user actions may be inconsistent with system expectations. In this
paper, we present an approach towards reasoning about, these ezxceplions in an attempt
to accommodate them into an evolving plan. We pPropose a representation for plans and
domain objects that facilitates reasoning about exceptions.

This work is supported by the Air Force Systems Command, Rome Air Development Center, Griffiss Air
Force Base, New York 1344 1-5700, the Air Force Office of Scientific Research, Bolling Air Force Base, District
of Columbia 20332, under contract F30602-85-C-0008, and by a contract with Ing. C. Olivetti & C.

Reasoning About Exceptions
During Plan Execution Monitoring

Carol A. Broverman
W. Bruce Croft

COINS Technical Report 87-16
February 1987

Computer and Information Science Department
University of Massachusetts
Ambherst, Massachusetts 01003

In a cooperative problem-solving environment, such as an office, a hierarchical plan-
ner can be incorporated into an intelligent interface to accomplish tasks. During plan
execution monitoring, user actions may be inconsistent with system expectations. In this
paper, we present an approach towards reasoning about these exceptions in an attempt
to accommodate them into an evolving plan. We propose a representation for plans and
domain objects that facilitates reasoning about exceptions.

This work is supported by the Air Force Systems Command, Rome Air Development Center, Griffiss Air
Force Base, New York 13441-5700, the Air Force Office of Scientific Research, Bolling Air Force Base, District
of Columbia 20332, under contract F30602-85-C-0008, and by a contract with Ing. C. Olivetti & C.

1 Interactive planning and exceptional occurrences

Hierarchical planners incrementally develop a plan at different levels of abstraction, impos-
ing linear orderings at each stage of the expansion to eliminate subgoal interactions (8,9,11].
The execution of the plan’s primitive actions must be monitored to ensure success. Ex-
ceptions and interruptions are common occurrences, and the planner must react to new
information made available during the various stages of plan construction and execution.

Existing plans may require modification or new plans may have to be generated.

We are concerned with using a planner as a support tool in a cooperative problem-
solving environment such as an office {2,4]. In such an environment, the planner is not
viewed as an omnipotent agent with complete knowledge of the domain and procedures for
accomplishing all plan steps. Rather, it aids the user in performing correct and consistent
tasks. The operation of the planner depends heavily on interaction with the user in order
to allow user control and to draw on the users’ domain knowledge. Interactive planners

necessarily interleave plan generation and execution since user actions determine the course

of future events.

Previous planners have provided general replanning actions which are invoked in re-
sponse to problems in the plan resulting from the introduction of an arbitrary state predi-
cate or “fact” [6,8,12]. In these systems, the replanning techniques provided do not attempt
to reason about failing conditions or possible serendipitous effects of the exception. These
methods simply make use of the explicitly linked plan rationale to detect problems and
determine what violated goals need to be reachieved. We view this type of replanning
as a “reactionary” tactic involving little intelligence, and reserve its use for exceptions

generated by external agents!.

To address the problems associated with interactive planning, we propose extending

the traditional replanning approach. When a user action deviates from the planner’s

!The planner attempts to satisfy a number of agents. The user(s) are regarded as internal agents, while

agents are considered to be external if the system lacks a model for their behavior (e.g., the real world).

predictions, the system should exploit available knowledge in an attempt to explain the
exceptional behavior. Such a constructive approach is preferred to replanning, since re-
planning, in this case, would attempt to achieve goals that the user deliberately chose not
to pursue. This paper discusses reasoning about exceptional occurrences as an approach
towards incorporating exceptions into a consistent plan. In the next two sections, we de-
scribe an interactive planner and the elements of our representation which are used to
support the reasoning process. We then outline the types of exceptions that can occur and
algorithms for handling them, within the context of an example taken from the domain of

real estate.

2 An interactive planner

Input to our interactive planner is provided as an abstract goal specification, and the output
is a partially or fully expanded procedural net, with partial temporal ordering (similar to
other hierarchical planners [8,9,11]). A procedural net contains goal nodes, action nodes,
and phantom nodes (goal nodes which are trivially true), along with links representing
the causal structure of the plan. Since complete expansion of the initial goal may require
additional information from the user, only action nodes are considered primitive, and thus

executable.

We distinguish between those primitive action nodes which the system is able to carry
out using available tools (system-ezecutable) and those which must be executed by the user
(user-ezecutable). An action node may be both system-executable and user-executable, in
which case automation is preferred. An example of an action which may be solely user-
executable could be the cancellation of an order; the decision to cancel must be initiated by
the user and thus can be modeled as a decision action occurring “offline” [3]. Transferring
information from a purchase request to an order form, however, is a primitive action which

may either be performed by the user or automated.

At any point during the planning and execution of a task, an ezpected-action list con-

tains the set of user-executable primitive actions which are not preceded by unexpanded
goal nodes. This is the set of actions which are predicted by the system to occur next.
As each system-executable or user-executable action is performed, the procedural net is
expanded further, producing an updated expected-actions list. A user action may be incon-

sistent with system expectations, in which case it is flagged as an ezceptional occurrence.

3 A representation for plans and domain objects

An important part of our approach is a uniform object-based representation of activities,
objects, agents and relationships® [2|. An integrated abstraction hierarchy (see Figure 2)
combined with a powerful constraint language facilitates the representation and use of
more sophisticated knowledge about plans, such as the policies of McDermott [7]. The
reasoning process described in the next section exploits this object-based representation.
A similar approach has been used by Alterman [1] and Tenenberg [10] to represent old

plans that are adapted to new situations.

The major features of our representation are a tazonomic knowledge, aggregation, de-
composition, resources, plan rationale and relationships. Each of these is defined and
illustrated using an example from the domain of house-purchasing, shown in Figures 1 and
2. Figure 1 depicts a partially expanded procedural net fragment which represents the
portion of a house-buying task which remains after a house has been selected for purchase.

Figure 2 shows a portion of the domain knowledge relevant to this task.

Any complex entity can be viewed as a composition of several other objects as well as
an aggregation of properties. An abstract activity object which can be decomposed into
more detailed substeps has a steps property containing a partial ordering of more detailed
activity steps. Decomposition of a domain object into other objects is expressed as a set

of object types named in a parts property. The aggregation of all properties of either

?In the remainder of the paper, we refer to plan descriptions as activities and objects of the domain

simply as objects.

inspect-house

exista(funds)

Pyl ittt S S S ittt H
. .
. (expansion) !
H get-mortgage :
. goal: exists(funds) !
.

. :
. : .
. t :
N (steps) : '
] A

])
: apply-for- o receive-mortgage- E
. mortgage 1lows) el approval '
' T (follows effect: approved{mortgage) '
: L]
. .
. :
: [remeriore] :
: I go-to-bank |—>| f‘ill-out-forml receive~info !
.

. .
= e

object activity agent relationship
C— oo
. o{ \ bt
fpply

Steps: (follows <go-to-place <place>>

form e <fill-out-form
date: <application-form>>)
number: Resources: capplication-form>

\ Effects: pending(<application-form>)

XX]
application-form Apply-for-mortgage b
applicant: Steps: (follows <go-to-place <bankd>
manipulated-by: <Fill-out-Form
<apply> <mortgage-
application-form>>)

mortgage- job- .
application~- application-
form form

Figure 2: Fragment of knowledge base

an activity or domain object, including decomposition information, constitutes the object

definition.

All entities are represented in a type hierarchy, with inheritance along ¢s-a links be-
tween types and their subtypes. Entities inherit the properties and constraints of their
supertypes. For example, a mortgage-application-form has various fields which are inher-
ited from the more general form object, and obeys the constraint stating that it can be
manipulated by an apply type of activity (inherited from application-form). Activities
inherit the preconditions and effects of their supertypes, as well as decomposition infor-
mation. For example, any apply activity may be decomposed into an activity of type
go-to-place followed by fill-out-form. Apply-for-mortgage is a subtype of apply and thus
inherits and specializes this decomposition. Apply-for-mortgage also inherits the effect of

pending(application-form).

An activity has an associated set of effects which are asserted upon its completion.
Effects are represented as predicates on domain objects. The goal of the activity is a dis-
tinguished main effect and is used for matching during plan expansion. An activity schema
also includes a declaration of the types of domain objects it may manipulate. The inverse
of this resources property is the manipulated-by property expressed in domain objects to
indicate which types of activities may affect them. The union of an activity schema with
the descriptions of associated object types provides a rich semantic representation of the

domain, incorporating objects and operators.

Causal knowledge is represented by goal properties and purpose links. Goals are of a
global nature, in that they relate an activity to a representation of its intent; that is, they
state what this activity accomplishes regardless of the context of the current procedural net.
Purpose links may be placed between two plan substep nodes in both static and dynamic
plan representations, to indicate that a substep of a plan produces a state required for the
proper execution of a later substep, much like NONLIN’s goal structure [9]. The purpose
links prove to be particularly important in determining whether or not an exception can

easily be incorporated into an existing plan.

Arbitrary relationships may also exist between domain objects. For example, a seller
relation may be depicted between an individual and a certain house, expressing the fact
that someone is selling a particular house. A special type of relationship which may exist
between two objects is a transformation relation, which contains a procedural attachment
for producing the correct instance of one type of object associated with the instance of
the second object type. For example, the abstract class object address may be related
to telephone-number through a special transformation specification which indicates that a

phone call using a phone-number may produce the corresponding address.

4 Unexpected occurrences

A user action occurs within the context of predictions made by the system. Exceptions can
be generated by unanticipated user actions. Because of the inherent open-endedness of the
domain, an unexpected occurrence may in fact be a valid semantic action, not recognized

as such because of an inaccurate or incomplete activity description.

Referring back to our example depicted in Figures 1-2, we can imagine the following

possible scenarios:

(a) Suppose recetve-mortgage-approval has occurred. We are expecting an tnspect-house
action by the user. Instead, the user executes the first step of the close-on-home
procedure, go-to-closing-location. This is an instance of a step-out-of-order exception,

since this step is expected, but not until later in the plan.

(b) Suppose the purchase-and-sale-agreement has been signed, and the system next ex-
pects the user to start carrying out the steps to obtain a mortgage (go-to-bank).
Instead, a sell-stock action is taken by the user, generating an unezpected-action

exception.

(c) Suppose that while the user is waiting for his mortgage to be approved, his friend

from the bank stops in the office and hands him a hard-copy of the approval. Since

6

the normal way of receiving approval is in the form of an electronic message, the user

simply offers a user-assertion by introducing the predicate approved(mortgage).

(d) Suppose, that while executing the fill-out-form substep of the apply-for-mortgage
step, the user fills in the address field with a phone-number instead of an address,
triggering a constraint violation. This is a case of an ezpected action, unezpected
parameter type of exception, where a static object constraint violation has occurred.
Unexpected parameters can result in violations of other types of constraints, such as
a static constraint in the activity schema, or a constraint dynamically posted on a

domain-object by an activity instance.

The above scenarios illustrate the classes of unexpected occurrences which can arise.
Actions can be out-of-order or completely unezpected. A user-assertion arbitrarily in-
troduced to the system may have implications for the current plan. A user assertion is
modeled as an unexpected action with the assertion as its main effect, and is treated as
an unexpected action. An expected action may occur with an unezpected parameter, re-
sulting in the violation of a static or dynamically posted object constraint, or the violation
of a constraint within the plan itself. In the following sections, we develop algorithms for
reasoning about the various types of exceptions, and show how each of the above scenarios

can be resolved, resulting in a consistent plan.

5 A general architecture for exception handling

While this paper focuses primarily on the reasoning process used to handle exceptions, a
general architecture designed to accommodate exceptional occurrences is shown in Figure
3. Several of the modules are similar to those described in other hierarchical planners,
specifically [12]. We have extended the basic replanning model to include additional mod-
ules (highlighted in Figure 3) to address exception handling. Exceptions are detected by
the execution monistor and classified by the ezception classifier. Violations in the plan

caused by the introduction of an exception are computed by the plan critic. Real-world

(not user-generated) exceptions are handled by the replanner. The replanning approach
we have adopted is similar to that of [12], where one or more of a set of general replanning
actions is invoked in response to a particular type of problem introduced into a plan by an
exceptional occurrence. For interactive planning, we extend the set of general replanning

actions to include the insertion of a new goal into the plan.

The ezception analyst applies available domain knowledge in an attempt to construct
an explanation of an exception. Its primary function is to determine the relationships and
compatibility of the actual events to the expected actions, goals and parameters. The
particular entity relationships investigated by the exception analyst are determined by the
type of internal exception. The exception analyst may be triggered by both external and

internal exceptions, although it is primarily used for internal exceptions.

The paradigm of negotiation [5] has been used as a model for reaching an agreement
among agents on a method for accomplishing a task. We propose to use negotiation for
establishing a consensus among agents who are affected by an exception. The negotiator
determines the set of affected agents and uses the information provided by the exception

analyst to present suggested changes to the original plan.

We distinguish between effecting and affected agents with regard to the occurrence
of an exception. The effecting agent is that agent who has caused the exception. An
affected agent is one whose interests are influenced (either positively or negatively) by the
exception. Affected agents are those who are “responsible” for the parts of the plan where
problems are detected by the plan critic. An external agent can never be an affected agent

since the system has no model of an external agent’s interests or behavior.

Using information provided by the exception analyst about relationships between actual
and expected values, the negotiator initiates an exchange between the effecting agent and
the affected agents. The negotiator and plan critic execute in a loop in which the plan critic
analyzes changes suggested by the negotiator to detect any problems introduced. This loop
is exited when no further problems are detected by the plan critic and all affected agents

are satisfied.

EXECUTION | [l exceprion
MONITOR CLASSIFIER

PLAN

CRITIC
REPLANNER EXCEPTION
IHEGOTIATORI ANALYST

KHDWLEDGE
BASE

Figure 3: An architecture for a cooperative planner

The negotiator also directs the acquisition of information from the user, if required,
again using a trace of the exception analyst’s search to guide the questioriing. Negotiation
may also be invoked upon the failure of replanning. If the negotiator or replanner produces
a consistent explanation of the exception, control is returned to the planner to continue
plan execution and generation. A successful negotiation can result in a system which has
“learned,” that is, the static domain plans may be augmented with knowledge about the

exception and thus enhances the system’s capability to handle future similar exceptions.

6 Reasoning about exceptions

The behavior of the exception analyst is guided by some general principles derived from
the type of the exceptional occurrence. A step-out-of-order exception, for example, may
imply that the user may be attempting a short-cut, while an unezpected action exception
may be eventually recognized as an intentional substitution of the unanticipated action for
the expected action. The exception analyst performs a controlled exploration throughout

the knowledge base which is guided by the current state of the procedural network as well

as the type of exception which has occurred. If a number of strategies are possible, the
least costly is attempted first. In the following sections, we present algorithms for handling
the various types of exceptions, illustrating (where relevant) with the example scenarios

developed in section 3.

6.1 When the action taken doesn’t match an expected one

If a user performs an action which doesn’t have a match on the ezpected-actions list, the
exception classifier is invoked to determine whether this action is entirely unezpected or
is simply out-of-order. This determination is made by a search through possible plan

expansions.

6.1.1 Unexpected action

If a user action occurs which is not expected anywhere in the plan, the exception analyst
attempts to establish whether this unexpected action contributes to the pending task in any
way. The fundamental assumption is that the unexpected action is related to unachieved

goals in the remainder of the plan.

The unexpected action may be related to the expected action or to another plan step
which is predicted later in the plan expansion. The actual contribution made by this
exceptional occurrence can be at an arbitrary level of abstraction and granularity within
the task. In other words, an action may take the place of an expected action, satisfy the
precondition of a later action, or eliminate the necessity of an entire sequence of later
actions. The effects of the actual action are compared with the preconditions, effects,
and goals of other nodes within the procedural net. The exception analyst looks for the
potential contributions by focusing on the most local contributions first. The control of

the exception analyst is illustrated by the following algorithm:

1. Can the exceptional action be substituted for an expected action? If either of the

10

following criteria are met, a substitution should be allowed:

(a) Effects of the exceptional action ezactly match those of the expected action.

Scenario (c) is an example where a user-assertion is introduced to in-
form the system of the results of an actions which has occurred “of-
fline.” The exception analyst notes that the effects of recetve-mortgage-
approval are matched by this dummy action, making the expected ac-

tion no longer necessary.

(b) The intersection of effects of the exceptional and expected actions are exactly

those effects of the expected action which have purpose links to later plan steps.
2. Does the exceptional action allow a simplification of the remainder of the plan?

(a) If the action can be substituted for a later step in the plan (established by the
above method), treat the exception as an out-of-order action (below) and record

the substitution of the matching actions.

(b) Do any of the effects of the exceptional action match with an unachieved effect
which is the purpose for a later plan step? If so, a later precondition is satisfied;

note that the precondition is now a phantom, but do not modify expectations.

3. Does the unexpected action allow an entire hierarchical wedge to be removed from

the plan?

If the exceptional action results in the satisfaction of a higher-level goal, the steps
comprising the expansion of that goal may no longer be necessary. The exception
analyst determines the parent node of the expected action. If the goal of this parent
node is achieved by the effects of the exceptional action, then the following is done:
Check to see if the effects of each of this parent’s children (excluding exceptional
action itself) are now true. If none of the unachieved effects have purpose links to

steps occurring after the parent node, then a substitution is allowed. The exceptional

11

node is incorporated in the procedural net, and the expected action, its parent and

siblings are considered to be achieved.

This method can be applied to scenario (b). The exception analyst notes
that the exceptional step sell-stock has the same goal (ezists(funds)) as
a more abstract step in the plan expansion, namely get-mortgage. The
user may intend to buy the house with his own funds, and not the bank’s.
The hierarchical wedge of the plan which constitutes the expansion of get-

mortgage is removed from the plan and replaced by sell-stock.

6.1.2 Out-of-order action

If the action is judged to be an out-of-order plan step, there are two possibilities to consider:

1. The original ordering may have been specified as a preference, but there are no strict
dependencies between the effects and preconditions of actions. In order to determine
if this is the case, the exception analyst must examine the causal structure of the plan.
Specifically, if there are no purpose links between the actual step and an intervening

step which has not been performed, the ordering may be relaxed.

This case applies to scenario (a). The exception analyst notes that the
inspect-house action is optional, since there are no purpose links from that
node to nodes later in the plan. Therefore, a relaxation of the originally

specified ordering is allowed.

2. The intervening steps between the expected and actual actions are no longer neces-
sary. This may be because the goals of the intervening steps may have been accom-
plished in some “offline” fashion. The exception analyst does nothing in this case,
but passes control to the negotiator, which involves the user in an attempt to verify

the goals of the intermediate steps.

12

6.2 Unexpected parameter exceptions

When an expected action occurs, an unexpected parameter value can cause a constraint
violation. Since parameter values are usually objects themselves, the exception analyst is
invoked to determine what relationships exist between the object provided as the actual
parameter value and the object which was ezpected as the parameter value. The exception

analyst attempts to establish the following:

1. The two objects may have a common ancestor in the object hierarchy. If so, the
exception analyst constructs the set of features unique to the expected object, since
the lack of these features in the object actually provided as the parameter value may

be problematic.

2. The two objects may both be manipulated-by activities which belong to a common

activity superclass. If so, they probably are utilized in similar fashions.

3. There may be any number of other relationships between the two objects. Specifically,
a transformation relationship may link the object provided with the expected object,

describing a method to the obtain the expected parameter value.

To handle scenario (d), the exception analyst notes that the phone-number
object and address objects are linked through a transformation relation-
ship, specifying that a procedure call may be used on the phone number

to produce the corresponding address.

4. The discrepancy between the two parameters may result from differing quantities
of the object type. If so, an excess may or may not be allowable. The semantics
associated with the underlying data type are particularly important when handling
quantity discrepancies, since commonsense reasoning may be required. For example,
if the go-to-bank step was supposed to result in withdrawing 50 dollars, emerging
with 100 may not be problematic, but baking a cake in a 450 degree oven when the

recipe calls for 350 degrees may have unsatisfactory results.

13

This information collected by the exception analyst is used during negotiation to estab-
lish whether the exceptional parameter should be allowed. The scope of the knowledge base
which may be affected by the exception is dependent on the type of constraint violation
which has occurred. Modifications and consequences which may result from a static object
constraint violation, for example, are localized to the static knowledge base, while plan
constraint violations and dynamic object constraint violations may have more far-reaching

consequences for the remainder of the plan.

7 Status

Implementation of a prototype which incorporates the ideas presented in this paper is
currently underway. One of the major aims of this work is to augment domain plans with
knowledge acquired during exception handling. We are currently looking at the issue of

propagating change in an object-based representation.

References

[1] Alterman, R. “An adaptive planner”, Proceedings of AAAI-86, 65-69, 1986.

[2] Broverman, C,; Croft, W.B. “A knowledge-based approach to data management for

intelligent user interfaces”, Proceedings of VLDB 11, Stockholm, 96-104, 1985.

[3] Broverman, C.A., Huff, K.E., Lesser, V.R. “The role of plan recognition in design of

an intelligent user interface”, Proceedings of IEEE Conference on Systems, Man, and

Cybernetics, 863-868, 1986.

[4] Croft, W.B.; Lefkowitz, L.S. “Task support in an office system”, ACM Transactions
on Office Information Systems, 2: 197-212; 1984.

[5] Fikes, R.E. “A commitment-based framework for describing informal cooperative

work”, Cognitive Sctence, 6: 331-347; 1982.

14

[6] Hayes, P.J. “A representation for robot plans”, Proceedings IJCAI-75, 181-188, 1975.
[7) McDermott, D.V. “Planning and Acting”, Cognitive Science, 2, 1978.

[8] Sacerdoti, E.D. A Structure for Plans and Behavior, Elsevier North-Holland, Inc.,
New York, NY, 1977.

[9] Tate, A. “Generating project networks”, Proceedings IJCAI-77, Boston, 888-893, 1977.
[10] Tenenberg, J. “Planning with Abstraction”, Proceedings of AAAI-86, 76-80, 1986.

[11] Wilkins, D.E. “Domain-independent planning: Representation and plan generation”,
Artificral Intelligence, 22: 269-301; 1984.

[12] Wilkins, D.E. “Recovering from execution errors in SIPE”, SRI International Techni-

cal Report 346, 1985.

15

