oo

[\

‘Wp

The Diogenes Design Methodology:
From Embedding To Layout

Lenwood S. Heath
Arnold L. Rosenberg
Bruce T. Smith

COINS Technical Report 87-17

'V.«

THE DIOGENES DESIGN METHODOLOGY:
FROM EMBEDDING TO LAYOUT

Lenwood S. Heath
Department of Mathematics
MIT
Cambridge, MA 02139

Arnold .. Rosenberg'
Department of Computer and Information Science
University of Massachusetts
Ambherst, MA 01003

Bruce T. Smith
Design Research & Technology Div.
Microelectronics Center of North Carolina
Research Triangle Park, NC 27709

March 10, 1987

!The research of this anthor was supported in part by NSF Grant DMC(-85-04308 and by SRC
Contract 85-02-054.

-

Abstract

The DIOGENES methodology produces designs for fault-tolerant VLSI processor arrays in
three stages. In the first stage, the desired array is viewed as an undirected graph and is
embedded in a book; this stage has been well studied. In the second stage, a (re)configurable
array of identical physical processors that will realize the desired array is constructed. In
the third stage, the book-embedding is converted to an efficient fault-tolerant layout of
the array, by associating each logical processor of the book-embedding with a processor of
the physical array; this stage is the focus of the current study. We consider two quality
metrics for layouts, the first embodying an idealized notion of average delay, that relates
to power consumption, and the second being the length of the longest run of wire. For the
average-delay measure, we present four algorithms that optimally assign the m vertices of
the embedded graph to the n fault-free processors that have been fabricated. The most
general algorithm makes no assumptions about the structure of the array or the physical
format of the processors; it runs in time O(m-(n - m)?). The other algorithms assume that
the processors are laid out in such a way that interprocessor distances obey the triangle
equality; they run in times ranging from time O(max{m,n - m} - logmin{m,n — m})
for certain array structures, including pyramid-arrays, to time O(max{m,n ~ m}) for a
narrow class of array structures, including linear arrays. For the max-wire-run cost measure,
we show that the problem of finding cost-optimal vertex-to-processor assignments is NP-
complete. However, we do present an algorithm that yields, in time O(m - (n — m)?),
vertex-to-processor assignments that are within a factor of 3 of optimal (they are optimal
when the input graph-embedding is outerplanar). This algorithm can easily be converted
to one that yields, in time O(m- (n — m)3), vertex-to-processor assignments that are within
a factor of 2 of optimal. Finally, we present an algorithm that yields optimal assignments
when the interprocessor distances obey the triangle equality; this algorithm operates in time
O(m - (n — m)-log(m - (n — m)) - log M), where M is the largest interprocessor distance.

1. INTRODUCTION

DIOGENES is a methodology for designing fault-tolerant VISI arrays of identical processing
elements (PEs, for short) |16, 5|. The methodology operates in three stages.

e It converts the given design problem to an instance of the problem of embedding graphs
in books.

o It constructs a physical array of processors with (re)configurable stacks of buses (cf.
[16]) which will realize the desired logical array.

* It uses the constructed book-embedding to assign logical processors to fault-free phys-
ical processors, thereby obtaining the sought fault-tolerant layout.

The graph-embedding stage of this process has been studied at some length [4-7, 9-12,
14, 15]. The physical design stage is the topic of current research (13, 18]. The final stage,
which converts the book-embedding to a layout, has received little attention thus far. The
present is the first of a projected series of papers devoted to the process of converting a
book-embedding of a graph to an efficient fault-tolerant layout of the associated processor
array. This paper is devoted to the problem of efficiently assigning graph vertices in a
book-embedding (which represent the processors of the logical array) to processors in the
physical array.

The embedding-to-layout problem can best be described by the following example. Say
that the array we wish to realize has the structure of a complete binary tree. Say further
that after fabrication and testing, we find that 510 of the PEs of our physical array are free
of faults. Since the largest complete binary tree we can realize on 510 PEs has only 255
nodes (256 being the largest power of 2 not exceeding 510), we must decide which 255 fault-
free PEs to use. We want to make this decision in a reasonable amount of time, and we want
the assignment to be one that enhances the run-time efficiency of the array. Accordingly, in
this paper, we formulate two measures of the run-time cost of a vertex-to-PE assignment,
and we seek algorithms that yield assignments that are (nearly) optimal in cost.

Our first measure of the cost of an assignment idealizes the average delay incurred
when running the desired array as realized by that assignment on the physical array. The
average-delay measure is of particular importance when the array is to be used in a MIMD
discipline and is also related to power consumption in an MOS realization of the array.
The two determinants of this cost are: (1) the cut-profile of the given book-embedding of
the undirected graph associated with the array of interest, i.e., the sequence of edge cuts
between consecutive vertices of the embedding, and (2) the delay-profile of the sequence of
PEs used in the assignment, i.e., the sequence of distances between successive PEs that hold
graph vertices that are consecutive in the book-embedding; the distance may be measured
by the number of switches a signal must pass through as it goes belween these PEs or by

the number of unused (faulty or fault-free) PEs that are passed over by the signal. The
cost measure is simply the inner product of these two sequences.

Our second measure of cost relates to the maximum delay incurred by the assignment.
The maximum-delay measure is of particular importance when the array is to be used in
a SIMD discipline. This cost measure is just the length of the longest run of wire in the
layout.

The algorithms we present find their output assignments rather efficiently. Say that the
array we wish to realize has m vertices and that we have access to n fault-free PEs in the
fabricated array.

For our first, average-delay, cost measure, we present four algorithms that find optimal
vertex-to-PE assignments. Our most general algorithm, which makes no assumptions about
the structure of the input graph or the physical format of the PEs, operates in time O(m -
(n — m)?). When inter-PE distances obey the triangle equality we can find algorithms that
run materially faster. For arbitrary graph structures, we have an algorithm that operates
in time

O (t-[(n—m)? + (m+1-(n ~ m)) - log(n ~ m)])

(a gross upper bound), where ! is the number of local minima encountered when scanning
the book-embedding’s cut-profile from left to right. For special families of graphs, including
pyramids, simplified algorithms, running in time O(max{m,n - m} - logmin{m,n — m}),
yield optimal assignments. Yet other families, such as lines, can be assigned optimally in
time O(max{m,n - m}).

For our second, max-wire-run, cost measure, the picture is less desirable. We show that
the problem of finding max-wire-run-optimal assignments is NP-complete. We respond
to this demonstration of probable computational intractability by seeking nearly optimal
assignments. We devise an algorithm that yields, in time O(m - (n — m)?), an assignment
that is within a factor of 3 of optimal. When the input graph-embedding is outerplanar, the
assignment produced by our algorithm is an optimal one. At the cost of increasing running
time to O(m - (n — m)3), this algorithm can be modified to produce assignments that are
within a factor of 2 of optimal. When inter-PE distances obey the triangle equality, our
best algorithm finds an optimal assignment in time O(m - (n — m)-log(m- (n — m))-log M),
where M is the largest inter-PE distance.

To put the time-bound T'(m,n) = O(m - (n — m)?) of our general algorithms in per-
spective, consider the following special version of the fault-tolerance problem. Say that we
fabricate N PEs, n of which survive the fabrication processing, and that our task is to realize
the largest array of the desired structure that can be accommodated by the surviving PEs;
let this largest array have m vertices. If the desired arrays have the structure of complete
binary trees or of X-trees, then even in the worst case, n --m < m (ifn >2m+ 1, we
could construct an even bigger array); hence, in this case, our algorithms operate in time
T(m) = O(m®). By similar reasoning, when the desired arrays have the structure of square

grids or of pyramids, then even in the worst case, n—m = O(y/m), so our algorithms oper-
ate in time T'(m) = O(m?). As a final example, when the desired arrays have the structure
of networks like the Benes or FFT networks, then even in the worst case, n —m = O(logm),
so our algorithms operate in time 7'(m) = O(m - log? m).

Although the DIOGENES methodology is the prime inspiration for this work, the prob-
lem we address is encountered by any fault-tolerant design methodology that nses a graph-
embedding stage as a precursor to the assignment of logical PEs to physical PEs (as for
instance, in [3]). Since our algorithms use only the cut-profile or the edge lengths of the
linear embedding of the input graph, as opposed to the detailed structure of the book em-
bedding, our measures of the cost of a layout and our cost-optimizing layout algorithms
solve the analogous layout problem for other design methodologies that view the array as
an undirected graph and begin the layout process by seeking a linear embedding of the
graph.

The remainder of this paper is organized in three sections. Section 2 contains an overview
of the DIOGENES methodology, stressing its connections with the book-embedding prob-
lem. Section 3 is devoted to algorithms that find vertex-to-PE assignments that are optimal
with respect to the average-delay cost measure. Section 4 concerns itself with algorithins
that (nearly) optimize the max-wire-run cost measure.

2. PROLEGOMENA

2.1. The DIOGENES Design Methodology

The Approach Ezemplified

We excerpt from [16]. The DIOGENES design methodology [16, 5] achieves tolerance
to faults via the following scenario. One lays out his PEs in a (logical, but not necessarily
physical) row, with some number of “bundles” of wires running above the row of PEs; all
PEs are hooked into the bundles in the same format. One scans along the row of PEs
testing which are faulty and which are fault-free. As each good PE is encountered, it is
hooked into the bundles of wires through a network of switches, thereby connecting it to
the fault-free PEs that have already been found and preparing it to connect to those that
will be found. For illustration, one cell of a DIOGENES layout of the depth-4 complete
binary tree appears schematically in Fig. 1(a).

The four lines above the PEs comprise the single bundle needed for the layout.
The switches are controlled by two externally set variables, G; which is high
when PE; is good and low when it is faulty, and L; which is high when PE; is
to be a leaf of the tree and low otherwise.

The layout’s single bundle has wires numbered 1 to 4. As one encounters a good PE that is
to be a leaf of the tree, the PE is connected to line 1, thereby preparing it to connect to its

father in the tree; simultaneously lines 1,2, and 3 “shift up” to “become” lines 2,3, and 4,
respectively; switches disconnect the left parts of the lines from the right parts so node-to-
node connectivity remains correct; see Fig. I(c). The bundle has thus behaved like a stack
being PUSHed. A good PE that is to be a nonleaf of the tree is connected to the bundle
in two stages. First, it is connected to lines 1 and 2 of the bundle, thereby connecting it to
its sons in the tree; simultaneously, lines 3 and 4 “shift down” to “become” lines 1 and 2,
respectively; again switches maintain proper node-to-node connectivity; see Fig. 1(d). The
bundle has here behaved like a stack being POPped. Second, the PE PUSHes a connection
onto the stack, to prepare for eventual connection to its father in the tree.

As in this example, the DIOGENES methodology attempts to simplify both the ma-
chinery and the process required to configure the wire bundles in the face of faults, by
organizing all bundles as stacks (or - cf. [16] - as queues). Such organization minimizes the
number of control bits needed to set the switches to configure the array. In either case, the
methodology organizes the physical PEs in a logical row.

It is worth emphasizing that the logical linearity of the PE format does not
demand physical linearity: In [17] we suggest enhancing the run-time efficiency
of DIOGENES designs by adding shortcuts to the row of PEs, as in Fig. 2,
so that signals do not have to traverse every long stretch of faulty PEs. In a
forthcoming paper, we shall build on the work here to determine the optimal
placement and number of such shortcuts: There is a tradeoff between their
effectively shortening runs of wire on the one hand, and their increasing the
number of switches a signal must traverse on the other.

The General Methodology

In the process of generalizing the examples of [14] to a methodology that would apply
to arrays of arbitrary structure, Chung, Leighton, and Rosenberg 5] partitioned the fault-
tolerant design problem into two quite different types of tasks: First one translates the
layout problem into a special type of graph-embedding problemn. Then one converts the
embedding produced by the first stage to an efficient layout.

The Graph-Embedding Stage. The layout-via-stacks version of the DIOGENES method-
ology can be abstracted to the following graph-theoretic problem [5, 6], which is of interest
in its own right [2].

Since proper use of the G; variables, as in Fig. 1, allows one to bypass faulty
PEs with no conceptual difficulty, we ignore the fault-tolerating aspect of the
design problem and concentrate on the issue of configuring the good PEs into
the desired structure using stacks.

One wants to lay the graph G out in a book:

o the vertices of G lie along the spine of the book;
o each edge of G lies on a single page;

e no two edges on the same page cross.

The essential property of stacks as layout mechanisms is that edges that are laid out via
the same stack do not cross. This central insight establishes the equivalence of the book-
embedding problem and the stack-layout problem: each page of the book corresponds to
a stack in the layout. It leads also to a simple proof that the one-page, hence, one-stack,
graphs are precisely the outerplanar graphs [2].

The Embedding-to-Layout Stage. We now formalize the discussion of this stage from the
Introduction.

2.2. The Layout Problem Formalized

Describing our algorithms and cost measures requires nonstandard terminology that we de-
velop now. We shall always assume that we start out with an m-vertex connected undirected
graph G = (V, E)), having no self-loops or multiple edges.

The Graph and Its Linear Embedding. Let us be given a linear embedding of G (possibly,
though not necessarily, via a book-embedding). We shall identify the linear embedding with
the associated linearization of G’s vertices

A = Up, V2, , Uy,

The PE Array and Its Delay Matriz. Let us be given a (logically) linear sequence of N
processing elements
PEI)PEZ)'“)PENa

(as mandated, say, by the DIOGENES methodology) representing the patential processors
for realizing the array underlying the graph G. Let the (possibly proper) subsequence of n
PEs
I1 = pey, pes, - - -, pe,

denote the sequence of fault-free PEs, those that are actuall y available to realize the vertices
of G. We associate with the sequence II an n x n upper triangular matrix A" called the
inherent-delay matriz of I1: each entry AHJ-, t < j, is defined as follows. Say that pe; = PE,
and that pe; = PE,. (This establishes where the fault-free PEs stand in the entire linear
sequence of PEs.) Then A,[.lj is the shortest physical distance between PE, and PE},
utilizing whatever shortcuts are available. If no shortcuts are available, so the physical, as
well as the logical, arrangement of the PEs is a linear sequence, then

A, b a,

and the distance measure is (for obvious reasons) said to be additive.

At the designer’s discretion, the “distance” represented by A ; might measure
the smallest number of PE-widths a signal must traverse when gomg from fault-
free pe; to fault-free pe;, or it might measure the smallest number of switches a
signal must encounter when making the same trip (utilizing all available short-
cuts, in both cases). In any case, the “distance” is intended to measure the
smallest possible delay incurred by using pe; and pe; to realize consecutive ver-
tices of G; accordingly, we shall henceforth refer to “delay” rather than “dis-
tance”. Table 1 illustrates the PE-width measure of delay; it presents A™ for
the PE-array of Fig. 2, first assuming that the shortcuts in the Figure were
not present (the additive case) and then utilizing the indicated shortcuts (the
nonadditive case).

Layout. Given an embedding A and a sequence I1, a layout or, equivalently, a (vertex-to-
PE) assignment is an order-preserving (perforce, one-to-one) association ay i of the vertices
of A with the PEs of II. (By “order-preserving” we mean that if apn(vi) = peq, and if
ap,n(vj) = pes, then a < b whenever ¢ < j.)

For the sake of precision, we have been rather formal to this point. We shall now permit
ourselves the luxury of a shorthand notation: We shall henceforth

e confuse G and A, as by referring to “an edge of A”, with the obvious meaning;

o refer to both sequences A and II by their subscripts, allowing context to clarify whether
1 refers to vertex v; or PE pe;;

¢ no longer subscript the assignment «.

In summary, we shall view a as a one-to-one function from the set {1,2,---,m} into the
set {1,2,---,n}, that preserves order in the sense that for all 1 < i < m, a(f) < ofi + 1).

Maz- Wire-Run Cost of an Assignment. Say we are given the embedding A, the array I1
of surviving PEs, and the assignment a. The maz-wire-run cost of the assignment a is the
quantity

1-1
BN
MCOST(a) = . max " {}_, Aa(k),a(k+l)}

The unexpected summation in this definition is needed because A™ contains delay infor-
mation only for pairs of vertices that are consecutive in A.

Delay-Profile. The delay-profile of the assignment o : {1,2,---,m} — {1,2,---,n} is
the sequence
6(0) = 61362) o ')6m.—l
defined by
& = Mgy afivn)

for 1 <1 < m. When the delay measure is additive, this definition of §; is equivalent to

a(i+1)-1

6 = Z A}cl.k+l)
k=af(s)

whence the term “additive”.

Cut-Profile. We associate with any linear embedding A its cut-profile
k(A) = k1,82, Km1;

each «; is the number of edges of G whose left termini lie in the set {v(,vq,-,v;} and
whose right termini lie in the set {Vigr, Vi, o, om).

Average-Delay Cost of an Assignment. Say we are given the embedding A with cut-
profile £(A), the array Il of surviving PEs, and the assignment o with delay-profile §(a).
The average-delay cost of the assignment o is the inner product

m-1

ACOST(a) == Y ki - &

i=1
of the cut-profile and the delay-profile.

Layout Problems. Our main interest, of course, is not in finding the MCOST or ACOST
of a given assignment, but is rather in finding that assignment, for given A and I1, that
has minimal MCOST or ACOST. To this end, we formalize the notion of a layout problem,
relative to the m-vertex embedding A and the n-PE sequence [I. Given any quadruple of
integers 1, 7,a,b, with 1 <1 < 5 < m,1<a<b<n,andj--i<b- a,the layout problem
(specified by)

(1,7; a,b)

is the problem of finding an order-preserving one-to-one assignment
a:{i,{+1,--,5} - {a,a1 1,---,b}.

Any such assignment (which can be viewed as a partial solution to the overall vertex-to-PE
assignment, problem) is termed a solution to the problem (7, 5; a,).

When one or more parentheses in a problem specification are replaced by brackets, as in
[¢,7;a,b) or (3, 7; a,b] or [1, 7; a,b], the associated problem is amended so that we admit as
solutions only assignments « for which, respectively, a(f) == a, or a(7) = b, or both aff) =a
and a(y) = b.

By an obvious extension of terminology, a layout problem is additive precisely if the
delay measure of its underlying sequence of PEs is additive.

In this new terminology, the subject of our study is MCOST- or ACOS T-optimal solu-
tions Lo the layout problem (1,m; I,n).

Cost of a Problem. The entities needed to compute our cost measures are readily
available given any layout problem. We have the lincar embedding A, the cut-profile x(A),
and the inherent-delay matrix A", hence the required sub-parts of them. Given any problem
solution, we can define ils associated delay-profile, using A"". We can thus talk about the
two costs of a problem solution. We leave details to the reader. Building on this extension
of our cost measures, we define the maz-wire-run cost (resp., the average-delay cost) of the
layout problem (i, j; a,b), denoted MCOST (¢, j;a,b) (resp., ACOST(3, j; a,b)), to be the
minimum MCOST (resp., ACOST) of any assignment that solves the problem.

2.3. The Meat in the Problem

Perhaps one’s first inclination when faced with a layout problem is to seek the COST-
optimal (either ACOST or MCOST) vertex-to-PE assignment a that has no gaps. (A
gap in « is an index 1 for which a(i + 1) > o(t) + 1.) We show now, via an admittedly
contrived family of examples, that gap-free assignments can be dramatically more COSTly
than assigninents that allow gaps, even in additive problems. Indeed, for our examples, the
best gap-free assignment has ACOST proportional to the 8/2 power of the ACOST of the
optimal assigment; and it has MCOST proportional to the square of the MCOST of the
optimal assignment. This is bad news since gap-free assignments are easier to find than
ones with gaps; it is good news since it demonstrates the challenge in the problem.

Proposition 1 For every integer n, there is a graph G, having O(n) vertices, a linear
embedding A, of Gy, and an array of PEs Il,, with additive delay matriz A", with the
Jollowing property. There exists an assignment oy, of the vertices of A, to the PEs of Il,
such that:

ACOST(ay) = 6(n?)

and
MCOST(ay,) = 8(n).

However, for any gap-free assignment o8/ of the vertices of A, to the PEs of I,,,
ACOST(a¥)) = Q(n?)

and
MCOST (%)) = Q(n?).

Proof Sketch. We merely describe the entities, leaving calculational details to the reader.
For each n, the embedding A, has vertex-set {1,2,---,5n} and edges
{i+D)1<i<Bn}u{(1+j,2n-7)0<j<n}u{(Bn+1+45n-3)0<7<n}

The graph G|, can thus be visualized as a long path with “rainbows” at either end.

For each n, the PE array I1,, has PEs {1,2,---,6n}. Presenting only the relevant portion
of the delay matrix, we have:

1 f1<t<2n
Alr =31 ifdn+1<i<6n
n otherwise

Informally, the desired small-COST assignment a,, puts the rainbows of A, at the far
ends of 11, spreading the sparse middle portion of A, (which is just a path) across the center
of I1,, by placing a vertex at every other good PE. In contrast, any gap-free assignment o
must place some positive fraction of the rainbow vertices of A,, in the center portion of I1,.
The large inter-PE delays in this center portion force the rainbow edges to be stretched,
leading to the noted large ACOST and MCOST. Details are left to the reader.

The reader can casily verify that any layout of G, in any PE-array has ACOST(ay,) =
Q(n?) and MCOST(ay) = Q(n), so our example, while contrived, does not totally distort
reality. O

3. AVERAGE-DELAY-OPTIMAL ASSIGNMENTS

3.1. The Time-Cost of Finding Optimal Assignments

In this section we present algorithms for finding A COS T-optimal vertex-to-PE assignments.
We begin with an overview of the route we shall be travelling. Some terminology about
additive problems is needed.

A sequence 81,852, *, 8p of integers is regularif s3 — 8y =83 — 83 = ++: = Sp—8p_1. A
regular sequence is, thus, a finite arithmetic progression.

A (perforce, nonregular) sequence of integers has a dip (resp., a hump) if there is a
sequence of indices 7,1 + 1,--+,1 + k, each index an element of {2,3,---,p — 1}, such that

° si—1 > s (resp., si_1 < s;);
® 8 = Si41 = 00 = Sigks
© Sitk < Sitk+1 (resp., Siyk > Sipk1).

Each index ¢,1 + 1,--+,i + k is a witness of the dip (resp., the hump). One sees easily
that a sequence has a dip (resp., a hump) unless it is either monotonic (as is every regular
sequence) or “single-humped” (resp., “single-dipped”).

Theorem 1 Let A be a linear embedding of an m-vertez graph, with cut-profile k(A), and let
Il be an n-PE array of fault-free PEs. There is an algorithm that finds an ACOST-optimal
assignment of the vertices of A to the PEs of Il, that operates in time

T(m,n) = O(m- (n - m)?).

When the layout problem is additive, there is an algorithm that finds an ACOST-optimal
assignment, that operates in time

T(m, n) = O(max{m,n — m})
if (A) is regular;
T(m,n) = O(max{m,n — m} - logmin{m, n — m})
if K(A) is dip-free;
T(m,n) =0 (I- [(n~m)* + (m +1- (n — m)) -log(n — m)])
for any K(A) having I dips.

The remainder of this section is devoted to presenting, validating, and analyzing algo-
rithms that prove Theorem 1.

3.2. An Algorithm for Arbitrary Layout Problems

Our most general algorithm finds an ACOST-optimal assignment in time O(m - (n — m)?).
By Proposition 1, whatever strategy we use must permit gaps in the assignment. The
following algorithm uses dynamic programming to investigate all possible gaps efficiently.

Algorithm ACOST: General Cut-Profiles
Given: the embedding A, its cut-profile

K'(A) = K1,K2,* ", Km--1,

the sequence I, and its inherent-delay matriz AT
Problem: Find the ACOST-optimal assignment o of A to II.

Step 1. For each of the n — m + 1 fault-free PEs pep, 1 < p < n —m -+ 1, in I, create the
partial assignment
Q1p - {l} - {1,23"'3}’}

that places vertex 1 at pep, i.e., a1 p(1) = p; assign o p the ACOST

ACOST(ay,) = 0.

10

Retain both the ACOST and the partial assignment that engendered it.

Step 2. For each of vertices v = 2,3,---,m in turn: For each of the n - m + 1 fault-free
PEs pep, v < p < n - m+ v, in I, determine the ACOST of the ACOST-minimal partial
assignment

Qyp {],2,"‘,11} - {',2,"',P}

that places vertex v at pey, i.e., a, p(v) = p. This ACOST is computed as follows.

p-1
ACOST(a,p) = min {ACOST(0y1) + myor - A1)

Update and retain both the n — m +1 ACOSTs and the partial assignments that engender
them.

Step 3. Output the final ACOST,
ACOST(a) = min {ACOST(am,)}
t=m

and the assignment o that attains this ACOST. 1)
Validation and Analysis of Algorithm ACOST

We begin by justifying the ranges of PE indices that we consider as homes for the
vertices in the Algorithm. For each vertex v := 1,2,--+,m, it is clear that vertex v cannot
be placed on any PE with index less than v, or else there would be no place for vertices
1,2,--+,v — 1, since assignments must be order preserving; similarly, vertex v cannot be
placed on any PE with an index higher than n — m + v, or else there would be no room to
place all of vertices v,v+ 1,v+2,---, min an order-preserving way.

From the preceding paragraph, it is clear that Step 1 compiles a set of partial assign-
ments, at least one of which can be extended to an ACOS T-optimal assignment. Moreover,
it is trivial that if Step 3 is given a set of assignments, at least one of which is optimal in
ACOST, then Step 3 does indeed find the ACOST-optimal one. In order to validate the
Algorithm, we are, therefore, left with just the task of validating Step 2: By the preceding
paragraph, we have justified the ranges of possible placements of each vertex. We need,
therefore, only justify the set of n — m + 1 possible partial assignments and their ACOSTs
computed in Step 2. This is the role of the following Lemma.

Lemma 1 Let us be given a layout problem t,7;0,b,withl <i<j<mandl<a<b<n,
where “{” ambiguously denotes “(” or 17, and “}" ambiguously denotes 9” or 4”. For
any k in the range i < k < j, the ACOST of the optimal solution assignment satisfies

b-j+k
ACOST{i,j;a,b} = min {ACOST{i, k;a,c|+ ACOST|k,j;c,b}}.
c=a-t

11

Proof Sketch. Vertex k must be placed on some PE. Because of order preservation, the
PE it is placed on cannot have an index lower than a - i 4 k nor higher than b - 5 + k,
or else the vertices will not all have room to be placed. The ACOST associated with any
particular assignment of vertex k to pe, is just the sum of the ACOSTs of the partial
problems {i,k;a,c| and [k, j;c,b}. If one seeks an ACOST-optimal assignment, then one
must choose that PE pe, for which the indicated sum is minimized. O

In Step 2 of Algorithm ACOST, lLemma 1 is applied repeatedly, with ¢ = 1, with j
growing from j = 2 to j = m, and with k = 5 - 1; the values of @ and b and the range of
values for ¢ are dictated by the need to place all of the vertices of G in order.

By Lemma 1, at least one of the n — m + 1 partial assignments computed and retained
in Step 2 of Algorithm ACOST can be extended to an ACOS T-optimal solution to the
layout problem (1, m; 1,n). It follows that in Step 3, where we have finally complete the
n —m+ 1 partial assignments passed on from Step 2, the least ACOSTly of these complete
assignments is in fact ACOST-optimal.

The induction implicit in the foregoing remarks validates Algorithm ACOST.

As to the issue of timing:

® The initialization phase in Step 1 can obviously be implemented in time O(n - m);

¢ Each of the m - 1 assignment-extensions of Step 2 can be computed in time O((n —
m)?): for each of the n—-m-1 potential placements of vertex v, one takes the minimum
of at most n — m + 1 quantities, each computable in time O(1).

o Step 3 computes the minimum of n — m + 1 quantities, hence can be implemented in
time O(n — m).

The upshot of this validation and timing analysis is that Algorithm ACOST does indeed
produce an ACOST-optimal solution, and that the Algorithm can be implemented to run
in time O(m - (n — m)?), as was claimed in the first part of Theorem 1. O

Example. A simple example will illustrate Algorithm ACOST. We are given the 7-node
complete binary tree laid out in preorder. The associated cut-profile is

2,3,2,1,2,1.
Say that the 8-PE physical sequence II has delay-profile
1,1,3,1,3,1,1.

Fig. 3 illustrates the problem-decomposition tree that is justified by Lemma 1 and that
underlies Algorithm ACOST. Table 2 illustrates Algorithm ACOST applied to this lay-
out problem. As the table indicates, the unique minimum-A4COST assignment (which has
ACOST 18) assigns no vertex to pes, hence has a gap.

12

3.3. Algorithms for Additive Layout Problems

Motivating Lemmas

Before turning to algorithms that find solutions to additive problems, we present the
simple result that leads to an enhanced algorithin for arbitrary additive problems (Lemma
2) and to even more efficient algorithins for problems having dip-free (a fortiori, regular)
cut-profiles (Lemma 3).

Lemma 2 Assume we are given an additive layout problem. Let A and Il be as in Theorem
1. There is an ACOST-optimal assignment o of the vertices of A to PEs of 11 such that
every gap in o occurs at a dip of k(A); that is, for every indez i that does not occur in a
dip, ofi + 1) = at) + 1.

Proof. Let k(A) = k(,K2,++,Km-1. Let be an assignment of the vertices of A to the PEs
of II. Recall that for assignments that solve additive problems,

m-1 a(t'-lll)-l

)T Alks1

m-1
ACOST(a) = > ki-b = Y
l-"'] t—] k“‘d(!)

Say that for some index ¢, k; > x;4; (a symmetric argument will apply if &; > Ki-1) and
a(i + 1) # a(f) + L. Define the assignment & as follows.

e J a4 ifi=ar
&(7) { alj) ifjAE+L

By definition,

a(i+1)-1
ACOST(a) - ACOST() = (ki - kip1)- Y. Ay >0
k= a(i)+1

What we have shown here is that, at no increase in 4COS T, we can “push a gap one step
downhill,” toward a dip of the cut-profile x(A) (assuming we consider there to be a dip at
each end of the profile). By a succession of transformations of o of this form, we can, at
no increase in ACOST, “push” the gaps in « either off the ends of k(A) or to the dips in
k(A). The interested reader can easily formalize this argument into a simple but somewhat
cumbersome double induction. (One induction pushes a gap all the way to the closest
dip/end, while the other is on the number of remaining gaps that are not at dips.) O

An immediate consequence of Lemnma 2 is that assignments to dip-free sequences need
have no gaps.

Lemma 3 Let A and 11 be as in Theorem 1. If k(A) is dip-free, then there is an ACOST-
optimal assignment o that maps the vertices of A onto a contiguous block of PEs of 11; that
15, for every indez i, a(i + 1) = off) | 1.

The Algorithms for Dip-Free Cut-Profiles

By Lemma 3, if the cut-profile x(A) has no dips, then we need only slide a window of
length m — 1 along the inherent-delay vector

n-1

6n =def U {AHH-I} = 61"15511 ot ')61?—1’

i-1

looking for that placement of the window that minimizes the inner-product that is the
ACOST.

Algorithm ACOST Nodip: General Dip-Free Cut-Profiles, with Additive Delays
Given: The embedding A, its dip-free cut-profile

K(A) = K1,K2, ", Km-1,

the sequence I, and its inherent-delay vector §".

Problem: Find the ACOST-optimal assignment oy, defined by
ap(f) =k t+1- 1

fori=1,2,--- . m,.

Step 1. For k =1 ton — m + 1, evaluate

m-1
ACOST(ox) = Y ki 8phi
1=1

Step 2. Output ko =4¢; the smallest j for which a; has minimum ACOST among the
assignments oy considered in Step 1. 0

Validation and Analysis of Algorithm ACOST.Nodip

The correctness of Algorithm ACOST.Nodip is immediate from Lemma 3. In order
to determine the time required to execute the Algorithm, one must. specify the method
for computing the successive inner products that yield the values of ACOST (o). Two
methods of computation suggest themselves.

If either m or n — m is very small, then naive direct evaluation of the inner products,
which would give Algorithm ACOST.Nodip the time complexity, T(m,n) = O(m-(n - m)),
might be the recommended course of action.

If both m and n — m are substantial (say, both are at I-ast commensurate with log n),
then the following subtler mode of evaluation might be called for. Note that the evaluation
of the relevant inner products is equivalent to multiplying the (n — m+1) x (m — 1) "Toeplitz
matrix whose rows are the length-(m — 1) windows along the inherent-delay vector 6", by
the vector x(A). If n — m > m — 2, then this matrix- vector product can be computed by

14

breaking the large Toeplitz matrix along rows into [";"_‘%’—1] Toeplitz matrices of dimensions
(m — 1) x (m — 1) (in order to achieve size-compatibility, the last two square matrices may
overlap), and multiplying each of these square matrices by the vector x(A). Using the FF'T
algorithm to compute each of the matrix-vector products (cf. [1]) then realizes Algorithm
ACOST.Nodip with the time complexity

T(m,n) = [n—m-}-l

m -1
= O((n - m)-logm).

] O(m - log m)

If, on the other hand, n — m < m — 2, then this matrix-vector product can be computed
by breaking the large Toeplitz matrix along columns into n’_"”:}l] Toeplitz matrices of
dimensions (n — m) x (n — m), and breaking the length-(m — 1) vector k(A) into a like
number of length-(n — m + 1) vectors (in order to achieve size-compatibility, the last two
square matrices and the last two vectors may overlap), and then multiplying these square
matrices by the appropriate short vector. Using the FFT algorithm to compute each of the

matrix-vector products then realizes Algorithm ACOS T.Nodip with the timne complexity

T(m,n) = [n—'—n—n%ll-l—] O((n — m) - log(n — m))

= O(m-log(n - m)).
In any of these contingencies, the bound of Theorem 1, namely,
T(m,n) = O(max{m,n - m} - logmin{m, n — m})
is achieved. O

When k(A) is regular, i.e., a finite arithmetic progression, all ACOST inner-products
after the first (which requires time O(m)), can collectively be calculated in time O(n —m),
since it is trivial to update the calculation for ACOST(ay) to obtain ACOST(ag41) in
time O(1). The following algorithm manages the data and control flow to facilitate this
updating.

Algorithm ACOST.Reg: Regular Dip-Free Cut-Profiles, with Additive Delays.
Given: The embedding A, its regular dip-free cut-profile

K(A) KL K2, 0 K

with common difference d, the sequence 11, and its inherent-delay vector 51

Problem: Find the ACOST-optimal assignment vy, defined by

(i) ki

Jori=1,2,.--- m.

Step 1. Evaluate
m |
ACOST(ay) =~ Y K- 6!
i=1

and the initial window value,

m--1
WINDOW (1) =4; 3 811.

=1
Initialize a queue with the first m -- 1 entries of 6]'.

Step 2. For k=2,3,---,n—-m+ 1:

2.1. Dequeue 5,"1_1;

2.2. Enqueue 8!

m+i-2)

2.3. Evaluate
ACOST(ax) = ACOST(0tg-1) + WINDOW (k —~ 1)+ Ky - 68 g — K1 - 61

and
WINDOW (k) =WINDOW (k- 1) + 6,2”_2 - 6,{'_1

Step 3. Output ko, the smallest index for which oy, has minimal ACOST. O
Validation and Analysis of Algorithm ACOST .Reg

The correctness of Algorithm ACOST. Reg follows immediately from that of Algorithm
ACOST.Nodip, after elementary arithmetic manipulation. The claimed time-complexity of
the Algorithm,

T(m,n) = O(max{m,n -- m}),

is verified as follows. The inner-product evaluation and queue initialization in Step 1 can
be accomplished in time O(m). Each of the O(n - m) updates in Step 2 requires time
O(1), involving seven arithmetic operations and two queue updates. The final search for a
minimum in Step 3 can be accomplished in time O(n — m). Thus the time-complexity is as
claimed in Theorem 1.

The Algorithm for Arbitrary Cut-Profiles

The small example at the end of Section 3.2 illustrates that, even when the cut-profile
k(A) has just one dip, an algorithm that minimizes ACOST must be prepared to allow gaps
in the assignment, even in the case of additive problems. We build this capability into the
next Algorithm, all the while exploiting additivity, by modifying the dynamic programming
approach of Algorithm ACOST, in the light of Lemma 2.

16

Algorithm ACOST.Add: General Cut-Profiles, with Additive Delays.
Given: The embedding A, its cut-profile

E(A) =K1,K2,°,Km_1,
the sequence I, and its inherent-delay vector 6.
Problem: Find the ACOST-optimal assignment a of A to II.
Comment: Say that x(A) has | distinct dips and that the indices t;] <13 < --- < 1] are
witnesses of these | dips, so that each of

'C,'”’C"z,"’,'ﬁ',

is a local minimum of x(A).

Step 1. For each of the n -~ m + 1 fault-free PEs pep, 11 < p < n -- m+ 1, determine and
remember the ACOST of the partial assignment

@ p:{1,2,04,6,} — {1,2,---,p}

that places vertex 1 at pep_;, 41, vertex 2 at Pep-ij+2, ..., Vertex 11 at pep, i.e., a;, »(5) =
p—t1+jfor1<j<i. This ACOST is just

-1

ACOST(a4,p) =) mj- 60, .
i=1

Retain with each ACOST the partial assignment @;, p that engendered it.

Step 2. For each of vertices v = 1y,13, - - - 18311 (=dey m), in turn:
Consider the case v = 4. For each of the n -m + 1 fault-free PEs pep, iy < p < n - m+ iy,
in 11, determine and remember the ACOST of the 4COS T-minimal partial assignment %, p

Cipp * {1’27"'»{h} b {1,2)“')”}

that places vertex 1)_, +1 at Pep_iy iy 11, vertex 1y 1 +2 at PCp—iptiy - 42, -, Vertex 1y at
pep;ie, a;, o(f) =p—tp+jforiy +1< J < tp. Computing the ACOST of each of these
partial assignments involves computing an inner product. As in Algorithm ACOS T.Nodip,
computing all of the inner products at once is much more efficient than computing them
one at a time. Hence, the preferred way to compute these ACOS7Ts is as follows. First, we
slide the sub-vector

Kip 1410 i, 42, %, K4y -1

of the cut-profile along the n - m + 1 PEs Pép, th < p < n— m+ iy, computing all the
desired inner products as we go. Each product has the form

i1

fp(ih,p) = Z “j'a,'-I in g

i=ty o+l

17

Next, we combine these results with the previously computed partial-assignment ACOSTs
to obtain the ACOSTs of the partial assignments «, »

pipdin
ACOST(aiyp) = min {ACOST (i, _,5) + iy, - Ally_iy siy_ 41 + IP(in,p))
- The first term here is the ACOST of the earlier vertex-placements; the second term is the
contribution of the delay between the PEs where vertices th—y and t5_y + 1 are placed
(which is one of the I places where a gap may appear); the third term is the inner-product
cost incurred by placing vertices ¢y + 1,65y +2,-++,1 — 1,5, in consecutive PEs in II,
with vertex i), at PE pe,,.

Update the partial assignments being retained with the n - m + 1 ACOSTs.
Step 3. Output the final ACOST:

ACOST(a) = [n';n {ACOST(am,;)}
j=m

and the assignment o that attains this ACOST (which is one of the partial assignments
that were kept through the stages of the computation). [

Validation end Analysis of Algorithm ACOST.Add

The correctness of Algorithm ACOST.Add follows from Lemmas 1 and 2: By Lemma
2, we are justified in assuming that the only gaps in the ACOST-optimal assignment we
are seeking occur at dips in the cut-profile; hence, where there are no dips, we are jus-
tified in mimicking the window-computation of Algorithm ACOST.Nodip. By Lemma 1,
the decomposition into subproblems where the dips occur, and the method of combining
the subproblems via the successive minimizations does indeed yield an ACOS T-optimal
assignment,.

A detailed upper bound on the time requirements of Algorithm ACOST.Add seems to be
quite dependent on the characteristics of the cut-profile and inherent-delay vector. However,
the following gross upper bound follows from the analyses of Algorithms 1 and 2. Say that
the cut-profile of G has b; entries before its first dip-witness, b, entries between its first and
second dip-witnesses, ..., b4 entries after the last dip-witness. At each of the I dip-indices
in x(A), Algorithm ACOST.Add performs the following computations in Step 2. In the
calculation involving the sth dip, it computes n — m + 1 “window” inner-products, using a
length-b; window scanning along a length-(n — m + 1 + b;) vector of delays. Using the FFT
algorithm, as in Algorithm ACOST.Nodip, the ith window-calculation can be performed in
time

O(max{b;,n — m} - log min{b;, n — m}).

After computing the (n — m + 1) inner-products, the Algorithm produces the n — m + 1
partial ACOSTs associated with the ¢th dip by performing n — m + 1 minimizations, each

18

over a range of n — m + 1 values, much as Algorithm ACOST does. These minimizations
can be done in time

O((n - m)?).

Since each of Steps 1 and 3 needs only lower order time (as the reader can readily verify),
the time required by Algorithm ACOST.Add is, by the preceding discussion,

l
T(m,n) = O (l . [(n - m)? 4 imax{bg,n - m} - logmin{b;,n — m}]) (1)

= ()(1. [(n—m)2 +(m+l-(n- m))-log(n—m)]). (2)

To verify equation (2), concentrate on the summation in (1). Observe first that

1+1 1+1
Zmax{b,-, n — m} - logmin{b;,n - m} < Zmax{b;,n — m} - log(n — m)
i=1 i=1

Note next that there must be some subset S of the index-set {1,2,---,l + 1} such that
b; > n — m just when 1 € S. For this S, therefore,

I+1
Zmax{b,-,n -m} - log(n-m) = ((l +1-|S|)(n - m)+ }:bi) -log(n — m)

=1 i€s
= O((l-(n -~ m)+ m)-log(n — m))

This verifies the final time bound of Theorem 1.

3.4. Approximating Optimal Cost in Additive Problems

Algorithm ACOST.Add is the most efficient algorithm we know for finding an ACOST-
optimal assignment of the vertices of an arbitrary m-vertex graph G to a sequence of
n fault-free PEs, in the presence of additive delays. Unfortunately, accommodating the
dips in the given cut-profile k(A) of G via dynamic programming, forces the Algorithm
to take time proportional to m® when both n — m and the number of dips { in k(A) are
proportional to m. If we could ignore the dips in k(A), then, even with the same unfavorable
value of n — m, we could use the window-sliding technique of Algorithm ACOST.Nodip to
find an ACOST-optimal gap-free assignment in time proportional to m - logm. Given the
disparity in the time requirements of these algorithms, one might be willing to settle for
a quickly found almost optimal gap-free assignment of G, in place of the more arduously
found optimal assignment, provided that the optimal gap-free assignment were not too much
more ACOSTly than the optimal one. We know by Proposition 1 that there are situations
wherein gap-free assignments must have dramatically larger ACOST than optimal ones;
however, this need not always be the case: one sometimes encounters gap-free assignments

19

that are optimal in ACOST, even when the given cut-profile has dips. We now present an
upper bound on the increase in .{COST engendered by using the best gap-free assignment
of G, rather than the best assignment allowing gaps. The level of generality of our quest
restricts us to a bound that depends parametrically on the inherent-delay vector 6™ of the
given sequence I1 of PEs.

Say we are given a linear embedding A of an m-vertex graph, and an n-PE array I1 of
fault-free PEs (with additive delays), with inherent-delay profile §'!. Let x be an arbitrary
sequence of m — 1 nonnegative integers. Let o be any assignment of the vertices in A to the
PEs in I1. Define

ACOST.(a)

to be the cost of the assignment o, computed as though x were the cut-profile of the
embedding A (i.e., using « in place of k(A)). Further, define

ACOSTwindow(l My 1 ’ "')

to be the cost of the least costly gap-free assignment o of A to 1. We are interested in
determining how much greater ACOST yindow(1, m; 1,n) can be than ACOST(1,m;1,n).
We find the following upper bound on the disparity.

Theorem 2 Let A and I1 be as in Theorem 1, and let o be an ACOST-minimal assignment
of the verlices of A to the PEs of I. Then

ACOSTuindow(1l,m;1,n) — ACOST(1,m;1,n) < mcin ACOST(a),

where the minimization is over all length-(m — 1) vectors € of non-negative integers, for
which the vector
k(A)+ e

13 dip-free.

Proof. By the bilinearity of our inner-product notion of 4ACOS T, for any vectors x; and k3,
and any assignment a,

ACOST,, 4x,(a) = ACOST,,(a) + ACOST,,(a). (3)

Invoking Lemma 3, Equation (3), and the preceding definitions, we have

ACOSTyindow(1,m;1,n) < ACOSTowindow(a)
ACOSTy(p)1(a)
ACOST(a) + ACOST,()

ACOST(1,m;1,n) + ACOST.()

<
<

It

This completes the proof. 0

20

s

4. MAX-WIRE-RUN-OPTIMAL ASSIGNMENTS

We turn now to the max-wire-run cost measure. As with the average-delay cost measure,
our quest for (even nearly) optimal vertex-to-PE assignments is complicated by the fact that
MCOST-optimal assignments often must have gaps; cf. Proposition 1. This complication
has more dire consequences here than in Section 3, since we show that the general problem
of finding MCOST-optimal assignments is NP-complete. The best we aspire to in general
is, therefore, a computationally efficient algorithm that produces assignments that are close
to optimal. We present an O(m - (n -- m)?)-time algorithm (Algorithm MCOST) that finds
assignments in arbitrary physical arrays, that are within a factor of 3 of optimal in MCOST.
At the cost of an extra factor of (n — m) in running time, the factor of 3 can be reduced
to a factor of 2. Indeed, when the input book-embedding uses p pages, an adaptation
of Algorithm MCOST finds an MCOST-optimal assignment in time O(m - (n — m)r+!),
When inter-PE distances are additive, we can find MCOS T-optimal assignments efficiently,
specifically, in time O(m - (n — m) - log(m - (n — m)) - log M), where M is the largest
interprocessor distance.

4.1. The Time-Cost of Finding Optimal Assignments

Let us be given the m-vertex linear embedding A, the n-PE array I, and the inherent-delay
matrix A",

Our first key observation is that we need concern ourselves only with the edges of A that
are ezposed in the sense that they are not covered by any other edge. Formally, edge (s, 7)s
1 < j, of A is ezposed if there is no other edge (%,1) of A for which

k<i<j<l.

For any linear embedding A of a graph G, let A®*” denote the linear embedding of a subgraph
of G obtained by removing all non-ezposed edges from A. Note that A°*P contains the same
vertices, in the same order, as does A.

Our algorithms assume that we are given A°*". If instead we are given A, the
following simple algorithm constructs A®*® from it. We use a queue, each of
whose entries is the right terminus of some edge of A. We start with an empty
queue, and we scan A from left to right. As we encounter vertex v, we enqueue
the rightmost vertex w adjacent to v such that w > v (if such a w exists).
Additionally, if v is the right terminus of an edge (u,v) of A, then we check the
first entry, call it z, in the geueue: If z < v, then we dequeue z and look at
the new first entry in the queue. If z > v, then the edge (u,v) is not exposed
- it is covered by the edge (y, z) where y was the vertex scanned when z was
enqueued. If = = v, then edge (1, v) is an exposed edge; we record this fact (by
adding this edge to A°*"), and we dequeue v. We scan all of A in this fashion,

21

thereby constructing AP edge by edge. Note that this algorithm operates in
time O(m) if A is presented as an adjacency list each of whose entries is sorted.

Let o be an order-preserving one-to-one function
o {1’2:'°"m} - {112"")"}-

Determining MCOST (a) requires information about the edges of the input graph; we can,
therefore, no longer suppress the dependence of on A, since we shall now be comparing
o’s performance on different A’s. Let us denote by

MCOST(x; A)

the MCOST of o assuming that the input linear embedding is A. (We shall retain the
shorthand we have been using whenever no confusion can result.) Our informal assertion
that only exposed edges matter when computing MCOST can now be formalized as follows.

Lemma 4 For all linear embeddings A, PE arrays 11, and assignments a : A — 1[I,

MCOST(a; A) = MCOST(a; A°*P).
The easy proof of Lemma 4 is left to the reader. We now plot the course of this section.

Theorem 3 Let A be a linear embedding of an m-vertex graph, and let Tl be an n-PE array
of fault-free PEs.

(a) The problem of deciding, given A, 11, and an tnteger B, whether or not there is an
assignment o of the vertices of A to the PEs of 11 with MCOST(«) < B, is NP-complete.
(b) There is an algorithm that finds an assignment of the vertices of A to the PEs of 11 that
18 within a factor of 3 of MCOST-optimal, that operates in time

T(m,n) = O(m-(n - m)?).
(¢) There is an algorithm that finds an assignment of the vertices of A to the PEs of 11 that
1s within a factor of 2 of MCOST-optimal, that operates in time

T(m,n)=O(m-(n - m)%).
(d) When A 1is a p-page book-embedding, there is an algorithm that finds an assignment of
the vertices of A to the PEs of Tl that is optimal in MCOST, that operates tn time

T(m,n) =O(m-(n—m)Ptl),

22

(e) When inter-PE distances are additive, there is an algorithm that finds an MCOST-
optimal assignment of the vertices of A to the PEs of 11, that operates in time

O(m- (n - m)-log(m- (n - m))-log M),

where M is the largest inter-PE distance.

The remainder of this section is devoted to presenting, validating, and analyzing algo-
rithms that prove Theorem 3.

4.2. The NP-Completeness of MCOST-Optimality

We now show that the problem of finding vertex-to-PE assignments that are optimal with
respect to the max-wire-run cost measure is computationally infeasible, unless P = NP, To
do this, we cast the problem as a decision problem, which we prove to be NP-complete.
The decision problem is:

MCOST:

INSTANCE: The graph G, the embedding A, the sequence II, the inherent-delay matrix
A" and a bound B.

QUESTION: Is there an assignment « of A to Il such that MCOST(a) < B?

Clearly, MCOST € NP: once an assignment « is guessed, it is easy to check whether or
not MCOST(«) < B. To complete the proof, we reduce the NP-complete problem 3SAT
(8] to MCOST.

3SAT:

INSTANCE: Set X of variables, collection C of clauses over X such that each clause ¢ € C
has precisely 3 literals (i.e., negated or un-negated variables from X).

QUESTION: Is there a satisfying truth assignment for C, i.e., an assignment of truth values
to the variables in X such that for each ¢ ¢ C, at least one literal in ¢ is True?

Say that the sets X = {z{,z;,--+,2.} and C = {c,cz,-++,¢;} constitute an instance
of 3SAT. The corresponding instance of MCOST is G, A, 11, AT, and B as constructed
below. First, define the vertex-set

V = {”1,”21"',064&}-

We use the following shorthand notation for the vertices

Vigk == U3(i--1)43s(5~1)+ks

23

where 1 <1<s,1<75<2t,1<k<3. Let G = (V, F) where
E={(vijevijrx))1 <i<s,1<5<2t-1,1<k <3}

Let A = vy, v3,--+,vgs. Note that, for this embedding, all edges of G are exposed. The
sequence A consists of 2t subsequences, each of size 3s; cach such subsequence is a level
of vertices, each level comprising s blocks of 3 vertices each. Variable z; is represented by
the tth block in each level. Edges of G go only from some tth block of one level to the tth
block of the next level. Clause c; is represented by levels 25 — 1 and 25: the first level is
the bridging level for c;, and the second is the evaluating level for c;.

Let IT = py,pa,---,p12¢. Define o(s,7,k) = 6(+ — 1) + 6s(5 — 1) + k, and note that o
maps {1,---,8} x{1,--+,2t} x{1,---,6} one-to-one onto {1,---,12st}. We use the following
shorthand notation for the PEs.

Pijk = P6(i-1)46a(j—1)+k
Po(i,j,k)

where 1 <1<s,1<35<2t1<k<6. In much the same way that A has levels and blocks
of vertices, Il has levels and blocks of PEs. Tl consists of 2t subsequences, each of size 6s;
each such subsequence is a level of PEs, each level consisting of s blocks of 6 PEs each.

The delay matrix A is constructed by the following 3-step program.
Step 1. For i — 0 to 12st — 6 in steps of 6 (i.e., for each block of PEs), assign

Altrisz — 8

Alirisa < 2B
Alt1iss — 2B
Aly1ive — 2B
Alizies — 24
Alisire — 2B
A?+z,i+s — 2B
Algive — 2B
Alsie ¢ 2B
A?w,.‘-l-a ~ 2B

Aan+3,i+s — 2B
n
Bitgirs - 16

n
Ajisive «— 8

24

For 1 < 0 to 12st — 12 in steps of 6 (for all but the last block of PEs), assign

n
Aiyziyr < 8

n
Aitzign ¢ 8
n
Ay cit7 < 16

n
Aitgirin « 16
Step 2. For each 7,1 < 5 <t let

c¢j = {y1, 2,93 | % € {z;,,%;;} and ji < j2 < fs}.
If yi = zj, then let k; = 0(5,27,1), and k! = o(5,27,4); else let k; = o(3,27,4) and
ki = 0(5,27,1). Let kq = o(33 + 1,25, 1). Assign
n
Akktr — AL k41— 1
n n
Biykrt1 < Ay byt — 1
n n
At ¢ Ap gyt

If k4 < 12st, then assign

n
- Ak!\lk4 - l

n
A kgt < By pys 1

Step 3. Choose the undefined entries of A'' in any way that satisfics the triangle inequality;
for example, all zeroes may be chosen. [

It is easy to show that A" satisfies the triangle tnequality (but not the triangle equality;
n - -
€8y Allgipat Al iy = 2B +16>2B = AN,)

To complete the instance of MCOST, let B = 40s.
Claim 1. If a is an assignment such that MCOST () < B, then for each block of vertices
Vijl, Yij2, Y3 1 <1<s, 1< 5<2t either
a(vij,1) = pijas olvis2) = pijz and afvijs) = pijs
or

a(vij1) = Pija, @(vij2) = pijs and ofvij3) = pije

Proof of Claim. If assigns some vertex to p; 1, pij.z2, or Pij3, then o assigns no vertex
t0 Pi,j.4, Pi,j,5, OF Pijc. (Otherwise, by the construction of A™, some edge has delay > 2B.)
In each block of 6 PEs, either the left 3 or the right 3 can be occupied, but not both. As
there are exactly 2 times as many PEs as vertices, cach block receives exactly 3 vertices.

25

The requirement that a preserve order implies that the block of vertices v; 1, vij2, vi,j;3
occupies the block

| 28 B PRRARY UR KB
The Claim follows. O

Let pi j1,* -, Pije be any block of PEs other than the last one. Let vy ji 1 be the vertex
immediately after v; ;3 in A (either vy jo1 = vy, OF = v1j+1,1)- The contributed delay
of the block of PEs is (by an abuse of notation)

n n n
Aa(v;.j.l),a(v;.j.'z) + Aﬂ("-’.j.z),a("-‘.i.n) + Aa(”-‘-;‘.s):a(";'.ﬂ.n)'

If j is odd, it is easy to check that the contributed delay is always 40, so assume that j is
even. Level j is associated with clause ¢;/;. Suppose that a(vij1) = pija. By Claim 1,
a(vi j2) = Pijz2 @(¥i33) = Pijs and either a(vyr j11) = pirjra OF = Pyt j1 4. There are three
cases to consider. First, suppose that z; is not the first or second literal and that z; is not
the third literal in ¢j/3. Then,

1
a(v;j.1).(vij.2) 8
1
Afx(".'.j.:).a("-'.,'.n) 24
Al 8

a(vija)x(v 5t 4)

so the contributed delay is 40. Next, suppose that z; is the first or second literal in ¢;/s.
Then,

n
Aa(o.-_,-,.).a(v.‘.j.z) 7
n
Aa(u,'_j,g).a("-‘.j.a) 24
n
Aﬂ(”i.j.a)aa(”c".)".l) 8,

so the contributed delay is 39. Finally, suppose that z; is the third literal in c;/2. Then,

a(vija)a(vijz) 9
n
Aﬂ(";.,‘.z).ﬂ(v;.j.n) 24
1,

a(u.‘,,’,a),ﬂ(”i'.j’.l)

so the contributed delay is 40. If we suppose that a(v;j1) = pij,e, then a similar analysis
with z; and Z; interchanged yields the same pattern of contributed delay. Thus, in all cases,
the contributed delay is either 39 or 40.

Claim 2. Let a be any assignment with MCOST(c) < B. For eachi, 1<i<s,1f

a(virg) =gy (resp., ping);

26

“

then for all j, 1 < 5 < 2t,
a(v{'j'l) = piljll (reap" piljl4).

Proof of Claim. By induction on j. The case j = 1 is assumed. Suppose, therefore,
that the conclusion is True for j ~ 1, 2 < J < 2t. By Claim 1, either a(vij,1) = pijq or
a(vij,1) = pij,o. We have assigned s — 1 blocks of vertices to the s— 1 blocks of PEs between
Pij-1,6 and p; ; ;. Each such block contributes either 40 or 39 in delay; at most two of these
blocks contribute 39. Thus the s - 1 blocks contribute delay between 40(s — 1) — 2 and
40(s — 1), inclusive.

Say that a(v; ;_1,1) = p;j-1,1. To obtain a contradiction, assume that a(v; ;1) = p; ; 4.
Then o(vi; .1,2) = p;ij-1,2, and a(vij,2) = pijs. The edge (vi,j-1,2, vi j,2) then costs at least

10(s - 1)~ 2+24+ T+ 15405 | 4 > B,
a contradiction. Thus a(v; ;1) = p; ;.

Alternatively, say that a(v;;.1,1) = pij_14. To obtain a contradiction, assume that
o(vi5,1) = pij1- Then a(v;;_13) = p;j_16, and o(vij3) = pijs. The edge (v;;_1,3,v;;3)
then costs at least

40(s— 1) -2+ 154+7+24=40s+4 > B,

a contradiction. Thus a(v; ;1) = p; j 4.
The conclusion holds for j, and, by induction, it holds in general, proving the Claim. O

We now complete the proof of Part (a). Say that we are given a satisfying assignment
for C. If x; is assigned True, let o(vi,1,1) = pipg- If x; is assigned False, let a(vi1) =piga.
By Claims 1 and 2, this assignment forces the remaining values of . It remains to show
that each edge has delay at most B. To this end, let (vij 1.k v ;) be any edge of G. Each
of the s — 1 blocks of PEs between Pij 1,6, and p; ; contributes either 39 or 40 in delay.
The three remaining delays in blocks Pij-1,1,""*,Pij-16, and p; 1, +,p; je contribute at
most 40 to the edge-delay, unless z; or z; is the third literal of cj/2 and that literal is False;
in that case, the contribution is 41. If y; is False, then at least one of y; and y; is True, and
the contribution of the corresponding block to the edge-delay is 39. Thus the edge-delay
remains < 40s = B.

Now suppose that we are given an assignment o with MCOST(a) < B. f a(v;y,) =
Pi1,1, then assign True to z;; if a(vi,1,1) = pi,1,4, then assign False to z;. It remains to show
that this assignment satisfies C. To obtain a contradiction, assume that the assignment
does not satisfy some c; € C. Let

¢j = {yl)!hay.'!lyi = {xj.-’fj.-} and j; < 72 < J3}.

The delay of this bad edge (vi,2-1,2, vi,25,2) is then 40(s — 1)+ 41 = 40s+1 > B, a
contradiction. Thus we must have a satisfying assignment for C.

This completes the proof of Part (a). (3

27

4.3. A 3-Approximation Algorithm for Arbitrary Layout Problems

We now develop an efficient algorithm that produces assignments that are within a factor of
3 of optimal MCOST. By Lemma 4, we lose no generality by seeking an optimal assignment
of A°*P rather than of A.

We begin developing the desired algorithm by further simplifying our layout problem.
Say that the linear embedding A (which, recall, is connected) is simple if no two exposed
edges cross, i.e., if A°*? is a path. (Every outerplanar graph admits a one-page, hence simple,
linear embedding.) For simple embeddings, we obtain the following strengthened version of
Theorem 3.

Lemma 5 Let A be a simple linear embedding of an m-vertex graph, and let 11 be an n-PE
array of fault-free PEs. There is an algorithm that finds an MCOST-optimal assignment of
the vertices of A to the PEs of 11, that operates in time

T(m,n) = O(m - (n - m)?).
Proof of Lemma 5. The main ideas underlying the following algorithm parallel those un-
derlying Algorithm ACOST.
Algorithm MCOST.Path: MCOST-Optimal Assignments for Simple Linear Embeddings

Given: the simple linear embedding A, its ezposed subembedding A°“F, whose edges are

(vl’UZ)f (02’1)3)1' ‘ '1(vr—2)vr—l)3 (vr-—l’vr)

where
V< <3< < Vg < VUpg < Vy,

the sequence I1, and its inherent-delay matriz Al!
Problem: Find an MCOST-optimal assignment « of A to 1.

Step 1. For each of the n — m + 1 fault-free PEs pe,,, v1 < p;y < n— m+ vy, in II, create
a partial assignment

Oy py + {1,2,"‘,1)1} - {1’2)'“7’71}
that places vertex vy at pep,, i.e., ay, p,(v1) = p1. (Assign vertices v < vy in an arbitrary
order-preserving fashion.) Assess ay, ,, the MCOST

MCOST(ay,p,) = 0.
Retain both the MCOST and the partial assignment that engendered it.

Step 2. For each of vertices vy = v2,v3,+-, v, in turn:
For each of the n — m + 1 fault-free PEs pep,, vx < pr < n — m + v, in I, determine the
(common) MCOST of the MCOS T-minimal partial assignments

Quy,py - {lazn""vk} - {172s"'1pk}

28

that place vertex v, at pe,,, i.e., @y, p.(Vk) = pr, and that assign vertices v < v, that
are not in the set {v1,v2,+++, v} in an arbitrary order-preserving fashion. This MCOST is
computed as follows: letting hy =qep vi - vp_; - 1,
Pr—he—1 .
MCOST (o, p,) = min max {MC()ST(a.,k_h.-), A(z,pk)} (1)
1=Vg.
where A(#, py) is the minimum physical distance/delay between pe; and pep, , given that hy
vertices must be placed on good PEs between these two. This delay is computed as follows.!
Let wy,wz,- -, wp, be the vertices that lie between vx ; and v in A.

2.1. Forg=1+1,---,pg — hy, set
SUM(wy,q) = Al

2.2. Fort =2,3,-++,hy, in turn: for g =1t +4t, -+, pp — hy +t — I, set
q-1
SUM(wi,q) = min {SUM(w, 1,5)+ A7) (5)
a=i+t-1 !

2.3. Set
Al = ’l,)'lk-:1 SUM Al
(3, px) = a:'.}"“k { (why,9) + s,p‘.}

Step 3. Update and remember both the n --m 4 | MCOSTs and the partial assignments
that engender them.

Step 4. Output the final MCOST,
MCOST(a) = min {MCOST(a,, ;)}
1=ty

and the assignment « that attains this MCOST. ()
Validation and Analysis of Algorithm MCOST.Path

We shall only sketch the validation of Algorithm MCOST.Path, since it follows the lines
of the validation of Algorithm ACOST. Let us focus on an arbitrary vertex vy, as it is
added to the partial assignments. Assume for the sake of induction that the n — m + 1
partial assignments ay,_, p,_, that were computed at the previous stage of the Algorithm
are MCOST-optimal solutions to the subproblem (1,7 ;;1,pe_1]. Now, the vertex vz must
be assigned to pep, for some p; in the range vp < pp < n- m+ vy, by order-preservation.
Given each potential site py for vy, we would like to find a partial assignment of all vertices
< v of minimal MCOST. By Lemma 4 and induction, however, the computation in equation
(4) does find the sought assignment.

"The somewhat:complicated computation of A(7, px) is due once more to the fact that A" contains delay
information only ahout pairs of vertices that are consecntive in A.

29

We look now at the timing of the Algorithm. The apparent complication is that Al-
gorithm MCOST.Path has nested dynamic programs in Step 2. Despite this, cach vertex
of A is labored over in only one such loop, so the time-complexity of the Algorithm is (in
order of magnitude) the same as that of Algorithm ACOST, namely, O(m - (n - m)?). To
verify this, let us look separately at how the Algorithm deals with vertices that are termini
of edges and those that are not termini of edges.

Consider first a vertex v = v; that is a terminus of an edge. There are n — m + 1
potential homes py, for vg. For each such home, the relevant possible homes for vy (in the
minimization (4)) are

prk—he—tkmr=pr—tx+1<n-m+1

in number. The minimization in (4) is done at most r < m times.

Consider next a vertex v that is not a terminus of an edge. The number of potential
homes ¢ for v (in the minimization (5)) is

pk—he —1<pr—hy -ty <n-m+ 1
For each such home, the relevant possible homes for the predecessor of v are similar in
number. For each edge-terminus v, the minimization in (5) is done vy — vy times.

Summarizing these two accountings, the total expenditure of time on all vertices is, in
order of magnitude,

r-(n-m)®+ Z(vk ~vpq)-(n-m)? m-(n- m)?+ (v, —v1) - (n - m)?

k=2

IA

O(m-(n - m)?)

J-Lemma 5

We now return to the proof of Part (b), which is embodied in an algorithm that operates
in time O(m - (n — m)?) and produces an assignment that is within a factor of 3 of optimal
in MCOST.

Algorithm MCOST: MCOST-Efficient Assignments for General Graphs

Given: the embedding A, its exposed subembedding A°*P, the sequence I1, and its inherent-
delay matriz ATl

Problem: Find an assignment a of A to I that is within a factor of 3 of optimal in
MCOST.

Step 1. Construct from A°*F a simple embedding A as follows.

(a) Identify in A°*P a maximal set of noncrossing edges. Call the embedding containing
precisely these edges A. Observe that A is a sequence of paths, possibly with gaps (i.e., runs
of vertices covered by no edges).

30

(b) Scan the gaps in A from left to right. Since A represents a connected graph (cf. Section
2.2), and since A is maximal, at least one of the following scenarios must obtain. Let us
concentrate on a gap whose leftmost vertex is v, and whose rightmost vertex is v, > v,.
(b1) There is an edge (v.,va) in A°*" — A that covers the gap; i.e.,

Ve <t < < vy

with at least one of the weak inequalities being strict (or else this edge could be added
to A, contradicting the latter’s maximality).

(b2) There are two edges (v, vq) and (ve,vy) in AP — A that together cover the gap; i.e.,

v,_.<va<v,_(:vd<v,,<vf.

(If we obtain A via a greedy left-to-right scan, then scenario (b2) cannot occur.) We build
A in stages. We start with
A=Rk

We proceed from left to right, scanning the embedding A. Aswe encounter a gap {va,- -+, vs}
that is of type (bl), we add the edge (v4,v;) to A. As we encounter a gap {va,+- ,vb} that
is of type (b2) but not of type (bl), we add the two edges (va, va) and (vg,) to A. The
construction of A is complete when we have finished our scan of A. Note that the edges of
A form a path.

Step 2. Use Algonthm MCOST.Path to obtain an MCOS T-optimal assignment & of the
embedding A to II.

Validation and Analysm of Algorithm MCOST

Let o be an assignment that minimizes MCOST (a; A). We claim that the assignment
& satisfies the conditions of Theorem 3, i.e., that

MCOST(&;A) < 3- MCOST(at) - 3- MCOST(1,m;1,n) (6)

Our verification proceeds in two steps.

First, we observe that for all assignments a,

MCOST(a;A) < MCOST(a; A), (7)
because each edge of A is covered by some edge of A. By (7) and the definition of ax, then
MCOST(&;A) < MCOST(ax;A) < MCOST(ax;A).

These inequalities verify the critical

FACT 1. No edge in A is “stretched” by & to a length exceeding MCOST(1,m;1,n).

Next, we consider that the embedding A induces a partition of the edges of A into three
classes.

31

1. There are edges of A that are edges of A. These are also edges of [\; hence, by Fact 1,
none is “stretched” by & to a length exceeding MCOST(1,m;1,n).

2. There are edges of A that are not edges of A but that do not impinge on any gap in A,
either by covering the gap or by having one terminus in the gap. By the maximality
of A, each such edge spans at most two edges of A, hence also of A It follows,
therefore, by Fact 1, that no such edge is “stretched” by & to a length exceeding
2- MCOST(1,m;1,n).

3. Finally, there are edges of A that are not edges of A and that do impinge on some gap
in A, either by covering the gap or by having one terminus in the gap. By construction,
every such edge is covered by a path of length at most 3 in A (by clause (b1) or (b2)
in the prescription for constructing A) It follows, therefore, by Fact L, that no such
edge is “stretched” by & to a length exceeding 3 - MCOST(1,m; 1, n).

These three cases exhaust the possibilities, thus establishing (6); that is:
FACT 2. No edge of A is “stretched” by & to a length ezceeding 3- MCOST(1,m;1,n).

Finally, with regard to timing, we remark that the construction of A from A°*P can be
accomplished in time O(m). The time-cost of Algorithm MCOST is, thus, dominated by the
time-cost of Algorithm MCOST.Path which we have already shown to be O(m- (n — m)?).

Theorem 3(b) follows. (1

It is easy to modify Algorithm MCOST so that it yields assignments that are within
a factor of 2 of optimal. One starts the algorithm with a less-constrained version of A,
specifically, one which selects a maximal set of edges having the property that no vertex
is covered by more than two edges. An easy analog of the dynamic program of Algorithm
MCOST, that operates in time O(m- (n - m)?), starts with A so constructed and yields the
advertised nearly optimal assignment. The extra factor of (n ~ m) in time is needed because
of the possibility that there are two edges dangling from the already placed vertices, and
the left terminus of each of them can reside at any of n- m 1 PEs. We leave to the reader
the details needed to complete the proof of Theorem 3(c).

Theorem 3(d) is proved via an extension of Algorithm MCOST similar to that described
in the foregoing paragraph. If A represents a p-page book-embedding, then no vertex of A
is covered by more than p exposed edges. The extended dynamic program of Algorithm
MCOST needs, therefore, keep track of at most p left ends of edges dangling from the
already placed vertices, and each end-vertex can reside at any of n — m+1 PEs. The reader
can easily verify that the described extension yields an algorithm that produces, in time
O(m - (n — m)P*!), an assignment that is optimal in MCOST.

L']

4.4. Algorithms for Additive Layout Problems

In contrast to having to settle for efficient approrimation algorithms for MCOS T-optimal
assignments in general arrays, we now develop efficent optimal algorithms for the additive
case.

Our algorithms here are presented most easily in an indirect fashion, via algorithms for
the decision problem: MCOST with delay bound B (cf. Section 4.1). One can transform
an algorithm for the decision problem to an algorithm for the optimization problem with
little loss of efficiency, using the following standard ploy. Without loss of generality, we
may assume that the entries in AT are integers. Since we are dealing here with additive
layout problems, one verifies easily that the largest entry M™ of A" is an upper bound on
the longest delay of any edge in any layout. Therefore, if one uses the decision problem,
MCOST with delay bound B, to perform a binary search in the interval {1, MM, then one
finds the optimal B (i.e., the optimal MCOST) after O(log M") solutions of the decision
problem. Therefore, we focus henceforth on algorithms for the B-bounded decision problem.

For vertex 7,1 < j < m,and PEb, j < b < n - m+ j, define the set of partial
assignments

Ajp = {a:{l,--+ 5} - {1,---,b} | a(j) -~ b and a has maximum edge delay < B}.

Aj s is the (possibly empty) set of assignments that solve the decision version of the layout;
problem (1,7;1,b]. If we calculate all of the sets App for m < b < n, then we oblain
all assignments solving the decision problem. There may be exponentially many such as-
signments; fortunately, we need calculate only one special assignment in each set Ajb,
specifically, the one presented in the following Lemma.

Define a partial order on the the set

n-m+jy

A= U A
i=b
of all partial assignments, as follows.
a < B if and only if o(k) < B(k),for all k€ {1,---,5}.
Lemma 6 Say that Ajp # 0. Definc ajp, 1 <5< m, §<b<n-m+j, as follows.
Vee {l,---,7} oju(k) - max p(k).
ACA,,,

Then (a) ajp € Ajp, and (b) if B € A;, for any c < b, then § < ajp.

Proof. We proceed by induction on j. The result is trivially true for app, 1 <b<n-m+41l.
Assume the result is true for all aj gpwWherel <7 <mandj - 1<b<n-mityjg 1.

33

Say that aj(j — 1) =d < b. Then Aj_1q 7/ #. Thisis true because (7 — 1) = d, so
there is some a € A with a(j ~ 1) == d; the restriction of such an a to the set {1,+++,7 - 1}
belongs to Aj_1,4. By inductive assumption, then, o 418 well-defined and is in Aj..1,4-
Let oy 4 {1,---,5} — {1,---, b} be the extension of «vj_ 4 having O"j—l,d(j) =b.

(a) We distinguish three cases. (a1) Say first that there is an exposed edge of the form
(¢,7),% < j, and that AE;—x..z(i).b < B; then o_, 4 € Ajp, since the maximum edge-delay is
at most B. (a2) Similarly, if there is no edge of the form (1,7), ¢ < j, then o_y.4 € Ajpe
In either case (al) or (a2), consider any ke {t,--,7 — 1}; let 4" € Ajp be such that
4'(k) = ajs(k), and let ¥ be 7' restricted to {1,-++,7 t}. Then v € Aj-1, for some
¢ < d. By inductive assumption, ¥ < @;-1,4; in particular, y(k) < a;-1,4(k). Since 7'(k) is
a maximum in A;, and since o_; 4 € Ajp,

(k) = (k) = oy a(k) e (k).

As this is true for all k, it follows that ajp - (v'j o therefore, ap € Ajp. (a3) Finally,

—-l.:l(‘.)|b > B

Let 7' € A be such that ~'(1) - ajp(t), and let v be the restriction of 4" to {1,--+,7 ~ 1}.
By inductive assumption, ¥ < &;-1,4, SO (i) < aj-1,4(1)- By additivity,

suppose that there is an exposed edge of the form (#,5), 1 < j, and that AL'j

n n -
Asiya 2 Bar_ s> By

contradicting the assumption that 4" € Ajp. In this case, also, we therefore conclude that
a;jp € Ajp, completing the proof of Part (a).

(b) By definition of ajy, we have 8 < ajy for all B € Ajp. Say that ¢ < b and that
BeE Aj. Let B(j -1)=e< b, and let (,\z'j_,,.e c{t,e++ 5} - {1,---,b} be the extension of
a1, with a;_l'e(j) =b. For any d < e, we have aj_1.4 < @51, by inductive assumption.
But then a'j_l’e € A;y, contradicting the definition of a;4. Suppose, therefore, that e < d.
By inductive assumption, oy, < oG-ty which implies that 8 < a;. < 5. This proves
Part (b).

By induction, the Lemma follows. [

We call ;s the mazimum assignment in Aj;. We can calculate oj by finding the
largest d < b such that aj_14 is defined. (If no such d exists, then A;j is empty, so
ajp is undefined.) If there is an exposed edge (1, 7) for which Agj—n..:(i)-b < B, then aj4
is just the extension of a;._14 having a;s(j) - b Il a; 14 is defined, and there is no
exposed edge (i, 7), then a; is the extension of aj_1,4 having a;j(7) = b; otherwise, aj is
undefined. These observations lead to the first version of our MCOS T-optimizing algorithmn
MCOST.Add.1. When the answer to the decision problem MCOST is “yes,” Algorithm
MCOST.Add.1 also outputs a maximum assignment am b € A, as a witness. (This output
step will be omitted in later versions of the Algorithm, as it is identical in all versions.)

Algorithm MCOST.Add.1. MCOST-Optimal Assignments for Additive Delays

34

»

Step 1. Forb=1,...,n- m+1, let @1, be the unique lunction from {1} to {b}.

Step 2. For j = 2,....m: for b =~ j,....n m+4 1, let d be the largest integer in
{7-1,-+-,b— 1} such that a;_1,q4 is defined (if it exists). If no such d exists, then leave o
undefined. Otherwise, proceed as follows.

2.1. Set ¢ «— aj_y 4(1).

2.2. If there is no exposed edge (), then let ajp be the extension of aj_; 4 having
a;p(5) = b;

2.3. else, if there is such an exposed edge, then

2.3.1. if Agb < B, then let a;,; be the extension of a;_1,q4 having a;(5) = b;

2.3.2. else, let «;;, remain undefined.

Step 3. If amp is defined for some b & {m, -, n}, then output. (“yes,” ap,); else, output,
(“no”). D
Validation and Analysis

Lemma 6 and its following discussion verify Algorithm MCOST.Add.1. As to the matter
of timing: the body of the inner loop (in which b varies) is executed O(m(n -- m)) times.

Finding each d takes O(n - m) time. Making ajp an extension of a;_y 4 is basically a copy
operation that takes O(m) time. The total time for the Algorithin is, therefore,

O(m:(n- m)-max(n - m,m)),
so the time to obtain an MCOST-optimal assignment using it is

0 (m-(n —- m) - max(n - m,m)-logMn) .

We now improve on the straightforward implementation of the Algorithm, by casting
the decision problem as one of constructing a particular directed acyclic graph (dag). The
vertices of the dag are the ordered pairs

{(])b)l.]({l,-~-,m},b£~‘{j,---,n m]}}

There is an arc from vertex (3,) to vertex (5 -- 1, d) just when ;s is an extension of «j_y 4.
Every vertex has outdegree either 0 (if aj 4 is undefined or if j =- 1) or 1 (if ;4 is defined and
J > 1). Any directed m-vertex path in the dag determines a maximum assignment solving
the decision problem, and vice versa. Note that the dag representation of the MCOST
problem obviates having to store a;p’s explicitly, since one can recover them from the dag.
We show now that we can recover the a;’s efficiently when they are needed, leading to a
more efficient algorithm.

The dag is a leveled planar graph; that is to say:

35

e for each 7, the vertices {(7,0): 7 < b < n - m+ 5} constitute a level;
e arcs go only from one level to the previous level (5 to 5 -- 1);

o if we assign each vertex (7, b) to the point (b, 7) in the plane, then each level is contained
in a distinct horizontal line, and all arcs can be drawn as straight-line segments that do
not intersect, except possibly at their endpoints (i.e., the graph-embedding is planar
even when the arcs respect the levels).

Any leveled planar graph in which each vertex has outdegree at most 1 is a forest of rooted
trees; the planar embedding orients the sons of each vertex. The dag in our problem has
the roots of all nontrivial trees at level 1. Let T;, be the tree containing the vertex (7,).
There exists a unique path P;; from vertex (7,b) to the root of T},; it has length either
J—1or0. Let T be Tjp w1th the directions of all its edges reversed. There is a unique
path Q; in T}, from vertex (7,b) to the leftmost leaf reachable from (7, b) (it always takes
the leftmost son of the current vertex).

Algorithm MCOST.Add.1 needs a value for some a;_j q only if there is an exposed edge
of the form (i, 5), for I < 7 < m; the value needed then is a;..q 4(t). If we represent only

the dag, it takes time {}(m) in the worst case to access a;_y q4(f) (by following up tom — 2.

edges). We now present a data structure that allows more efficient access to a;_y q4(%).
For each vertex (7,5), make a record r;; containing three data items.

1. the pointer OUT(J, b) which points to (j-- 1,d) if there is an arc from (7, b) to (5 - 1,4d);
it is null otherwise;

2. the integer EDGE(7,b) whose value is ¢ € {1,---,b} if ({,7 + 1) is an edge of G and
(f,¢) is in Pjs; it is O otherwise.

3. the bit DEFINED(3,b) which indicates whether or not «;; is defined.

Note that EDGE affords us access to a;..1,4(f) in O(1) time. The records {r;;} can easily
be represented in a two-dimensional array so that any data item is accessed in O(1) time.
Initially, all OUT(5,b) are null, all EDGE(7,b) = 0, and all DEFINED(5,5) =0

Algorithm MCOST.Add.2: MCOST-Optimal Assignments for Additive Delays
Step 1. Forb=1,...,n -~ m+ 1, set DEFINED(1,b) «— 1.
Step 2. For j=2,...,m

20.d—n-m+j7-1

22.b—n—-m+3

2.3. Whiled > 7 -1 and b > j do the following.

36

-v

2.3.1. If either d > b or ~DEFINED(j - 1,d), then set d «- d - 1
2.3.2. Else, both d < b and DEFINED(j - 1,d); then

2.3.2.1. ¢~ EDGE(5 - 1,d)

2.3.2.2. f c = 0 or All, < B, then sct

o DEFINED(j,b) « 1
o OUT(j,b) « (5 1,d)

2.3.2.3. b« b-1

2.4. If there is an exposed edge (1,7 -+ 1), then for b = Jy.--yn — m-+ 7 do the following
Just when DEFINED(3,b).

2.4.1. Follow OUT pointers to level ¢, vertex (f,¢) in Pjy;
2.4.2. Set EDGE(], b) —

]
Validation and Analysis

Algorithm MCOST.Add.2 builds the dag level by level. Step 1 establishes the first level
of the dag, and Step 2 builds each succeeding level in turn. Step 2.3 determines the edges of
the dag that go from level j to level 7 - 1. When the condition of 2.3.2 is satisfied, d is the
largest integer in {5 - 1,---,b — 1} such that aj-1,4 is defined. If EDGE(5 - 1,d) = ¢ = 0,
then there is no exposed edge of the form (i, 5); if there is an exposed edge (i,7), then
a;_1,4(1) = c; the condition, A,','.,, < B, is equivalent to edge (1, 7)’s having delay < B in the
extension of a;_; 4 having o;_1.4(7) = b. When there is an exposed edge (1,74 1) in Step
2.4, EDGE valnes for level j are calculated: the edges of the dag are followed from level j
to level 1 to find the proper ¢ for EDGE(j, b).

As to the matter of timing: The loop of Step 1 requires O(n - m) time; the loop of
Step 2 is executed O(m) times; the “while” loop of Step 2.3 takes O(n — m) time, since
each iteration is O(1) time, and either d or b is decremented each iteration. The update of
EDGE involves following the path P; distance O(m). Since this is done O(n — m) times,
the total time for each execution of Step 2.3 is O(m - (n - m)). The total time for the
algorithm is, thus,

0 (m2 “(n- m)) ,

so the time to find an MCOS T-optimal assignment is
o (m2 ‘(n- m)-log M") ,

which improves MCOST.Add.1 when m - o(n - m).

37

One factor of m in the time-complexity of Algorithm MCOST.Add.2 arises becanse
the update of EDGFE(j,b) takes time €)(m) in the worst case. We now improve the time
complexity of the Algorithm by streamlining the method of updating EDGE(3,b), by using
the well-known UNION/FIND algorithm [19]. This algorithm maintains a collection of
disjoint sets under three operations: MAKESET, UNION, and FIND. Each set has a unique
representative called its canonical element. The three operations are:

e MAKESET(z): Create the set {r};

o UNION(z,y): Form the union of the sets with canonical elements = and y, and destroy
the old sets;

e FIND(z): Return the canonical element of the set containing element z.

Each set is represented by a rooted tree (not the rooted trees of the dag) whose vertices are
the elements of the set; the root is the caunonical element. For each set element, there is a
pointer, LINK, to its parent; the root’s LINK is a sell-loop.

Given this data structure, the three operations are casy to implement: MA KESET(z)
makes a one-node tree with z as the root; LINK(z) points to z. UNION(z,y) adds an edge
from y to z, thereby making a tree rooted at z; LINK(y) points to z. FIND(z) follows the
path in the tree from z to the root r and returns r. This simple implementation of FIND is
inefficient, requiring in the worst case, time proportional to the number of elements in a set;
however, there is a heuristic called path compression, that speeds up the cost of a sequence
of FINDs: While executing a FIND, every node on the path from z to r is made a son of
r (all their LINKs are adjusted to point to r), thus making future FINDs less expensive.
Path compression increases the time of a FIND by at most a constant, factor. Tarjan and
Van Leeuwen [19] show that a sequence of t operations requires only O(t - logt) time when
path compression is used.

In the context of our dag for the MCOST problem, the disjoint sets are the sets of
vertices contained in some mazimal path of the form Q;, in T;",b- Each such path starts
either at the root or at a vertex (7,b) which is not the leftmost son of its parent in T} -
(Such paths arise naturally from a preorder traversal of the forest {T},}.) We denote the
set of vertices containing (7, b) by Sjs-

Suppose there is an edge (,7), ¢ < 4, in G, for which o is defined. Suppose further
that the dag has been constructed through level j - 1. Then we can determine the leftmost
vertex in level j — 1 of the (dag) subtree rooted at (1, c) by following path Q; . to a vertex
(7 — 1,d) in level 5 — 1. Alternatively, we can execute FIND(i,c) to obtain the canonical
element of S;.; we need only assure that the canonical element is the one on level j — 1.
Since the dag is a leveled planar graph, there is an interval of level j — 1, beginning at
(7 - 1,d), such that the DEFINED vertices in that interval are exactly the vertices of level
7 — 1 in the subtree rooted at (i, c). Thus, once we know the leftmost vertices on level 7 — 1

38

corresponding to vertices on level ¢, a single pass over level J — 1 will assign all vertices to
their proper level-t vertices.

To implement the UNION/FIND operations, we need only add the pointer LINK(j,b)
to each record r;,. Initially, LINK(j,b) points to (j,b); this is equivalent to creating the
singleton {(7,b)} via MAKESET(3,b). Other initial values are the same as for Algorithm
MCOST. Add.2.

Algorithm MCOST.Add: MCOST-Optimal Assignments for Additive Delays
Step 1. Forb=1,...,n— m+ 1, set DEFINED(1,b) « 1.
Step 2. For j=2,...,m:

21l.d—n-m+3-1

22. b—n-m+j

2.3. Whiled> 7 -1 and b > 5:

2.3.1. If either d > bor ~-DEFINED(j - 1,d), then set d — d - I;

2.3.2. else, both d < b and DEFINED(;j - 1,d); then:

2.3.2.1. ¢ - EDGE(j - 1,d)

2.3.2.2. Ifc=0o0r AE,, < B, then set

e DEFINED(j,b) « 1
o OUT(j,b) — (5 - 1,d)
o LINK(j - 1,d) « (5,b)

2.3.23. b—b-1
2.4. If there is an exposed edge (1,7 + 1), then

24.1. Forc =14,...,n - m- i, set (k,b) « FIND(i,c); and, if k == j, then set
EDGE(3,b) « ¢

24.2. Forb=yj,...,n- m+j,if DEFINED(j,b) then:
2.4.2.1. if EDGE(j,b) # 0, then set ¢ — EDGFE(j, b)
2.4.2.2. else set EDGE(j,b) « ¢

F]

Validation and Analysis

39

In Step 2.4 of the Algorithm, the FIND operation returns (k,b) for the vertex (z,c) on
level . If the path Q; . does not extend to level 7, then k < j, and . does not extend
to any maximum assignment in A;. If, however, Q; . docs extend to level j, then k = j,
and o; . extends to the assignment a;p € A, 4; o; is the smallest maximum assignment in
Aj; that is an extension of a;.. The UNJON operation appears implicitly in Step 2.3.2.2.
Consider the values that LINK(j -1, d) takes. Initially, it points to (j—1,d). When the first
(7, 1) that points to (5 — 1, d) is encountered, LINK(j - 1, d) is made to point to (7, b;); this
has the effect of UNION((7,51), (7 ~ 1,d)), making (7, ;) the canonical element of S;_; 4

If a subsequent (7, bz) that points to (5 - 1, d) is found, with b < by, then the description is -

slightly more complicated, since (7, ;) can not be the leftmost son of (5 — 1, d) and must not
be in S;_1,4. In this case, the effect of Step 2.3.2.2 is to remove (7, b1) from S;_; 4, making
(71, d) the canonical element (again), and performing UN ION ((3,b2), (7 — 1, d)), making
(7,b2) the canonical element. When the “while” loop in Step 2.3 is completed, the leftmost
son of (j—1, d) is the canonical element of S;_; 4 - exactly what is needed for the subseqnent
FIND.

The “for loop” of Step | requires O(n — m) time. The “for loop” of Step 2 is executed
0O(m) times and consists of two major parts: the construction of the dag (in Step 2.3)
and the calculation of EDGE(j,b). The “while loop” of Step 2.3 takes only O(m) time,
since either d or b is decremented on each execution of the body of the loop. The loop
in Step 2.4.1, excluding the instances of FIND, requires time O(n -- m), as does the “for
loop” of Step 2.4.2. In the spirit of amortized complexity, we determine the total time
required for all FIND operations throughout the execution of MCOST.Add. There are
O(m- (n — m)) executions of a FIND operation; by the analysis of Tarjan and van Leeuwen
[19], the cumulative time for all FINDs is

O(m-(n—-m)log(m-(n—-m))).

One verifies via our analysis, that the total time for Algorithm MCOST.Add is just a
constant multiple of the time for the FIND operations, since the costs of the UNION/FIND
operations dominate.

Finally, it follows that the total time for determining the MCOS T-optimal assignment
is
0 (m ‘(n-m)-log(m-(n -m))-log M") ,
completing the proof of Theorem 3. (1
ACKNOWLEDGMENT.

It is a pleasure to thank Reuven Bar-Yehuda, Gershon Kedem, and Judd Knott for helpful
conversations and suggestions, particularly concerning the material in Section 4.

5. REFERENCES

1. A.V. Aho, J.E. Hopcroft, J.D). Ullman (1974): The Design and Analysis of Computer

40

re-

ot

10.

12.

13.
14.

15.

16.

Algorithms. Addison-Wesley, Reading, MA.

. F. Bernhart and P.C. Kainen (1979): The book thickness of a graph. J. Comb. Th.

(B) 27, 320-331.

- S.N. Bhatt and F.T. Leighton (1984): A framework for solving VLSI graph layont

problems. J. Comp. Syst. Sci. 28, 300-343.

. J.F. Buss, A.L. Rosenberg, J.D. Knott (1987): Vertex-types in book-embeddings.

Typescript, Univ. of Massachusetts; submitted for publication.

J.F. Buss and P. Shor (1984): On the pagenumber of planar graphs. 16th ACM Symp.
on Theory of Computing, 98-100.

F.R.K. Chung, F.T. Leighton, A.L. Rosenberg (1983): DIOGENES - A methodology
for designing fault-tolerant processor arrays. 19th Intl. Conf. on Faull-Tolerant
Compuling, 26-32.

. F.R.K. Chung, F.T. Leighton, A.L. Rosenberg (1987): Embedding graphs in books:

A layout problem with applications to VLSI design. SIAM J. Algebr. and Discr.
Meth. 8, to appear. See also 5th Intl. Conf. on Theory and Applications of Graphs.

. R.A. Games (1986): Optimal book-embeddings of the FFT butterfly, Benes, and

barrel shifter networks. Algorithmica, to appear.

. M.R. Garey and D.S. Johnson (1979): Computers and Intractability, Freeman, San

Francisco.

L.S. Heath (1984): Kmbedding planar graphs in seven pages. 25th IEEE Symp. on
Foundations of Computer Science, T4-83.

L..S. Heath (1985): Algorithms for Embedding Graphs in Books. Ph.1). Dissertation,
Univ. of North Carolina.

L.S. Heath (1986): Embedding outerplanar graphs in small books. Typescript, MIT;
submitted for publication.

L.S. Heath and A.L. Rosenberg (1985): Q-graphs. Typescript, MIT.

J.D. Knott and A.L. Rosenberg (1987): The DIOGENES design methodology: the
issue of physical format. In preparation.

D.J. Muder (1985): book-embeddings of regular complete bipartite graphs. Type-
script, The MITRE Corp.

A. Reibman (1984): DIOGENES layouts using quenes. Typescript, Duke Univ.

. A.L. Rosenberg (1983): The Diogenes approach to testable fault-tolerant arrays of

processors. IEEE Trans. Comp., (*-832, 902-910,

11

18. A.L. Rosenberg (1984): On designing fault-tolerant VLSI processor arrays. Advances
in Computing Research 2, (F.P. Preparata, ed.), JAl Press, Greenwich, CT, 181-204.

19. R.E. Tarjan and J. van Lecuwen (1984): Worst-case analysis of set, union algorithms.

J. ACM 31, 245-281.

42

)

o

n

A;; = distance from pe; to pe; in PE widths

without shortcuts

with shortcuts

(additive) (non-additive)

1 2 3 4 5 6 7 8|1 2 3 4 5 6 1 &
1{0 2 S5 7 8 10 11 14|/0 2 1 3 4 2 3 2
2 0O 3 5 6 & 9 12 0O 3 5 6 4 5 4
3 0O 2 3 5 6 9 0O 2 3 5 6 5
4 0 1 3 4 7 0O 1 3 4 3
5 0O 2 3 6 0 2 3 2
6 O 1 4 O 1 4
7 0o 3 0 3
8 0 0

Table I:

Inherent-delay matrices for the sequence II of fault-free PEs in Figure 2.

x(A)=232121

Al =1131311

Illustrating Algorithm ACOST on a small example.

v p a,, KAy, | COST(ay)

1 2 3 4 5 6 1 8

T 101 - - - - - - - - 0

20- 1 - - - - - . 0

2 2101 2 - - - - - - 21 2

3 |- 1 2 - - - - - 21 2

3 3]1 2 3 - - - - - 31 5

4{- 1 2 3 - - - - 33 11

4 411 2 3 4 - - - - 23 1

s|- 1 2 3 4 - - - 21 13

511 2 3 - 4 - - 23+ 13

5 5|1 2 3 4 5 - - - 11 12

61 2 3 4 - 5§ - - 1{143) 15

6 6.1 2 3 4 5 6 - - 23 18

711 2 3 4 - 5 6 - 21 17

7 711 2 3 4 5 6 7 - 11 19

811 2 3 4 - 5 6 1 11 18
Table 2:

(a) (b)

© @

faulty PE

good PE

Figure 1:

Switches connecting one cell of a DIOGENES layout with a bundle of four wires. Heavy lines in (b), (c)

and (d) show how the switches depend on signals G, and G AL,

i

o

...........

...........

...........

...........

PE
1

BAD

PE
2

...........

PE
4

...........

...........

PE

BAD

...........

...........

PE
6

BAD

...........

; S £ S R S &
S S U S S
*‘f T e o T
| |
PE PE PE PE

9 10 11 12
P, Pes BAD P
...................... LLLIE
e P —— e

PE
16

PE.s

BAD

An array of, PEs, showing eig
Shortcuts are controlled by
nected to the wire bundles through switc

for details.)

Figure 2:

switches in the dotted boxes

PE
14

BAD

PE
13

ht bad PEs and eight good PEs (M =
labeled A, B an
hes in the remaining dotted boxes. (See Figure 1

, pe,)

pe.»
d c PEsareco%-

(1,7,1,8)

N

(1,6;1,a) [6,7;a,8)

N

(1,5 1,b] (5,6, b,a]

N

(1,4;1,¢] [4,5;¢,b]

N

(1,3;1,d] [3,4;d,c]

N

(1,2;1,e] [2,3;e,d)

Figure 3:

The decomposition tree (from Lemma 1) that Algorithm ACOST would use to solve the layout problem
described at the beginning of Section 3.2. The 7-node complete bmaly tree is to be laid out in a row of 8
PEs.

Ly

