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Abstract

We prove that each FFT graph is a subgraph of the smallest Boolean hypercube that
is big enough to hold it, and we present a linear-time algorithm that finds the embedding.
Thus, we find a mapping of the FFT algorithm onto the Hypercube architecture, with
unit (hence, optimal) dilation and optimal expansion.

1. INTRODUCTION

We consider a problem that arises when one implements a parallel algorithm on an array
of processors. On the one hand, the algorithm has some natural subtask-interdependence
structure; on the other hand, the array has a fixed processor-intercommunication network.
The mapping problem for the desired algorithm and the available processor array is the
problem of accommodating the algorithm’s interdependence structure to the array’s in-
tercommunication structure. One typically studies the mapping problem by viewing both
of the structures of interest as simple undirected graphs and viewing the accommodation
problem as one of finding an efficient embedding of the algorithm-graph in the array-graph
[2, 3, 4, 5]. The major notions of the efficiency of an embedding are enunciated in [8]; they
are the dilation of the embedding, which measures the maximum delay engendered by the
accommodation, and the ezpansion of the embedding, which is one measure of the efficiency
of utilizing the processors of the array.

In this paper, we study the mapping problem for the important Fast Fourier Transform
(FFT) algorithm [1, Ch. 7], which is paradigmatic for convolution-based algorithms, and
the popular (Boolean) Hypercube architecture (3, 4, 6], versions of which have been built
by Intel, N-cube, BBN, and Thinking Machines. Our main result is a linear-time algorithm
that embeds the intercommunication graph of the FFT algorithm in the Hypercube network,



with unit (hence, optimal) dilation and optimal expansion. This result provides yet another
example of the efficiency of the Hypercube as an interconnection structure, to supplement
earlier work that has shown the Hypercube to be an efficient host for divide-and-conquer
algorithms [3] and for grid-based algorithms (7).

2. THE FORMAL FRAMEWORK

The technical vehicle for our investigation is the following notion of graph embedding. Let
G and H be simple undirected graphs, having |G| vertices and |H| vertices, respectively.
An embedding of G in H is a one-to-one association of the vertices of G with the vertices
of H. The dilation of the embedding is the maximum distance (in H) between vertices of
H that are the images of adjacent vertices of G. The ezpansion of the embedding is the
ratio |H|/|G|. Clearly, no embedding can have better than unit dilation, and such dilation
is achievable only if G is a subgraph of H.

Our specific focus here will be on embeddings between two given finite families of graphs
T and ®. We shall be seeking the best possible embeddings - relative to dilation-cost — of
each G € T in the smallest H € ® that will hold it, i.e., for which |H|/|G| > 1. Thus we
optimize expansion-cost and then try to optimize dilation-cost. We shall be able here to
achieve unit (hence, optimal) dilation, even while optimizing expansion.

The target graphs for our investigation are FFT graphs (which will play the role of our
G’s) and Boolean hypercubes (which will play the role of our H’s).

e Let m be a positive integer. The 2™-input FFT graph (so named because it reflects the
data-dependency structure of the 2™-input FFT algorithm; cf. (1, Ch. 7]), denoted
F(m), is defined as follows. F(m) has vertex-set

Vm = {0;17"‘tm} X {0’1,.._’2m_ 1}
The subset Ve = {£€} x {0,1,+++,2™" =1} of Vi (0 S £ < m) is called the £ level
of F(m); vertices in Vi, o are called inputs, and vertices in Vy, m are called outputs (in
deference to the algorithmic origin of the graph). The edges of F(m) form butterflies

(or, copies of the complete bipartite graph K. 2,2) between consecutive levels of vertices:
Each butterfly connects vertices

(£,a2¢1 + B) and (¢, a2 + f + 2%
onlevel £of F(m) (0<€<m0<a<2™bh0<f< 2%) with vertices

(€+ 1,02t + B) and (£+ 1,020+ +B8+29

Vet



on level £+ 1. It is often useful to view F(m), m > 2 (F(1) = K3 2 being given),
as being constructed inductively, by taking two copies of F(m — 1), and 2™ new
output vertices, and constructing butterflies connecting the kth outputs of each copy
of F(m — 1), on the one side, to the k*" and (k + 2m-1)th new outputs, on the other
side. Thus, F(m) has (m + 1)2™ vertices and m2™*! edges.

e Let d be a nonnegative integer. The d-dimensional Boolean Hypercube C(d) is the
graph whose vertices are all binary strings of length d and whose edges connect each
string-vertex z with the d strings that differ from z in precisely one position. Thus,
C(d) has 24 vertices and d24-! edges.

It is not hard to find a unit-dilation embedding of F(m) in C(2m), by assigning two
new dimensions for each level of F(m); but this embedding has expansion {}(N/log N).
Likewise, it is not hard to find a dilation-2 (expansion-optimal) embedding of F(m) in
C(m+ [logy(m+1)]), which is the smallest Hypercube that holds F(m), using embedding
techniques analogous to those used in {4]. The main result of this paper is a linear-time
algorithm that finds a unit-dilation embedding of F(m) in C(m + [logs(m + 1)]), thereby
optimizing dilation and expansion via the same embedding. Stated formally, we prove

Theorem 1 The FFT graph F(m) is a subgraph of C(m+ [loga(m+ 1)]); moreover, there
18 a linear-time algorithm that finds this optimal embedding.

3. THE EMBEDDING

We now describe the embedding, and implicitly the algorithm, that prove Theorem 1.

Let us focus on embedding the FFT graph F(m) = (Vin, Es) in the Hypercube C(m +
[logy(m + 1)]). We specify the desired embedding by describing two labeling schemes.

o We assign each vertex v € V;,, a unique d-bit label L(v) (i.e., the labeling is injective).

o We assign each edge (u,v) € E,, a bit-position label B(u,v) € {1,2,-:-,d} such that
L(u) and L(v) differ exactly in bit-position B(u,v).

For each ¢ € {1,2,:--,m}, there is a bit-pair (a;,b;) of bit-positions that are used for
assignments to edges between levels { — 1 and ¢ of F(m); i.e., all such butterfly edges
“flip” the same pair of bits. In particular, each butterfly can be viewed as being labeled as
indicated in Figure 1. We say that bit-position e flips on an edge of F(m) if the labels of
the endpoints of the edge differ in bit-position a.

The reader can verify easily that when we assign the d-bit label L(v) to any single
vertex v of F(m), the labels of all remaining vertices can be specified uniquely by specifying



the levelled bit-pair sequence (LBPS) S = (a1,51), (az,b2), ..., (am,bm). The consistency
of the labelling is proved by induction. We can, therefore, complete our task by labelling
some input of F(m) with the string 00---0 and using an appropriate LBPS to specify the
labelling of the remaining vertices.

It remains to select an LBPS so that the labelling L is injective. To this end, call the
LBPS S = (ay, b1), (a2, b2),- ..,(am,bm) proper if, for each i, at least one of a; or b; does
not occur in {a;j,b; : j < i}, i.e., at an earlier level; call an a; or b; satisfying this condition
new. We shall find a proper LBPS to effect the desired labelling.

Partition the levels {0, 1,-++,m} of F(m) into tiers: tier k is the set of levels {§ : 2* <
i < 2¥*1_1}n{0,1,---,m}. Let the singleton {0} constitute tier —1. If the level of vertex
v in F(m) is in tier k, then we say that vertex v is in tier k.

Our embedding-labelling will be incremental: we shall obtain the labelling of F(m + 1)
from the labelling of F(m). Clearly, in the course of specifying our proper LBPS, a new
bit-position can never lead to duplicated labels, so we shall always use any new bit-position
as one becomes available (which happens when we must add a new dimension to the host
Hypercube in order to accommodate the next bigger FFT graph). As we proceed from
F(m) to F(m+ 1), the number of dimensions in the smallest Hypercube that will hold the
FFT graph increases by at least one; hence, there is always at least one new bit-position
to use in the labelling. Let us always call this new bit-position the a-position: at level s,
it is bit-position a;. Whenever m = 2k is a power of 2, then two new bit-positions are
available for the expanded labelling when we proceed to F(m + 1). In this case, we call
the pair (ag,bi) of new bit-positions the shield positions for tier k of all F(n), n > m. It
remains only to choose the b;’s that are not shield positions. We do this inductively, based
on the tier number k. The base case k = 1 is trivial, as there are only shield positions. For
purposes of induction, assume that the bit-positions for tier k — 1 have been chosen. We
choose the 2¥ — 1 b;’s for tier k as follows.

o For1<i< 211, weset by = age-14;.

e For i = 2¥~! we can choose either shield position from tier k — 1; for definiteness, we
set b2k+2k—l = Qok-1.

o For1<i<2F1 -1, weset by gk—14; = baryy.

‘Call the m-level version of the LBPS just described Sp,.

We now must verify that S, induces a unique label for each vertex of F(m). We begin
by simplifying our task, by showing that it suffices to look at Sp’s behavior on a simple
subgraph of F(m). For any vertex v € Vi, let T'(v) be the complete binary tree rooted at v
and extending monotonically downward (i.e., to increasing levels) so that the leaves of T'(v)
are outputs of F(m). If vertices u,v € Vi, are at the same level of F(m), then there is a
unique isomorphism ¢, : T(u) — T(v) that preserves the bit-positions assigned to edges.



We now show that we need only specify an injective labelling of some T'(v) where v is an
input of F(m).

Lemma 1 Let S be a proper LBPS for F(m), and let w € V,, be any input of F(m).
Assign w the label L(w) = 00---0. (As remarked earlier, the labels of remaining vertices
are determined). If no two vertices of T(w) are assigned the same label by the labelling of
Vin induced by S, then no two vertices of F(m) are assigned the same label.

Proof. Let us suppose, for contradiction, that the Lemma is false. We are thus assuming
that all vertices in the tree T'(w) rooted at input w are labelled uniquely, but that there are
distinct vertices u, v € V,,, for which L(u) = L(v).

Note first that there is no input z € V;,, of F(m) such that both u and v reside in the
tree T'(2). If there were such a z, then one sees easily that the vertices ¢, (u) and ¢4 (v)
of T'(w) must also be assigned the same label, since the labelling of 7'(w) is dictated by the
same LBPS S as is the labelling of T'(z). This would contradict the assumed uniqueness of
labels in T'(w).

Let u reside at level £, in F(m), and let v reside at level £,. Without loss of generality,
say that £, < £,. Since u and v do not reside in the same T'(z), it follows that there exists
an input z of F(m) such that u is not in T'(z), but v is. Say we have chosen such a z.

Consider the graph G(z,u) =4.y T(2) U T(u). Choose a path P from u to v in G(2,u),
of the following form: P proceeds monotonically down T'(u) until a vertex s of T'(z) is
reached; P then proceeds monotonically up T'(z) to an ancestor (not necessarily proper) of
v; P finally goes down to v. The path P is guaranteed to exist, since the graph G(z,u)
is connected: the leaves of T'(z) comprise all of the outputs of F(m) (z being an input of
F(m)) while the leaves of T'(u) comprise some of the outputs of F(m). Since L(u) = L(v),
it follows that every bit-position flips on edges of P an even number of times. Now, let
r € V,,, be the vertex that precedes s in P, -and let t € V,,, be the vertex that succeeds s
in P; moreover, let k be the level of vertex s in F(m) (easily, & < & < k). The edges
(r,8) and (s,t) are the only edges in P that connect vertices on levels k — 1 and k. Since
these edges are distinct (¢ being in T'(z) while r is not) -and share an endpoint, it follows
that bit-position a, flips on one of these edges, and bit-position by flips on the other. Since
the LBPS S is proper, at least one of the bit-positions a;, ; must be new, hence flip only
once in P, contradicting the even-flipping requirement. This contradiction establishes the
Lemma. O

We shall now analyze the behavior of S,, on F(m) by analyzing its behavior on one of
the subtrees of F(m) rooted at an input.

Lemma 2 The LBPS S,, ts proper. It does not repeat any label in a complete binary tree
of height m.



Proof. The LBPS Sy, is proper by construction, so we can concentrate only on the unique-
ness of labels.

Let w be an input of F(m), so that T(w) is a complete binary tree of height m. Assign
w the label 00---0. Let us assume, to obtain a contradiction, that the distinct vertices u
and v of T'(w) are assigned the same label under the LBPS Sp: L(u) = L(v). Let u reside
at level ¢, of T(w), and let v reside at level £,. Say that £, is in tier k; then £, must also
be in tier k, since the shield position that L(u) has on! from tier k must also be on in L(v).
Without loss of generality, assume that £, (hence k) is smallest possible, and that £, < Ly.

If k < 2, then we can check by inspection that the like-labeled vertices u and v cannot
exist; hence, we assume henceforth that k > 2.

Let P(u) (resp., P(v)) be the path from w to u (resp., to v) in T'(w). We simplify our
task further, by showing that we can assume with no loss of generality that the path P(v)
has a special form. To this end, note that P(u) (resp., P(v)) can be viewed as choosing
either bit-position a; or b; at each level ¢, 1 < i < £y (resp., 1 < i < &). We say that a
path chooses the a-alternative (resp., the b-alternative) at level ¢ if it chooses bit-position
a; (resp., bit-position b;). Say that, at a particular level i, we force path P(u) (resp., path
P(v)) to make the opposite choice of bit-position. Then the label of the vertex u' (resp.,
v') at level £, (resp., &) that the new path leads to is L(v') = L(u) ® 2% @ 2%~ (resp.,
L(v') = L(v)®2%~ 1 @2%~!); hence, we obtain another pair of vertices with identical labels.
It follows that by switching bit-position choices at precisely those levels i where P(v) made
the choice b;, and by making the corresponding gwitches in P(u), we obtain two vertices ux
and v+ with identical labels and with the property that the path P(v+), which was obtained
by switching all b;’s to a;’s in P(v), always chooses the a-alternative. Thus, when we look
at the like-labelled vertices u and v, we lose no generality by assuming that P(v) chooses
the a-alternative at every level.

We can now determine enough about the labels L(u) and L(v) to complete the proof of
the Lemma. We begin by considering the choices that the paths P(u) and P(v) make as
they traverse tier k. Since bit-positions as,...,ae, are new in tier k and are on in L(v)
(because P(v) always chooses the a-alternative), they must be on in L(u); hence, P(u)
makes the same choices as P(v) at levels 2k ..., 4. Also, since bit-positions a¢,+1,. .., 8¢
are new in tier k and are off in L(v) (since P(v) terminates at v), path P(u) must choose
the b-alternative at levels & + 1, ..., &,. We now know all the choices P(u) and P(v) make
in tier k, so we turn our attention to tier k — 1.

Our analysis breaks into two cases, depending on which half-tier of tier k the vertices u
and v reside in. Say the first half-tier of tier k comprises levels 2%,2%+1,..., ok 4 k-1 _ 1,
and the second half-tier comprises levels 2¥ + 271, gk 4 gk-1 ... oktl _ 1

We claim that u and v reside in the same half-tier. If this were not true then, by
assumption, v would reside in the first half-tier, while u would reside in the second half-tier.

1position ¢ is on in a label if it contains a “17; otherwise it is off.



Now, bit-position agx-1 is on and bit-position dje-1 is off in L(v), since P(v) always chooses
the a-alternative, which is always new; hence, the same configuration must appear in L(u).
However, we have seen that P(u) must always choose the b-alternative at levels below £,,
so in particular, P(u) must choose bit-position byi gt-1 = aje-1. But now consider the
choice that P(u) made at level 2*~!. If it chose the b-alternative at that level, then since
that bit-position was new then and has not recurred, L(u) would have both bit-positions
agk-1 and byx-1 on. Alternatively, if P(u) had chosen the a-alternative at that level, then
this choice would have “cancelled” the choice of gk, ok-1 = azk-1, 80 L(u) would have both
bit-positions agk-1 and bax-1 off. Either contingency would contradict the assumption that
L(u) = L(v). We conclude that u and v are in the same half-tier.

Suppose that u and v are both in the first half-tier. Since bit-positions a,, _gt-1,,,...,
Qak_y

e are new in tier k — 1 (by definition),
e are on in L(v) (since P(v) always chooses the a-alternative),

e do not recur until levels > &,

these positions must be on in L(u) also, so P(u) must make the same choices as P(v) at levels
£, — 251 41,...,2¥ — 1. By construction of Sy, bit-positions be,4+1,. .., b1, are identical
to bit-positions @, _sk-14,...,84, _gk-1. These bit-positions are on in L(v) by virtue of
tier k — 1 (where they are new); they must, therefore, be on in L(u), since L{u) = L(v).
However, if they are on in L(u), it must be by virtue of the ; choices that we have already
noted that P(u) must make in tier k. It follows that P(u) must choose the b-alternative
at levels £, — 2¥"1 4 1,..., 4, — 2%~ 1: if P(u) chose the a-alternative at any of those levels,
that choice would combine with the matching b; choice in tier k to turn off a bit-position
that is on in L(v).

We now have a total picture of the choices made by paths P(u) and P(v) in tier k and
in the bottom portion of tier k — 1, when u and v reside in the first half-tier. Let the
path P'(u) be obtained from P(u) by truncating the latter at level £, — 2*~!; let the path
P'(v) be obtained from P(v) by truncating the latter at level £, — 2*~!. Let L'(u) and
L'(v) be the vertex-labels obtained by following P'(u) and P'(v), respectively. Since this
truncation has removed the same bit-position settings from P(u) and P(v), one sees easily
that L'(u) = L'(v), even though the corresponding vertices reside within tier k — 1 of F(m).
This contradicts the assumed minimality of k.

Finally, suppose that u and v are both in the second half-tier. By assumption, P(v)
chooses the a-alternative at levels £, — 2¥ +1,...,2*¥ — 1. P(u) must also make the same
choices, since those bit-position settings in L(u) must agree with L(v); and we have seen
that P(u) does not choose those bit-positions when they recur (by definition of Sy) in the
first half-tier of tier k.



We now have a total picture of the choices made by paths P(u) and P(v) in tier k and
in the bottom portion of tier k — 1, when u and v reside in the second half-tier. Let the
path P'(v) be obtained from P(v) by truncating the latter at level £, — 25~1; let P'(u)
be obtained from P(u) by truncating the latter at level ¢, — 2! and by choosing the
b-alternative at levels £, — 26-1 +1,..., £, — 2*~1. Let L'(u) and L'(v) be the vertex-labels
obtained from following paths P'(u) and P'(v), respectively. One verifies as above that
L'(u) = L'(v) and that the corresponding vertices reside in tier k — 1 of F(m). Once again,
we have contradicted the assumed minimality of k.

These contradictions establish Lemma 2. O

By Lemmas 1 and 2, we have established that the LBPS S, produces a unique labeling
of F(m). Theorem 1 follows.
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Figure 1. A labelled butterfly.
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