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Abstract

We study here a new measure of the complexity of a book-embedding of a simple
undirected graph, the number of vertez types in the embedding. The type of a vertex v
in a p-page book-embedding is the p x 2 matrix of nonnegative integers

L, R,
L, R,

r(v) = . )
L, R,

where L; (resp., R;) is the number of edges incident to v that connect on page 7 to
vertices lyitig to the left (resp., to the right) of v. The number of types in a book-
embedding relates to the amount of logic necessary to realize fault-tolerant arrays of
processors using one specific design methodology. We study three sorts of issues regard-
ing vertex types in book-embeddings: We develop a number of techniques for bounding
the typenumbers of a variety of graphs. We investigate the relationships between type-
number and other graph properties, such as book thickness. We consider the problem
of minimizing the typenumber of a graph. Finding that problem to be NP-complete,
we study the problem of finding a (cyclic) rotation of a given book-embedding that
minimiges the number of vertex types.

1. INTRODUCTION

A book is a set of half-planes (the pages of the book) that share a common boundary line
(the spine of the book). An embedding of a simple undirected graph! G in a book consists

'An undirected graph is simple if a pair of vertices is connected by at most one edge.



of an ordering ol the vertices of ¢ along the spine of the book, together with an assignment
of each edge of (0 to a page of the book, in which edges assigned to the same page do not
cross. We shall always assume that a graph is simple and undirected. A (cyclic) rotation
of a given book-embedding is obtained by cyclically rotating the vertices along the spine,
while retaining all assignments of edges to pages.

There are three germane measures of the quality of a book-embedding:

1. the thickness (= number of pages) of the book;

2. the individual and cumulative widths of the pages (= the cutwidths of the edges on
the various pages, and the cutwidth of the entire embedding);

3. the number of distinct verter types: Given a p-page book-embedding of a graph G,
each vertex v of G has an associated p x 2 matrix of nonnegative integers, called its

type,
Ly R
Ly Ry
= . (1)
L, R,

L; (resp., R;) is the number of edges incident to v that connect on page ¢ to vertices lying
to the left (resp., to the right) of v.

Note that any cyclic permutation (or, rotation) of a p-page book-embedding is another
p-page book-embedding.

We henceforth refer to the book-thickness (also called the pagenumber), the pagewidth,
and the typenumber of a book-embedding and, via minimization over all book-embeddings,
of a graph G.

Most, work on book-embeddings has focussed solely on book-thickness |1, 2, 5, 8, 10,
15); some have included pagewidth on their list of concerns (3, 4, 9, 13]. The present paper
concentrates on the third cost measure. We study techniques for bounding the typenumbers
of graphs by studying a variety of specific graphs (Section 3); we then investigate the
relationships between typenumber and a number of other structural properties of graphs
(Section 4); we finally consider the problem of minimizing the typenumber of a graph.
We show that the problem of finding a typenumber-minimal one-page embedding of an
outerplanar graph is NP-complete. We then fall back to the problem of minimizing the
typenumber of a given book-embedding, by means of a (cyclic) rotation. We find a rather
efficient algorithm for this minimization problem. We also demonstrate the need for such
an algorithm by considering the case of complete d-ary trees: the typenumber of any such
tree is 3; however, a randomly chosen rotation of the preorder book-embedding of the tree
has, with probability approaching 1, d + 4 vertex types.
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Motivating our study is the DIOGENES methodology for designing fault-tolerant VLSI
processor arrays (12, 3]. The methodology views the desired array as an undirected graph,
with vertices representing processing elements and edges representing communication links;
the design process operates in two stages: First, the graph representing the desired array
is embedded in a book; then, the book-embedding is converted to an efficient fault-tolerant
layout of the array. The significance of the notion of vertex type is that the type of a vertex
“tells it” what role to play in the fault-free processor array. Thus, the base-2 logarithm of
the number of vertex types is the number of control bits per processing element needed to
configure the array to its fault-free format.

Before turning to the main results of the paper, we present some easily verified basic
facts about vertex types and book-embeddings, that are useful in the sequel.
Proposition 1 (1] The graph G admits a 1-page book-embedding iff G is outerplanar.

The next result indicates the fundamental nature of vertex types.

Proposition 2 A book-embedding is determined uniquely by the sequence of vertez types it
induces.

Proof Sketch. Since edges on the same page of a book-embedding cannot cross, one can
recreate the entire embedding by reading off (from the sequence of vertex types) how many
edges leave the each vertex to the right and to the left on each page of the book and
matching these “dangling edges” up in a left-to-right scan of the sequence. For instance, if
the sequence of vertices in the book-embedding is

V1, V¥2,°°*,Vp

and if on Page k:

e vertex v; has e > 1 edges leaving to the right;
e vertex vj, 7 > t, has at least one edge leaving to the left;
e at most e — 1 vertices v, t <[ < 7, have edges leaving to the left;

® no vertex v, t < m < j, has an edge leaving to the right

then we know that vertices v; and v; are connected by an edge on Page k. O

The next two results present general upper and lower bounds on the typenumber of an
arbitrary graph and of an outerplanar graph.

A nonzero vertex type of the form (1) is a source if all L; = 0 and is a stnkif all R; = 0.
A source or a Sink is a one-sided vertex type; a vertex type that is neither a source nor a
sink is two-sided.



Proposition 3 Every graph G having a connected component with at least two vertices has
typenumber t > 2.

Proof Sketch. Under the stated hypotheses, every book-embedding of G must have a source
and a sink. O

We denote by ng the number of vertices of the graph G and by ng(d) the number of
degree-d vertices of G.

Proposition 4 (a) In any p-page book-embedding of a graph G, the degree-d vertices of G

can assume no more than
min (nc,-(d), ( 2 +: -1 )) (2)

vertez types. Hence, if Dg 1is the set of all distinct vertez-degrees of the graph G, then the
typenumber of the given book-embedding can be no more than

> min (nc(k),(2”+k’““ )) (3)

keD,;

(b) The typenumber of any book-embedding of G must be at least | Dg|.

(¢) If G is a biconnected outerplanar graph, then the typenumber of any l-page book-
embedding of G cannot exceed

2+ Z min (ng(k),k - 1).
kGDl,'

Proof Sketch. (a) The two possibilities in Equation (2) hold, respectively, since each vertex
has exactly one type, and since each vertex type can be viewed as a partition of the integer
d into 2p nonnegative parts. Equation (3) is a direct consequence of Equation (2).

(b) The lower bound is immediate since for any degree-d vertex v, 7(v), as specified in (1),
must satisfy -7, L; + ¥F_, Ri = d.

(c) A direct instantiation of Equation (3) would yield the bound
> min (ng(k), k+1).
keD

We can reduce this total by noting that a 1-page book-embedding of a biconnected graph
must have ezactly one source and one sink, as we now verify.

Lemma 1 A 1-page book-embedding of a biconnected outerplanar graph has precisely one
source and one sink.



Proof Sketch. Assume that the embedding had more than one source (sinks yielding to a
symmetric argument). The rightmost neighbors of all but the leftmost source are easily
seen to be cut vertices, contradicting the biconnectivity of G. O-Lemma

O-Proposition

2. THE TYPENUMBERS OF SPECIFIC GRAPHS

We derive upper and lower bounds on the typenumbers of (book-embeddings of) a variety
of families of graphs.

Stars. The d-ary star is the graph with d + 1 vertices and with edges connecting one
of these vertices (the root) to all the others (the leaves).

Proposition 5 A connected graph G with at least two vertices has typenumber 2 iff G is a
star.

Proof Sketch. The one-page book-embedding of a star that places the root to one side (say
the left) of all the leaves has two vertex types: the root has type (0,d), and every leaf has
type (1,0).

Conversely, let G be a connected graph with typenumber 2. By Proposition 3, G has
at least one source and at least one sink. Since G has typenumber 2, it has precisely one
source, say :

[ 0 R
0 R

0 R,
and precisely one sink, say
Ly 0
Ly 0O

\ L, 0 )
Ifboth 5°F_, L; > 1,and 3-%_, R; > 1, then G would not be a simple graph, as one can verify
easily by considering the leftmost sink in the book-embedding and the source immediately

to its left. If G is connected, and at least one of Yr.1Liand F_| R; equals 1, then G is a
star. O

Complete Trees. For integers d,h > 0, the height-h complete d-ary tree Ty is the
rooted tree in which every nonleaf node has d sons, and all root-to-leaf paths have length
h (measured in number of vertices). The preorder book-embedding of Ty ) is the 1-page
book-embedding whose vertex-ordering is given recursively by



_—

). the root of Ty y, to the left of

[

. the vertices of the leftmost copy of Ty -y in preorder, to the left of

~N

. the vertices of the second leftmost copy of Ty in preorder, to the left of

d. the vertices of the rightmost copy of 7 ,_y in preorder.

Note that T2 is the d-ary star.

Proposition 6 (a) A 1-page book-embedding of a complete d-ary tree can have typenumber
at most

I ifh=1
3 fh=2
d+3 fh=3
d+5 if h>4.

(b) For any arity d > 2, the preorder book-embedding of Ty (which is a 1-page book-
embedding) has typenumber 1 when h = 1, typenumber 2 when h = 2, and typenumber 3
when h > 3. No book-embedding of T4 has smaller typenumber.

Proof. (a) Immediate from Proposition 4, since the root of Ty s is the unique node of degree
d, all (d*~! — d)/(d — 1) interior nodes have degree d + 1, and all d* - 1 leaf nodes have
degree 1.

(b) In the preorder book-embedding: the root has type (0, d); each internal node has type
(1, d); each leaf node has type (1, 0). The typenumber-minimality of the preorder book-
embedding follows from the lower bound in Proposition 4. O

Complete Graphs. The n-vertez complete graph K,, has n vertices, every two of which
are connected by an edge.

Proposition 7 Typenumber(K,) = n.

Proof Sketch. In any book-embedding of K, the i*! vertex from the left is unique in having
precisely ¢ — 1 edges going to the left; hence, all vertices have distinct types. O

Complete Bipartite Graphs. For integers m,n > 1, the complete bipartite graph
K m,n has m input vertices and n output vertices, and edges connecting each input with each
output.

Proposition 8 Typenumber(Km,,) = 1+ min(m,n). The book-embedding achieving this
typenumber is unique, up to rotation. .
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Proof. We show first that Typenumber(Ky,,) < 1+ min(m,n). Say, with no loss of gen-
erality, that m < n. Consider the m-page book-embedding of K n that places all inputs
to the left of all outputs and that uses page i (I < 1 < m) for the star that connects the
*" input vertex to all of the output vertices. In this embedding, each input vertex has a
distinct type, and all output vertices have the same type, for a total of 1+ min(m, n) types.

We complete the proof by showing that Typenumber(K ) > 1 + min(m, n), and that
the book-embedding achieving this bound (which is the one described in the preceding
paragraph) is unique, up to rotation.

Note first that the bound and the uniqueness are trivial when min(m, n) = 1, for then
Ko is a star. We, therefore, assume henceforth that min(m,n) > 1.

Focus on a fixed book-embedding of K, ,. Say that there are two input vertices, u and

v, that have the same type in the embedding. (Our conclusions will translate by symmetry
to output vertices.)

Claim 1. No output lies between u and v in the book-embedding.

If v and v were separated by an output, they would have different numbers of leftgoing
edges, hence different types.

Claim 2. For each output w, the edges from w to both u and v lie on the same page.

Claim 3. For each pair of outputs w and z, the edges from u to w and z lie on different
pages; the same is true of the edges from v to w and z.

We verify Claims 2 and 3 simultaneously. By Claim 1, no output lies between inputs u and
v in the book-embedding. Focus, therefore, on the k outputs that lie to the left of both u
and v and on the ! outputs that lie to the right of u and v. Say that the k lefthand outputs
are, from left to right,

Ok, 0k—1,""*,01

and that the ! righthand outputs are, from left to right,
81,02, -+, .

Say that, for each s € {1,2,---, k}, input u’s edge to output o; resides on page p;, and input
v’s edge to output o; resides on page g;; say, moreover, that, for each j € {1,2,---,{}, input
u’s edge to output 6; resides on page $;, and input v’s edge to output d; resides on page §;.
Suppose, with no loss of generality, that u lies to the left of v in the book-embedding. We
note the following facts about the portion of the embedding that we have just described.

1. Since u and v share the same vertex type, we have both

{pr,p2,- o} = {q1,92, -, qi}

and
{ﬁl:ﬁzi" 'pﬁl} = {6])621”"&‘}'



2. Because edges on the same page cannot cross, we have:

i foreaChie{lyza'“:k—l})qig{pﬂ—h'”ypk}
hd foreaChie{].~21"'vl"l}:ﬁi¢{éi+lr"'vqk}
o foreach i€ {1,2,---,k} and j € {1,2,---,k}, ¢; # P;.

An easy inductive argument using these facts establishes that

for each 1 € {1,2, -k}, pi = ¢;

for each 1 € {1,2,:--,1}, p; = ¢

for distinct 1,7 € {1,2,---,k}, pi # p;

for distinct t,5 € {1,2,---,1}, p; # B

forie {1,2,---,k} and j € {1,2,---,1}, p; # p;

This Establishes Claims 2 and 3.
We now use Claims 1-3 to complete the proof.

Claim 4. If some two inputs have the same type in the book-embedding, then no two
outputs have the same type.

By Claim 1, the outputs would have to lie on the same side of the similar-typed inputs; by
Claims 2 and 3, the outputs would then have distinct types.

Claim 5. If some two inputs have the same type in the book-embedding, then the (common)
type of these inputs differs from the types of all of the outputs.

Say that inputs u and v have the same type in the book-embedding. Focus on an arbitrary
output w. By Claim 2, the edges from w to both u and v reside on the same page. By Claim
3, all edges emanating from u (and from v) reside on distinct pages. Since min(m,n) > 2,
this establishes the Claim.

In summary, we have shown that

e either all of the input vertices of Ky, ,,, or all of its output vertices, must have distinct
vertex types in the book-embedding;

e if some two input (resp., output) vertices of K,n n have the same type in the embed-
ding, then their common type must differ from the types of all of the output (resp.,
input) vertices.

It follows that there must be at least 1 + min(m,n) distinct vertex types in the book-
embedding. Moreover,



e the only way to achieve this minimum typenumber is

= to place the more numerous of the inputs or outputs in a contiguous block

— to dedicate a distinct page to (all of the edges incident to) each of the less
numerous of the inputs or outputs.

This last item determines the type-minimizing book-embedding completely, up to rotation.
(When m = n, we should also add the phrase “up to isomorphism”.) O

Ladders. For integer h > 1, the height-h ladder graph L), has vertex-set

{al)aza"')ahabl’b%'“)bh}

and edges connecting

e each pair (a;,b;) for ¢ € {1,2,.--,h}

e each pair (a;,a;41) and each pair (b;,b;44) for s € {1,2,---,h - 1}.
Proposition 9 Restricting attention to 1-page book-embeddings of Ly:

Typenumber(L,) = 2,
Typenumber(Ly) = 3;
Typenumber(L3) = 4;
for h > 4, Typenumber(L;) = 5.
Proof. The result is trivial for h < 3: L, is the l-ary star, so the result is a special case of

Proposition 5; L is the 4-cycle, so its unique 1-page book-embedding has 3 vertex types,
which must be minimal since L, is not a star.

Focus henceforth on the case h > 3.

Consider the 1-page book-embedding of L, that orders the vertices
az*-as—'-'—ah—bh—"'—bz-—bl—al.
When h = 3, this embedding uses the four vertex types

{(0,3),(1,1),(2,0),(2,1)}.

When h = 4, this embedding uses the five vertex types

{(0’3)v(1) 1)1 (1,2),(2,0), (2) l)};



the rotations of this book-embedding also use five vertex types (but, different ones). This
establishes the upper bound.

To see the lower bound, note first that Ly is a biconnected outerplanar graph; hence by
Lemma 1, a 1-page embedding of Ly, has precisely one source and one sink. Since L; has
four bivalent vertices, at least two of these must have type (1,1).

Consider first the case h = 3. We have accounted for three types thus far, the type

(1,1), the source and the sink. We consider three cases.

L. If the source and sink are both bivalent vertices, then we need at least one more vertex
type, to account for the two trivalent vertices in Lg.

2. If the source and the sink are both trivalent, then we cannot have a legal book-
embedding, for one cannot have on a single page two vertex-disjoint length-4 paths
with the same endpoints.

3. If one of the source and sink is bivalent, while the other is trivalent, then we need a
fourth vertex type, to account for the second trivalent vertex.

In all realizable cases, then, we need four vertex types.

When h > 4, we need one more ingredient for our argument. Let n(L, R) denote
the number of vertices in the embedding that have type (L, R). Since across the entire
embedding, the number of edges “leaving some vertex to the right” must equal the number
of edges “leaving some vertex to the left”, we must have the equation

2n(0,2) + 3n(0,3) + n(1,2) = 2n(2,0) + 3n(3,0) + n(2, 1).

Since we now have at least four trivalent vertices, this conservation equation must be sat-
isfied subject to the following equalities:

e n(0,2) +n(1,1) + n(2,0) = 4
e n(0,3) + n(1,2) + n(2,1) + n(3,0) = 2h — 4
e n(0,2) 4+ n(0,3) = n(2,0) + n(3,0) = 1

One shows easily that this system of equalities can be satisfied only if
n(1,2)-n(2,1) > 0.

This means, however, that we have at least five vertex types in the book-embedding: the
three two-sided types plus the source and the sink. The lower bound follows. O

We conjecture that additional pages for Ly, h > 4, will not lower its typenumber below
5, but we suspect that only an unilluminating case analysis will settle the conjecture.

10
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3. TYPENUMBER AND GRAPH STRUCTURE

We have tried to link the typenumber of a graph with some other structural property of
the graph. With the exception of a nontrivial bound connecting the number of pages and
the number of types in a book-embedding, our quest has been unsuccessful.

3.1. Book-Thickness

We begin with our one success. Since trees, which are 1-page embeddable, can have arbi-
trarily large sets of distinct vertex-degrees, hence arbitrarily large typenumbers, one cannot
hope to bound the book-thickness of G from below using the typenumber of G. But, one
can obtain a nontrivial upper bound on the book-thickness of G from the typenumber.

Proposition 10 If the graph G admits a p-page book-embedding with t vertez types, then

no smaller bound is generally possible, since this bound is achievable.

Proof. Consider an arbitrary p-page t-type book-embedding. Say that page k (1 < k < p) is
introduced by the leftmost vertex v in the embedding that has an edge entering it from the
left on page k, i.e., that has a positive entry L, in its vertex type 7(v) asin (1). Assume that
vertex v of G introduces both page i and page j in a book-embedding. Then the vertices
uy and u; that lie to the left of v in the embedding and that “emit” the witnessing edges
on pages ¢ and j must have distinct vertex types: If they had the same type, then the fact
that edges on a given page of a book-embedding do not cross would force v to accept both
of these edges from the rightmore of u; and uy; these “parallel edges” would contradict the
simplicity of G. It follows that a vertex in the embedding can introduce no more pages
than it has distinct vertex types to its left in the embedding. Furthermore, if v introduces
a page, then its type differs from the types of all the vertices to its left. It follows that the
m*® vertex from the left in the book-embedding can introduce no more than m — 1 pages
(and this many only if all vertices to its left have distinct types). The bound follows.

To see that the bound is achievable, consider K,. We saw in Proposition 7 that ev-
ery book-embedding of K, has n vertex types. Consider the (thickness-inefficient) book-
embedding that assigns each edge of K, to a distinct page. This embedding uses n types

and ( ; pages. O

Despite whatever hopes our bound might raise, one finds that one cannot generally
hope to move toward optimizing cither typenumber or book-thickness by moving toward
optimizing the other.

11



Proposition 11 (a) There exzist graphs G and t-type p-page book-embeddings of G such
that every (p + 1)-page book-embedding of G has more than t types.

(b) There exist graphs G such that every p-page book-embedding of G uses at least t + 1
types, but there is a (p + 1)-page book-embedding of G that uses fewer than t types.

Proof Sketch. (a) There is a 1-page 2-type book-embedding of the d-ary star (Proposition
5). For d > 1, any (p > 1)-page book-embedding must have more than 2 types, since some
leaves must reside on distinct pages, hence have distinct types.

(b) By Proposition 8, the book-embedding that minimizes the typenumber of K, , is unique,
up to rotation. This (n + 1)-type embedding uses n + 1 pages. Bernhart and Kainen [1]
exhibit an n-page book-embedding of K,,. It follows that type-minimality cannot be
achieved simultaneously with thickness-minimality. O

3.2. Graph Homeomorphism

In the case of graph homeomorphism, not only can we show that taking homeomorphs can
either increase or decrease typenumber, we can show that no functional bound can be placed
on the amount of change.

Proposition 12 (a) There exist graphs G and t-type book-embeddings of G such that every
nontrivial homeomorph of G admits only book-embeddings that use more than t types.

(b) Let Dg denote the set of distinct vertez-degrees in the graph G. There ezists a homeo-
morph of G that admits a 3-page book-embedding with |Dg| + 14 vertez types. Thus, there
exist graphs G such that every book-embedding of G uses at least t types, but there is a
homeomorph of G one of whose book-embeddings uses strictly fewer than t types.

Proof Sketch. (a) We invoke the d-ary star once more. Any nontrivial homeomorphism of
the star is no longer a star, hence cannot be realized with a 2-type book-embedding.

(b) We modify a device of Bernhart and Kainen [1, Theorem 5.4]. Let G = (V,E) be a
simple undirected graph. We construct a 3-page-embeddable homeomorph of G in stages,
by constructing the book-embedding directly:

1. Lay the |V| vertices of G along the spine of the book, in arbitrary order.
2. Place |E| new vertices along the spine, to the right of G’s vertices.

3. Use one page to lay the edges of a forest of stars, with G’s vertices as roots and the
new vertices as leaves: each d-valent vertex of G becomes the root of a d-ary star. In
order to fit on one page of the book, these stars must be nested in the sense that G’s
rightmost vertex uses the leftmost new vertices, G’s second rightmost vertex uses the
new vertices just to the right of these leftmost ones, and so on.

12
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4. Using one “pseudo-page” - a page that allows crossed edges - connect up the new
vertices so as to construct a homeomorph of G, in fact one that has precisely two new
vertices along each edge of G.

5. Place a pseudo-vertex at each edge-crossing on the pseudo-page. Distort the edges
on the pseudo-page so that all of the pseudo-vertices lie along a line. Place a new
pseudo-vertex at each point where an edge crosses the line.

6. Pull the line of pseudo-vertices around 180 degrees rigidly, so that the pseudo-vertices
lie on the spine, to the right of the new vertices.

7. Add new pseudo-vertices along the spine to the right of the already-present pseudo-
vertices, wherever an edge crosses the spine.

One now has a 2-page book-embedding of a graph derived from G. At this point, one can
apply the techniques of Theorem 5.4 of (1] to use the third page to modify this derived
graph so that it becomes a homeomorph of G. (We refer the reader to that paper rather
than repeat the construction.)

The 3-page book-embedded homeomorph has the following characteristics.

* The leftmost |V| vertices have |Dg| different valences; every degree-d vertex in the
block has type

c o o

d
0
0

* All other vertices in the homeomorph are bivalent (as they must be); their types are
arbitrary, except that they cannot contain any entry “2”, nor can they contain the
pattern “(1,1)” on page 3.

The result follows by adding up the number of types. O

4. ON MINIMIZING TYPENUMBER

4.1. The Infeasibility of Minimizing Graph-Typenumber

We now show that the problem of finding a typenumber-minimal book-embedding of a
given graph is likely to be computationally infeasible. We accomplish this by considering
the following decision problem.

MIN-OUTERPLANAR-TYPES:
Instance: An outerplanar graph G and an integer k.

Question: Does G have a 1-page embedding using at most k vertex types?

13



Theorem 1 The problem MIN-OUTERPLANAR-TYPES is NP-complete.

Proof. 1t is transparent that MIN-OUTERPLANAR-TYPES is in NP, so we shall
concentrate only on showing that it is NP-hard. To this end, we shall begin by show-
ing that the following problem, MIN-UNION, is polynomial-time reducible to MIN-
OUTERPLANAR-TYPES. We shall then complete the proof by showing that MIN-
UNION is NP-complete.

MIN-UNION:
Instance: m pairs (A}, A?) of subsets of {1,2,---,n} and an integer k.
Question: Are there choices 5 € {1,2}, 1 <1 < n, such that |{; A{"| < k?
In the following, we specify outerplanar graphs, and portions of them, by presenting a

sequence of vertex types; Proposition 2 justifies this mode of specification. The notation
does not, of course, imply that the given order is the one used in embedding the graph.

Let an instance of MIN-UNION be given. Let (i) be the vertex sequence? (1,2)*+%(1,1)(i+
3,1), and let 3(i) be the reverse sequence (1,1 + 3)(1,1)(2,1)**2. To each pair

(A:l = {jllyj2l: te )j]:.!}: A|2 = {ler.hzs st )JZ?})
associate two copies of the biconnected component

B; = (0,2), (la 1):s(jll +3)’3(j21 +3)7 vt ,3(.],:'1 +3)’§(j12 +3))§(j§ +3)v' ' -,ﬁ(j,f? +3)) (2’0)'

(4)

In addition take two copies of
E, = (0’ 2): (l: l)$§(4)’ §(5)’ Y é("’ + 3): (2:0) (5)

If n > 2m — 2, take [(n — 2m + 2)/2] copies of (0,2),(1,1),(2,0). Join all of the above
components into one component by identifying the first vertex of every sequence; call the
resulting vertex, with degree at least n+4, the anchor vertex. Finally, add the two connected
components

E, = (Oa 2)1 (1’ l): (2:0) (6)
and
Es = (0,2),(1,2),(1,1),(2,1),(1,2),(1,1),(2,1),(2,0). (7

The preceding construction results in an outerplanar graph G that has a one-page em-

bedding using k + n -+ 6 types if and only if there is a choice of sets from each palr (A}, AY)
with a union of size k, as we show now.

Suppose that there is a vector of choices of sets, I = (I1,l2,-+,Im) € {1,2}™, satisfying
|U; Af-‘| < k. Then G can be embedded using k + n + 6 types, as follows. The components

%(a,b)" denotes a string of ¢ occurrences of the pair (a, b).
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Ey, Eq, and Eg are embedded as specified in (5,6,7) above. If I; = 1, then both copies of
B; are embedded in the order specified in (4) above. If I; = 2, then both copies of B; are
embedded in the reverse of the order specified in (4). One verifies easily that the embedding
always uses types

{(1’4): (1,5),' "’(lvn + 3)) (210)3(1: l)’(0’2):(1)2)a (2a l)}

for Ey, E3, and E3, and some type (a1,a2) where a; + az > n + 4 for the anchor vertex.
Let U, Af.‘ = {r1,r2,-++,re}. Then the only additional types from the B; are {(r; + 3,1) :
1 <1 < k}. Hence the total number of types is k + n + 6. (Note that the embedding of
the component E; “swallows up” the types corresponding to the elements A} that are not
selected by the vector [.)

Next, suppose that G can be embedded in one page using at most k + n + 6 types.

Because each component of G is biconnected, the possible one-page embeddings G are very
restricted, as the following Lemma indicates.

Lemma 2 (14] A biconnected outerplanar graph has a unigue outerplanar embedding, up
to rotation and reversal.

For any embedding of G, the components E; and Es must use types (0,2), (2,0), (1,1),
(1,2), and (2,1). In addition, the anchor vertex is of some type (a1, az) where a;+a; > n+4.
Of the two copies of E}, at least one must have the anchor vertex at one end. Hence, we
may assume without loss of generality that types {(1,{+3) : 1 < < n} are used also.

For 1 < ¢ < n, one copy of B; must have the anchor vertex at one end. That copy
must use either types {(j',1) : 1 <i < k!}or {(77,1) : 1 < i < k?}. In either case,
| U; A:-"I < k for the corresponding selection vector I,

We have thus reduced the MIN-UNION problem to the MIN-OUTERPLANAR-
TYPES problem. We now complete our proof by establishing the NP-completeness of
MIN-UNION. As before, membership in NP is transparent, so we shall show only that

the problem is NP-hard, by reducing the well-known NP-complete problem CLIQUE [6]
to it.

CLIQUE:
Instance: An undirected graph G = (V, E) and an integer k.
Question: Does G have a clique of size at least k?

Assume, without loss of generality, that V = {1,2,-- -,n}. For 1 <4 < n, let A} = {1}
and A? = {j : (5,{) € E}. Given a selection vector | = (1,12, -+ ,1n) € {1,2}™, define
Vi={ieV : ,=1},Vf={ieV : I, =2}, and Al =; Al

We claim that G has a clique of size k if, and only if, there is a selection vector { such
that |AY| < n - k.
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Suppose first that the graph G has a clique C C V. Let I; =2 for 1 € C and [; = 1 for
1 ¢ C. Then ALV — C; hence, if C has size k, then |AI| <n-k

Conversely, if IAI| < n -~ k, then the set Vzi contains a clique of size k. This can be seen
as follows. Each 1 € Vli appears in A, hence adds 1 to ‘AI |. A given j € Vzr fails to appear
in AT if, and only if, it is adjacent to every other vertex of V{. In particular, some k vertices

from Vzr fail to appear in Al if, and only if, they are all mutually adjacent, hence form a
clique.

The argument in the preceding paragraphs establishes that CLIQUE is reducible to
MIN-UNION, so MIN-UNION is NP-complete. This completes the proof of the Theo-

rem. O

As an added point of interest, the MIN-UNION problem is closely related to a vari-
ation of the SATISFIABILITY problem: Given an instance (A}, A?) of MIN-UNION,
construct a CNF formula with clauses

Cj={zi : i€ A}}u{-z; : i€ A}}.

There is a selection vector I for which the union set A’ has cardinality at most k if, and
only if, there is an assignment of truth values to the z; that satisfies at most k clauses.
This MIN-CNF-SAT problem contrasts with the MAX-2CNF-SAT problem, which is
proved NP-complete in [7).

4.2. The Importance of Minimizing Embedding-Typenumber

Of the three measures of the cost of a book-embedding, typenumber is the only one that is
very sensitive to rotation (or, cyclic permutation). It is obvious that rotation has no effect
on the book-thickness of a book-embedding. It is not difficult to verify that rotation can
increase (or decrease) the pagewidth of a book-embedding by at most a factor of 2; this
observation is due to L. S. Heath (and is used in [4]). However, there is no a priori bound
on how much the typenumber of a book-embedding can be affected by rotation.

To verify this last claim, focus on the (1-page) preorder book-embedding of the height-
h complete d-ary tree Tyn. We showed in Proposition 6(b) that this embedding never
uses more than 3 vertex types. Moderating this good news (and emphasizing the intended
message of this subsection) is the fact that no nontrivial rotation of the preorder book-
embedding has typenumber less than 4: any rotation uses at least 3 types for the nonroot
nodes of the tree. Even worse, a positive fraction of the possible rotations of the preorder

book-embedding actually use the pessimal number d + 5 of types. We now verify this latter
assertion.

Consider the familiar labelling of the nodes of Ty with strings: Let the root node of T4 5
be labelled by the null string, and inductively let the d children of the node labelled by the
string v be labelled by the strings v1,v2,-.-,vd, in left-to-right order of their appearance
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in the preorder book-embedding. It will be useful to determine how many of these string
labels contain all of the “letters” in the set {1,2,---,d — 1}.

Lemma 3 Let A = {1,2,---,d}. The number of length-n strings of the form az, where
& € A and where z is a length-(n - 1) string that contains all of the letters {1,2,---,d-1}
in some order, is precisely

d-1
smu0=§:p4r(d:1)-dwd—ﬁ*‘

=0

Proof. We invoke the Principle of Inclusion and Exclusion (11, Ch. 3]: There are d" length-
n strings over the alphabet A; there are d — 1 properties P;j(z) = |7 does not appear in z);

foreach 1 <i<d-1,
(d:l)-d{d—ﬂkl

of these length-n strings have the form az, where a € A and where z lacks at least 1 of the
letters {1,2,---,d- 1}. O

We now verify that certain leaves whose labels are close to the form enumerated in
Lemma 2 lead to typenumber-pessimal rotations of the preorder book-embedding of T4,
while arbitrary nodes whose labels have that form lead to rotations that are close to pessi-
mal.

Proposition 13 Consider the preorder book-embedding of Tan, where h > d > 2. If we
rotate the embedding so that the leftmost node, called the pivot node, is one of the S(h-2;d)
leaves whose label has the form azl, where @ € {1,2,---,d} and where z is a length-(h — 3)
string that contains all of the letters {1,2,---,d — 1} in some order, then the resulting book-
embedding has d + 5 vertez types. For fized d, as h grows without bound, these S(h - 2; d)
leaves approach the fraction (d -- 1)/d? of the nodes of Ty .

Proof Sketch. Consider the preorder book-embedding, rotated as prescribed in the statement
of the Proposition. Note that when the pivot node v has a label of the prescribed form,
then in the preorder book-embedding it has, for each ¢ € {0,1,2,---,d - 1}, a node to
its left that has precisely ¢ children to v’s right. The edges to these children change from
rightgoing to leftgoing after the prescribed rotation. Using this fact one can verify that in
the prescribed rotation of the preorder embedding: the root of Ty has type (k,d — k) for
some 0 < k < d; the pivot leaf has type (0, 1), while all leaves that were to its left before
the rotation have type (1, 0); all internal nodes that were to the left of the pivot leaf and
whose children were also to the left of the pivot leaf before the rotation have type (1,d);
the father of the pivot leaf has type (d -+ 1,0); each internal node that lay to the left of the
pivot leaf before the rotation but had ¢ (i € {1,2,---,d — 1}) children to the right of the
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pivot leaf has type (i + L,d - ), while its 1 children have type (0,d + 1). Summarizing, we
find the following types:

(k,d - k)  the root
(i,d—~i+1) 0<i<d+1 the internal nodes (8)
(0,1) the pivot leaf
(1,0) all other leaves '

which are d -} 5 in number.

Finally, note that the claimed cardinality of the set of bad pivot leaves follows immedi-
ately from Lemma 2. O

In fact, the situation is even worse than Proposition 13 suggests: Asymptotically as we
consider successively taller complete d-ary trees, rotating the preorder book-embedding to
a random site will, with probability approaching 1, yield an embedding with at least d + 4
vertex types. This follows from the fact that the overwhelming majority of the nodes of
T4, have labels of the form prescribed in Lemma 2, and each is a bad pivot node.

Proposition 14 Consider the preorder book-embedding of Tap, where h > d > 2. If we
rotate the embedding so that the pivot node has a label of the form az, where a € {1,2,---,d}
and where z is a string that contains all of the letters {1,2,---,d - 1} in some order, then
the resulting book-embedding has at least d + 4 vertez types. For fixed d, as h grows without
bound, these “bad” pivot nodes constitute the fraction

o (7))

of the nodes of Ta .

Proof Sketch. Each length-n string referred to in Lemma 2 is the label of some node at level
n of T4 4. By the reasoning in the proof of Proposition 13, the typenumber of the preorder
book-embedding of Ty s, rotated so that any such node is the pivot node, is at least d + 4:
all of the types enumerated in (8), save perhaps (0, 1), must occur. We can, therefore, use
Lemma 2 to calculate a lower bound on the number of nodes of T4 n whose labels guarantee
such large typenumber. By our earlier reasoning, this number is no less than

h-1 h-1 d-1 . d—1
Y~ S(n;d) > Z(—l)'( ; ).d.(d-i)"'l

il

n=d+1 n=d+1 {=0
= .d‘l_ i d-1 = _n-1
d-Y (-0 T ] X =)
i=0 n=d+1
~ Sy ( 5 ) ' ((d—itlf_(f_ i)d) P (-1 e (h—d - 1),
1=0
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Since Ty, has (d* — 1)/(d — 1) nodes, the claimed fraction of the pivot nodes follows. O

In order to give the reader a feeling for how fast the “eventually” of the big-O in
Proposition 14 eventuates, we present a short table that indicates, as a function of d and
h, the fraction of potential pivot nodes in Ta,n whose labels satisfy the conditions of the
Proposition; all lead to book-embeddings with typenumber at least d + 4.

Propositions 13 and 14, being asymptotic, are at most suggestive in impact. We now
present two tables that indicate the maximum, minimum, and average typenumber observed
in a series of experiments that looked at all rotations of a variety of book-embeddings. We
rotated the preorder book-embedding of Ty, for a variety of values of d and h, and we
rotated the (thickness- and width-optimal) 2-page book-embedding from [3] of the height-
h X-tree X(h), for a few values of h. The height-h X-tree is obtained from the height-h
complete binary tree T;, by adding edges linking all nodes at each level in a line. For
perspective, we present an analog of Proposition 6 for X-trees.

Proposition 15 A 2-page book-embedding of a height-h X-tree can have typenumber at
most

min(56,2*"! — 2k + 2) + min(35, 2k — 4) + min(20,2%"! — 2) + 3.

Proof Sketch. Immediate from Proposition 4, given that the height-h X-tree has 2"~ —2h 42
nodes of degree 5, 2h —~ 4 nodes of degree 4, 2"~! — 2 nodes of degree 3, and 3 nodes of
degree 2. O

Tables 2 and 3 demonstrate that the phenomenon that is perhaps exaggerated by the
asymptotics of Propositions 13 and 14 obtains even for very modest size situations, at least
for the indicated book-embeddings of both complete trees and X-trees.

The results of this subsection establish the need for the algorithm of the next section.

4.3. Rotating a Book-Embedding to Minimize Typenumber

We now describe a family of efficient algorithms that find that rotation of a book-embedding
that minimizes typenumber. All of the algorithms follow the same strategy; they differ in
their data structures, which are tailored to the magnitudes of the book-thickness p of the
book-embedding and the maximum vertex-degree d of the embedded graph G.

The Algorithmic Strategy

Input. A p-page book-embedding of an n-vertex graph G, presented via the associated
sequence 7y,73, -, T, of vertex types.

Output. A list, with one entry for each vertex v of G. The entry for each v comprises

e the number of vertex types in the book-embedding obtained by rotating the input
embedding so that v becomes the pivot vertex;
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® The bag (multiset, with multiplicities) of vertex types that appear in the book-
embedding when v is the pivot vertex.

The Strategy. Say that vertex v is the current pivot vertex of the book-embedding. In
order to rotate the embedding, we do the following.

Step 1. Rotate v’s p x 2 type-matrix so that each row (0, Ri) becomes (Ry,0); this
effectively moves v to the right end of the embedding.

Step 2. For each vertex w that is adjacent to v, if the edge of adjacency resides on page
k, then row k of w’s type-matrix is changed from (Lk, Re) to (Lg — 1, Ry, + 1); this
effectively “swings that edge around”.

Step 3. As each vertex type is altered in Steps 1 or 2, the old type’s multiplicity is dimin-
ished in the bag and the new type’s multiplicity is augmented in the bag; when a type
disappears from the bag, or appears for the first time (detected by the multiplicities),
the typecount of v is adjusted accordingly.

Implementing the Strategy
We need to specify the data structures used to implement the strategy.
The Paged Adjacency Table.

It is convenient to make use of a paged adjacency table for G, i.e., an adjacency list
with a record of which edges lie on which pages. Such a list is readily constructed from
the input. Two organizations for the list recommend themselves, the choice being dictated
by the magnitudes of p (the book-thickness of the input embedding) and of the number of
edges of the input graph G. In both representations, there is a one-dimensional array (the
table) whose entries are the vertices of G » in the order they lie along the spine of the book.
The table entry corresponding to vertex v of G comprises

e aregister Type Count(v) recording the number of vertex types in the book-embedding
when v is the pivot vertex;

* a pointer into the bag of vertex types that points, at any given moment, to the then-
current vertex type of v;

® a pointer to a list of those vertices that are adjacent to v in G; each such vertex is
represented via a pointer into the table.

The two organizations differ in their representations of the information about which edges
lie on which pages.

Distributed Page Information. In this organization, each vertex w in the list of vertices
adjacent to vertex v contains a field indicating the page via which v is adjacent to w. Since
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each such field requires log, p bits, and since there is such a field for each endpoint of each
of G’s e edges, this organization requires

2e-logy p

bits for recording the page information.

Centralized Page Information. In this organization, the entry of each vertex v in the
table contains p subfields; the i*" subfield contains a pointer to a list of those vertices that
are adjacent to v in G via page 1. This creates (p — 1)n new subfields in all, each of log, n
bits, since it must be capable of pointing to any vertex of G. Thus, this organization requires

(p—1)n-log;n
bits for recording the page information.

For all but quite dense graphs, the distributed organization is likely to be the preferred
one.

The Bag of Types.

We must represent the bag of vertex types in a way that facilitates adding, deleting,
and altering types, where each alteration either exchanges the L- and R-entries of a type-
matrix (thereby moving the associated vertex from the left end to the right end of the
book-embedding), or adds (—1,+1) to some row of the type-matrix (thereby flipping one
edge from left-entering to right-entering). As noted earlier, the changes to the bag must
maintain an accurate count of the multiplicity of each vertex type in the bag. The preferred
representation of a bag depends on the magnitudes of the book-thickness p of the book-
embedding and the maximum vertex-degree d of G.

A. p and d both small.

This case is quite common:

binary trees p=1 d=3 [4]
2 - dimensional meshes p=3 d=4 [4]
X - trees p=2 d=5 [4]
Benes networks p=3 d=4 |5

In this case, equation (3) assures us that the number of vertex types must be small, in fact

cannot exceed
2p+d
d -L

we shall, therefore, represent the bag as a one-dimensional array of nonegative integers,
indexed as follows. The array/bag-entry corresponding to vertex type

Ly R
L, R,
Ly R
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each L;, R; € {0,1,---,d}, is determined by converting the type-matrix to the length-2p
(d + 1)-ary numeral
LyRyLy. 1Ry 1+ Ly Ry,

and evaluating the numeral; since p is fixed, distinct numerals specify distinct numbers.
Each entry in the array is the multiplicity of the vertex type in the book-embedding that
indexes that entry.

At any given moment, we shall remember the index of the current pivot vertex v of the
book-embedding. In order to rotate the book-embedding one place, we move the current v
to the right end of the embedding, and we use the paged adjacency table to pick up the type
. of the next pivot vertex (which is the successor in the table of the current pivot vertex).
Moving v to the right end of the embedding consists of the following.

Step 1. Decrease the multiplicity of v’s current vertex type.

Step 2. Determine v’s new vertex type, which is obtained by multiplying the current type
by d + 1 (recall that all current L; are O and that we want to flip each L; and R;).

Step 3. Change the vertex type of each neighbor w of v, after decreasing the multiplicity
of w’s current type; if vertex w is adjacent to v on page k (discovered from the paged
adjacency table) then the new vertex type of w is obtained by decreasing the current
type by the quantity d(d+1)2¥~2 (recall that we want to decrease L, by 1 and increase
Ry by 1).

Of course, during these alterations we are keeping track of any vertex types that disappear
or appear anew, to evaluate Type Count(v).

B. p large and d small.

Although we do not know of any specific graphs with such p and d, we do know that
they exist: It is proved in [4] that for all d and all sufficiently large n, there exist n-vertex
graphs with maximum degree d that cannot be embedded in fewer than

pages. Since p is large, the array-solution of the previous subsection is likely to be too
wasteful of memory, since the bag/array is likely to be sparsely occupied. We shall, therefore,
represent our bag of vertex types as a height-(2p + 1) trie (digital search tree).

Each internal node of the trie will be a (d+1)-ary array of pointers to the adjacent levels
of the trie; we assume that all edges are bidirectional. The array positions represent labels
on the edges from a node to its children, the labels 0,1,---,d being the valid entries in a
vertex type. Each vertex type that occurs in the current rotation of the book-embedding

will be a root-to-leaf path in the trie; the multiplicity of the type will be recorded in its leaf
node.
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At any given moment, we shall point to the leaf-node corresponding to the current
vertex type of the current pivot vertex v of the book-embedding. In order to rotate the
book-embedding one place, we move the current pivot v to the right end of the embedding,
and we use the paged adjacency table to pick up the type of the next pivot vertex. Moving
v to the right end of the embedding consists of the following.

Step 1. Decrease the multiplicity of v’s current vertex type.

Step 2. Determine v’s new vertex type, which is obtained by proceeding along the (unique)
path from v’s leaf to the root of the trie, constructing the vertex type “complementary”
to v’s, i.e., converting v’s current type

to v's new type
T, 0
T, O

T, 0 )
if the multiplicity of v’s current type was decreased to 0 in Step 1, then, as a space-
saving measure, all trie-entries unique to this vertex type can be removed during the

leaf-to-root traversal (i.e., all trie-nodes can be removed, up to the occurrence of the
first binary node along the path).

Step 3. Record v’s new vertex type by traversing the root-to-leaf path in the trie dictated
by the new vertex type, inserting new nodes when necessary, and increasing this type’s
multiplicity when the leaf node is reached.

Step 4. Change the vertex type of each neighbor w of v, after decreasing the multiplicity of
w’s current type; this is accomplished by traversing the path from the leaf containing
w’s vertex type toward the root, until one encounters the type-entry for the page
on which v is adjacent to w (as in Step 3, node entries for a zeroed type can be
removed during this traversal); one now reverses direction, following the root-to-leaf
path dictated by w’s new type, adding new nodes when necessary, and increasing this
new type’s multiplicity when the leaf node is reached.

C. p and d both large.

When both p and d are large, as with the complete graphs K, or complete bipartite
graphs Ky, n, any data structure that incorporates arrays is likely to be wasteful of space.

23



The trie structure of the previous subsection deals well with large p; with one small modi-
fication, it accommodates large d also. Rather than have a (d + 1)-entry array of pointers
at each nonleaf node of the trie, we shall now have a balanced binary tree, having up to
[log,(d + 1)] levels. The processing of the trie proceeds as in the previous subsection, with
the one complication that, as vertex types are added or deleted, the nonleaf nodes’ balanced
trees are dynamically updated. Details are left to the reader.

Analyzing the Implementation

As the algorithm proceeds, the vertex type of a degree-d vertex v of G is changed d + 1
times: once as v is moved from the left end to the right end of the book-emnbedding, and
once as each of its neighbors is so moved. The structure of the paged adjacency table allows
one to determine in time O(1) what vertex type to access, how to access it, and what change
to make. The cost of maintaining the bag of vertex types depends on the magnitudes of p
and d; even with our trie of trees data structure, which is the most costly of the three we
describe, each transaction involved in altering a type can be done in time proportional to
p - logd. If the graph G has n vertices, e edges, and the set D of distinct vertex-degrees,
then the entire algorithm can be executed within time proportional to

Zp-(d-l- 1)-logd
deD
which is in turn proportional to
p-e-logdmaz.
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T T Arity

Height [ 2 3 a4 | 5
3 0.400 - o
1 0.645 | 0.298 -
5 0.794 | 0.511 | 0.176 .
6 0.882 [ 0.664 | 0.330 | 0.092
7 0.933 | 0.772 | 0.467 | 0.190
8 0.963 | 0.846 | 0.584 | 0.296
9 0.979 | 0.897 | 0.680 | 0.401
10 0.989 | 0.931 | 0.755 | 0.498
11 0.994 | 0.954 | 0.814 | 0.585
12 0.997 | 0.969 | 0.860 | 0.659
13 0.998 | 0.979 | 0.894 | 0.722
14 0.999 | 0.986 | 0.920 | 0.775
15 0.999 | 0.991 | 0,940 | 0.818
16 1.000 | 0.994 { 0.955 | 0.853
17 1.000 | 0.996 | 0.966 | 0.882
18 1.000 | 0.997 | 0.975 | 0.905
19 1.000 | 0.998 | 0.981 | 0.924
20 1.000 | 0.999 | 0.986 | 0.939

0.045
0.103
0.175
0.256
0.339
0.421
0.498
0.569
0.632
0.687
0.735
0.776
0.812
0.842

0.021
0.052
0.097
0.154
0.218
0.286
0.355
0.423
0.487
0.547
0.602
0.652
0.696

Table 1: Lower bound on the probability that randomly chosen pivot node yields d + 4 types.

d-ary Trees

Height

T oA W N,

-3

8
9
10
11
12
13

Arity
2 3 1 5 6

m M hl m M a m M a m M a m M ?l.

‘213 |23¢] 2|3 (25023 {260]2]| 3 /|267]|2]3 /|27
3|5 |420|3|6[477!3|6]505|3|6]|[523[3]6]535
317 |527|3|7|578|3|7]606|3|7[624[3]7]6.36
3|17 |558|3|8|[620|3|8 ({657 |3| 8 |68]3]|8/|6.98
31 7(576|3|8|647|3[9]693| 3|09 |725{3]| 9745
3171587 |3|8|665|3|90]|72/3]10]760] 310|701
3171015933 |8|677!/3[9 (740! 310|783 11]38.26
317159 |3|8 |68 |39 ]|75|3]10[811]|3]|11]854
37159 |3|8|69|3|[9(|766]3|10]821-| - -
31759 |3|8|693|3]|9]775]- - |1-1-1-=
317|599 |3|[8f|605|-|-| - |-]1- -l -1-1 -
3171600 - | - -] - -l -1 - |-1-1 -

Table 2: Minimum (m), maximum (M) and average

X-Trees
.ﬁeight m | M a
3 6 | 7] 686
4 1| 14| 12.47
5 13|20 | 17.74
6 13 | 25 | 20.35 !
7 | 14|26 2271 |

(a) number of d-ary tree vertex-types.

Table 3: Minimum (m), maximum (M) and average (a) number of X-tree vertex-types.



