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ABSTRACT

Iimage Understanding research at the University of Massachusetts encompasses a range of re-
search, most of which is directed towards the integration of a diverse set of pracesses to achieve
a general real-time knowledge-based interpretation system. In particular we are concentrating on
integrating projects involving ohject identification in static images, depth recovery from molion
analysis, a real-time parallel architecture, and mobile vehicle navigation. This system will be ap-
plied to a variety of task domains of natural scenes including road scenes and aerial images, and
will also be used to control a mobile robot moving through both known and unknown outdoor
domains.

This summary documents several areas of research at, the University of Massachusetts thal are
entirely or partially supported under the DARPA image understanding program. The work, much
of which is documented in papers in these proceedings, is divided into several areas:

1. Knowledge-Based Vision

2. Perceptual Organization (intermediate processing)
3. 3D Models, Matching, and Surface Recovery

4. Mobile Robot Navigation

5. Image Understanding Architecture

6. Motion Analysis

7. Low-Level Vision

This work was supported by DARPA under Contracts N00014-82-K-0464, DACAT76-85-C-0008,
and DACAT76-86-C-0015, by AFOSR under contract F49620-86-C-0041 and 86-0021, by DMA
under contract 800-85-C-0012 and by the National Science Foundation under grants
DCR-8318776, and DCR-8500332.



1 Knowledge-Based Vision

A central problem in image understanding is the representation and use of all available sources of
domain knowledge during the interpretation process. Each of the many different kinds of knowledge
that may be relevant during the interpretation process imposes different kinds of constraints on
the underlying representation and may lead to very different kinds of strategies for its effective
use. Over the past several years, we have developed the notion of a ‘schema’ as the basic unit of
knowledge representation in the VISIONS system. Within the schema system image interpretati;m
is the process of instantiating a subset of schemas to build a description of the three-dimensional
scene which gave rise to the image. Knowledge is represented in an abstraction hierarchy of schema
nodes by part/subpart descriptions, class/subclass descriptions, and expected relationships between
schemas; the resultant hierarchical graph constitutes the VISIONS knowledge network. This work
has evolved for a long period of time, with recent work documented in [19,23,45|.

Each schema node may be viewed as a ‘packet’ of information related to the object being
described, including properties and relations of extracted image events as well as control information
expressed in the form of interpretation strategies. One or more of these sl.rat,egi.es are executed
when a schema is instantiated (i.e. when a copy is activated), to process a specific area of the
image. Schema activation may be either bottom-up, where image descriptions imply the potential
relevance of a schema, or top-down as the result of the context of a partial interpretation written on
a blackboard communication structure by other schemas. Many schemas may be active at any one
time, and the interpretation strategies provide control over the parallel interpretation processes and
make use of a set of object-independent processes called knowledge sources. In our system scheinas
communicate indirectly by posting object hypotheses on the blackboard.

The system is organized around three levels of data representation and types of processing.
At the low-level, the representations are in the form of numerical arrays of sensory data with

processes for extracting the image events that will form the intermediate representation. At the



intermediate level, the representation is composed of symbolic tokens representing regions, lines,
surfaces and the attributes of these primitive elements (which might include local motion and depth
information). The intermediate representation is stored in a data base called the intermediate
symbolic representation (ISR) which supports grouping (perceptual organization) and information
fusion processes that are employed to develop aggregations of existing tokens to form new tokens.
At the high level, the representation is a set of object hypotheses and active schema instances
which control the intermediate and low-level processes. Control initially proceeds in a data-directed
manner and later is significantly top-down in a knowledge-directed manner.

Based on our experience with an initial implementation of the schema system and a set of
experiments designed to interpret reasonably complex house scenes [23,24,45|, a new schema system
and support environment has been designed and partially implemented [19]. Two new tools, the
Intermediate Symbolic Representation and the Schema Shell, have been developed and are currently
being tested and extended using the interpretation of road scenes as a second experimental task
domain. A third experimental domain of aerial image analysis for cartography applications is
planned for the near future.

The input to high-level vision processes is intermcdiate-level data, which is the output from low-
level processes such as line extraction and region seginentation, and of intermediate-level processes
of grouping and selection. In our environment, intermediate level image descriptions are stored in
the Intermediate Symbolic Representation, (or ISR). The ISR is a database which has been custom-
built for the efficient storage, manipulation, and retrieval of abstract image data. The fundamental
unit of representation is the token, each of which has a unique name, and a list of feature slots.
The ISR can be used to store anything that can be fully characterized by a list of features and
values; some of the image events currently stored include region segments, extracted edge lines,
areas of homogeneous texture, rectilinear line groups, and region-line relations. The benefits which

result from imposing a uniform representation and user interface on all intermediate level tokens



are enormous. It now becomes natural to think in terms of multistage and hierarchical grouping
processes which take in tokens at one level of abstraction and produce tokens at the next higher
level [39)]. It also becomes more tractable to compare different types of tokens, which is necessary,
for example, when relating edge lines to the regions they intersect [6]. Of course, the sharing of
results and the elimination of data reformatting routines are obvious advantages.

At the highest level, tokens are partitioned according to the image they were extracted from.
There is also an intermediate level of partitioning called the tokenset. Each feature associated with
the tokens in a tokenset has a name, a value slot, a data type, and a computation function. Since
most tokens have a physical realization in an image, a special bitplane data type is provided for
representing the subset of image pixels which are associated with a token. Operators exist, for

taking the intersection, union, and difference of token bitplanes.

functions are associative in nature in that tokens may be accessed by means of constraints on
feature values. In addition, the features may be precomputed or computed on a demand basis
when the token/feature slot is accessed. The ISR allows a schema to create a token during an
interpretation, create its bitplane either from scratch or as some combination of token bitplanes,
and access its features, at which time new feature values will be automatically calculated for the
new token. Thus, it is possible for schemas to dynamically “correct” misleading segmentations
based on combinations of top-down knowledge.

The Schema Shell is an environment tool that supports the development of large systems of
schemas. Each schema contains knowledge ahout. recognizing a class of objects. It has data decla-
rations for collecting relevant information, and procedures for determining whether, when and how
to ascertain that information. Parameterized instances of schemas are then invoked to interpret an
image. The Schema Shell provides mechanisms for building schemas and simulates a distribited

environment (until parallel hardware arrives) in which an arbitrary number of schema instances
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may run concurrently. Schema instances communicate through a central blackboard. At any point
during its processing a schema strategy may write an arbitrary message to the blackboard. Every
other schema is then free to read, erase or modify that message. This provides for a single, uniform
communication mechanism between schemas which can also be easily implemented on a variety of
distributed architectures.

Bottom-up activation of schemas can be accomplished by forming initial object hypotheses on
the basis of attributes of the initial image description expressed in terms of lines and regions. P're-
vionsly we have reported on rule-based approaches to initial hypothesis generation [6,24] which
used a heuristic approach to forming constraints (rules) based on a theoretical Bayesian approach
to maximum likelihood decisions over feature distributions. Recently, Lehrer and Reynolds |33
have extended the work and have developed a new object hypothesis system based on the Shafer-
Dempster [17,40] theory of evidence. ‘Their approach provides a more formal and theoretical fou nda-
tion for the definition and interpretation of world knowledge. Object specific knowledge is defined
automatically using statistical information obtained from a set of training object instances and
a computationally efficient approach to the Dempster-Shafer theory of evidence is used for the
representation and combination of evidence from multiple sources.

In this approach, the relationship between an object and its attributes is captured in a “plau-
sibility” function. When applied to the primitive tokens (e.g. regions) the plausibility functions
return evidence for or against an object hypothesis. The evidence from multiple plausibility func-
tions is combined using an efficient computational algorithm to produce the final hypothesis. A

large scale experiment is being planned for comparing and evaluating the results of the two systems.

2 Perceptual Organization (Intermediate Processing)

We are initially viewing the task of perceptual organization and grouping as the extraction of

relevant structure from overfragmented and incomplete descriptions and the construction of more



abstract descriptions from less abstract ones. By this we mean algorithms which have as input
the tokens produced by the low-level system and other grouping operations (region, lines, fiow
fields,...) and have as output more complex tokens generated by grouping strategies based on the
relations between the tokens. The goal of this type of ‘intermediate’ level processing is the reduction
of the substantial representational gap which exists between the low level image descriptors and
the primitives with which the high level semantic descriptions are constructed. The process of
abstraction thus involves the search for events which can he more concisely described as a unit and
which results in a description which may be more relevant to the evolving semantic interpretation.

Over the past two years some progress has been made in developing grouping algorithms at the
intermediate level of representation. The intermediate symbolic representation, described briefly
earlier, has been developed as the supporting representation for this work and several algorithms
de'v;eloped previously have been cast within this framework. A number of the local strategies for
using the rank-ordered object hypotheses generated by the rule-structured initial object hypothesis
system [24] can be viewed as grouping strategies. The extensions to this system developed by
Belknap (5], which fuses information across multiple token types by means of relations expressed as
rules, is also a form of grouping and has successfully generated object hypotheses from a combination
of geometric and spectral features. Boldt |11] has developed a scale-sensitive hierarchical algorithm
for grouping collinear line segments into progressively longer segments on the basis of geometric
properties of the hypothesized group as well as the similarity of image features along both sides of
the component lines. A summary of these algorithms and a more comprehensive discussion of their
relationship to perceptual organization and grouping may be found in [23).

As a result of these preliminary studies related to grouping, we [11,39] are developing a compu-
tational framework for geometric grouping and other organizational algorithms which addresses a
set of overlapping issues. Clearly one must consider the extraction and representation of primitive

tokens, the features of these tokens, and important relations between the tokens. In the case of ge-



ometric grouping algorithms this would include the extraction of lines and geometric relations such
as collinearily, parallelness, relative angle, and spatial proximity derived from the Gestalt Laws of
perceptual organization. One must also provide the means for expressing domain constraints in
terms of these relations; i.e. grouping strategies must be defined and invoked based on knowledge
of the domain and the current state of the system. Finally the system must deal explicitly with
the problem of search, and its relation to the objects in the domain which are to be hypothesized
and identified. In general each step of any grouping strategy must apply constraints which either
significantly reduce the search space and/or add important information to the descriptive power of
the system,

A number of algorithms are being developed at UMASS which satisfy these requirements and a
computational framework has been proposed for confronting the issues described above. We view
the grouping and search processes as part of a four-stage iterative grouping and extraction strategy
which can be summarized as follows:

e Primitive Structure Generation: These processes provide the primitives (regions, lines, pos-
sibly surfaces, and in general, tokens) which are the input to the grouping and hypothesis
generation process described next.

e Linked Structure Generation: This step applics very general geometric constraints to obtain
graphs within which search processes can be applied to identify specific objects of interest.
For example rectilinear structures which would contain rectangles or other simple geometric
structures. This is essential for generating search spaces of reasonable size.

o Subgraph Eztraction: This step involves the extraction of specific structures “one step up”
the abstraction hicrarchy, and uses the linked structures to constrain the search.

e Replacement and Ileration: Having extracted more abstract tokens, these can now play the
role of primitives in another pass of grouping and extraction.

In [11,12] this strategy has been applied with striking results for the purpose of extracting
straight lines. In [39)] this strategy is being applied for the purpose of extracting rectilinear struc-
tures. In unpublished work Lance Williams is developing an algorithm for using a flow field gen-
erated from a motion sequence of images, to assist in the straight line extraction and temporal

grouping process with excellent preliminary results.



While many of the grouping algorithms discussed above are designed to be applied uniformly
across an image, many of them are computationally intensive. In addition, it often does not make
sense to apply them in a uniform fashion because they may not be applicable to all portions of
the image. For example, the rectilinear grouping algorithm [39] probably should not he applied
in heavily textured areas. Consequently, we are examining strategies in which the algorithms are
applied selectively to those areas of the image for which they are most suited. Kohl [29] has been
developing a schema-based system called GOLDIE for intelligently controlling the application of
parameterized low- and intermediate-level processes on the basis of goals and constraints gener-
ated by the high-level interpretation system. Initially, GOLDIE (for Goal-Directed Intermediate
Level Executive) was formulated as a goal-oriented resegmentation system which allowed top-down
control over the low-level level segmentation processes and this remains an important aspect of its
function. However, it also has become clear that Lop-down control of the intermediate-level group-
ing processes is required; consequently GOLDIE has been extended to include these processes in its
repertoire. Both the Boldt line grouping algorithm and a rule-based region merging algorithim are
incorporated into it and we are examining further extensions. GOLDIE responds to requests from
the interpretation processes through the goal structure by translating the goals into appropriate
low- and intermediate-level process specifications and then executing the process. The constraints
imposed on the output of the process can be quite general; if the resulting structure does not sat-
isfy the request, the system attempts to generate other strategies, using whatever contextual and

semantic knowledge is available, in order to mect the constraints.

3 3D Models, Matching and Surface Recovery

There have been two recent, research efforts in our group directed towards 31 object recognition and
surface recovery. Two-dimensional images provide ns with cues to the three-dimensional structure

of objects which can be used for recognition or description. We are exploring a methodology of



generic (characteristic) views for model-based recognition. The primary feature which characterizes
each of the generic views is the binary relationships between pairs of lines which are visible in the
same view. For the problem of reconstructing surfaces we have adopted an approach of constructing
the envelope of the object from changes of the contours under planar motion of the camera. What
these two approaches have in common is that they both use geometric knowledge about contours.
Our efforts are presented in a bit more detail below,

Often small changes in the viewpoint will only produce small changes in the appearance of an
object. If we measure the visibility of features, (e.g. whether or not an edge or vertex is visible),
they will be stable over a wide range of viewpoints. Such a set of viewpoints of an object is called
a generic view. The model of an object consists of all of its generic views. The classification of
the types of features and transitions for smooth surfaces has been analyzed [15,26,28] and we have
extended these results to piecewise smooth surfaces [16]. Piecewise smooth surfaces are made up of
patches of smooth surfaces which meet at creases. This type of surface subsumes both polyhedra
and smooth surfaces. If the pieces are planar, then the surface one gets is polyhedral. If there are
no creases, then the surface is smooth.

Using this approach Kitchen and Burns are constructing a 3D modelbase of objects, which will
be analysed in order to make predictions about the visual configurations that views of the objects
will give rise to in an image. These predictions are being organized into a hierarchical structure
with explicit sharing of predictions common to multiple views. At recognition time, extracted image
features are to be matched against this hierarchy in order Lo quickly establish what view of what
object is seen, even if there are many possible objects in the modelbase. Once the view is known
and the correspondence determined between image features and 3D object parts, it is possible to
solve numerically for the object’s pose parameters, using general methods or view-specific methods
where advantageous |25,36,37].

We are proceeding with an implementation and analysis of this approach as applied to recog-
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nizing rigid polyhedra. Currently a system for modeling polygonal prisms has been implemented,
along with a graphics interface as a tool for exploring the geometry of predictions. More impor-
tant, we have an initial system implemented for making predictions about the appearances of these
prisms and organizing them into a hierarchy for recognition purposes. Work is also in progress on
robust and efficient techniques for solving for object, pose which are tailored for specific classes of
views.

In a separate effort, Giblin and Weiss have mathematically analyzed the reconstruction of
surfaces from profiles and have derived an algorithm to implement it. Information can be derived
about the shape of an object from a single profile, and with multiple views the shape can often be
determined uniquely. Based on this analysis they have found an algorithm which can be used to
produce a depth map of the surface. However, for some applications it may not be necessary to
produce a depth map at all (for example in recognition problems), and thus they have also provided
an algorithm which computes Gauss and mean curvatures without first computing the depth map.
It should be noted that the Gauss and mean curvatures have been used by other researchers to
segment surfaces into patches which are convex, concave, hyperbolic, parabolic, or planar [7,13].

One of the basic problems to be solved is how to combine profiles from multiple views. In
general, there is no way to identify a point on one profile with corresponding points on a profile
from a different view, since for smooth surfaces they will not have any points in common. In fact,
most stereo algorithms which are based on correspondence find the most similar point and assume
it is the same. However, if the camera motion is known, then there is a method to identify )oints on
two different profiles. In our work, the camera has heen restricted to planar motion, so that planes
parallel to the plane of motion induce a correspondence between the profiles. Nevertheless, it is
possible for the profile to change qualitatively from one view to the next, and in order Lo understand
this, the analogous problem for a curve in the plane has been analyzed. These view transitions

create ambiguities in the reconstruction process. The criterion used to resolve this ambiguity is
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that, the most likely solution is the one which minimizes the change in depth between adjacent
views.

The mathematical approach to this problem is that a smooth surface without inflection points
is the envelope of all of its tangent planes. However, there are two problems with this: how
to compute the envelope of a family of plancs and how to handle inflection points. With the
assumption of planar camera motion, the envelope of planes problem has been reduced to that of
computing the envelope of a family of lines in a plane, which Giblin and Weiss were able to solve.
The algorithm has been applied experimentally to synthetic, noise-free data to reconstruct curves
from their profiles with a high degree of accuracy. Future experiments for computing both a dense

depth map and Gauss and mean curvatures will employ real data .

4 Mobile Robot Navigation

Vision-based mobile robot, navigation is a relatively recent addition to the VISIONS research group
at UMass. We have acquired a mobile robot that will enable us to develop a testbed for many of
the vision algorithms we have and continue to develop. The robot is to be operated both indoors
and out, providing a wide varicty of scenes for analysis.

The UMass Autonomous Robot Architecture (AuRA) is being developed to support this re-
search effort. It incorporates both global and reflexive schema-based path planning strategies and
utilizes a priori knowledge stored in long-term memory, when available, to assist the vehicle’s
attainment of its navigational goals.

The chief navigational issues addressed include path following, landmark recognition for vehicle
localization and obstacle avoidance. A new fast line finding algorithm is being used for hall and
sidewalk navigation and will also be used for localization purposes. A depth-from-motion algorithm
developed by Bharwani, Hanson and Riseman (8] is nearly completed and will be used initially for

obstacle avoidance. It can also provide information for landmark identification when coupled with
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top-down knowledge of expected landmark locations. A new fast region segmentation algorithm
has found potential application in both path following and vehicle localization. A description of all
these algorithms and their use within AuRA can be found in [4] included in these proceedings.

Path planning is handled at two levels. First, the computation of a global path is conducted
based on information stored in long-term memory in the form of a meadow-map. An A* search
algorithm capable of dealing with the multiple terrain types found in the map is used to determine
the initial route. Then information contained within the map is used to provide appropriate motor
behaviors (motor schemas) to enable the robot. to attain its navigational goals. Multiple concurrent
processes, developed only in simulation thus far, provide the velocity vectors that constrain the
robot’s motion. Motor schemas afford a relatively straightforward mechanism, using a potential
field methodology, for the combination of the outputs of individual motor tasks. These can readily
reflect the uncertainty of the perceived environmental objects.

Our Gould system’s pipeline parallel processing capabilities is currently being used for rapid
application of look-up tables in both the line finding and region extraction algorithms. The ac-
quisition of parallel hardware, a sequent multiprocessor, will decrease the processing time required
for both vision and motor tasks is expected to enhance the real-time capabilities of the mobile
robot project. When the UMass Image Understanding Architecture [43] is complete, much of the
VISIONS system can be migrated directly into AuRA for real-time visual perception.

The successes in actual robot experimentation to date are modest. Successful navigation of both
an outdoor sidewalk and an indoor hall using the line-finding algorithm has heen achieved. The
algorithm is quite robust working with (unchanging) environments in the presence of significant
path edge discontinuities (doorways, vehicle tracks, clutter etc.). Obstacle avoidance on vehicle runs
has been handled using ultrasonic data thus far. Dead-reckoning information is used minimally in
our system as our goal is to serve as a testhed for vision algorithms.

Short-term goals include the finalization of the depth-from-motion algorithm in a form that is
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uselul for obstacle avoidance applications. This algorithm is in the process ol being transferred
to the Carnegie-Mellon University vehicle navigation prospect (see Motion analysis section of this
paper). Our vehicle should be able to navigate cluttered hallways and sidewalks solely using visual
data. Installation of a recently acquired UHF transmitter link should be completed soon, allowing
the vehicle a greater range than it currently has in its tethered form.

A hierarchical planning system consisting of a mission planner, navigator and pilot is being
constructed to handle the task of path planning in both indoor and outdoor environments. Terrain
features are taken into account in the determination of the best path for the mobile vehicle. The
representations used will include a partial internal model of the environment. This enables the
navigator to take advantage of a priori knowledge of the world while the pilot handles unanticipated
and unmodeled obstacles as required.

Different path optimization strategies can be used based upon the mission’s needs. Whether the
safest path, shortest path, or some other metric constitutes the best path will depend on several
factors. These would include the nature of the mission, the terrain to be traversed, temporal
constraints, energy levels, positional uncertainty, etc. By modeling the free space of the vehicle’s
world expressly and tying relevant symbolic information to these meadows” , multiple factors are
available for path-planning heuristics.

Possibly conflicting sensory input will have to be reconciled using “short-term memory” repre-
sentations. The meadow map used for navigation will provide regions for instantiation based upon
the robot’s current position. Information from vision, ultrasonic sensors and positional sensors will
be stored in this representation with associated certainty factors that will be altered based upon
concurring or contradictory sensor input. This architecture will be sufficiently open-ended to allow
the integration of additional sensor modalities (c.g. laser rangefinder, inertial guidance) as they
become available.

Spatial and rotational uncertainty regarding the vehicle’s position and orientation will be ex-
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pressly modeled. The resulting spatial error map will be used to guide visual interpretation, win-
dowing the image to reduce the time required for sensory processing. The sensory interpretations
then will be used to reshape and reduce the spatial uncertainty map. The feedback provided by
the sensors thus restricts the possible positions and orientations of the vehicle, while the probable
location of the vehicle is used to guide sensory processing.

Homeostatic control (maintenance of the robot’s own internal environment) is another research
area. When mobile vehicles become capable of entering hazardous environments and covering
longer distances without human monitoring, the status of the robot’s energy levels, temperature,
and other relevant variables can and should significantly affect planning and action. Through the
use of internal sensors (in contrast to environmental sensors), surveillance of the internal state of
the robot can be maintained. The information can then be used as necessary to change parameters
for motor power consumption, heat. production, cte., as well as provide data to the planner for
decision making. Any vehicle purported to be “antonomons” must address this issue.

Many of the issues involved in the mobile vehicle research can be seen as complementary to
those of other areas in our vision and robotics groups. The use of perceptual and motor schemas
in the proposed vehicle architecture exploits many of the concepts used in both the VISIONS
scene interpretation group and the work being done for the Laboratory for Perceptual Robotic’s
distributed programming environment. Multi-sensor integration, certainly crucial for the vehicle’s
domain, will only benefit from the work being done on the integration of vision, touch and force

sensing.

5 Image Understanding Architecture (IUA)

UMass is designing and constructing a highly parallel architecture for computer vision with the goal
of achieving real-time processing rates for a knowledge-hased system approach to low, intermediate

and high level image interpretation tasks. The project involves a joint design and implementation
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effort with the Hughes Research Laboratory. Our Image Understanding Architecture consists of
three tightly coupled layers that correspond to three levels of abstraction. These layers are the
Content Addressable Array Parallel Processor (CAAPP) for low-level processing which is a mesh
connected array, the Intermediate and Communication as Associate Processor (ICAP) for interme-
diate vision, and the Symbolic Processing Array (SPA) for high-level processing. Attached to the
SPA is a host processor.

As we have previously argued [34,43], an eflective computational environment for image un-
derstanding requires tight coupling between the portions of the processor responsible for low-,
intermediate-, and high-level processing (23,34,43]. In the IUA, the requirements of high-speed,
fine-grained bi-directional communication and control is achieved using associative processing tech-

niques to implement three very general processing/communication capabilities:
1. Global Broadcast/Local Compare
2. Some/None Response
3. Count Responders

The CAAPP is 512 x 512 square grid array of 1-bit serial processors intended to perform
low-level image processing tasks. The intermediate level is implemented by the Intermediate and
Communications Associative Processor (ICAP). The ICAP is also a square grid associative array, of
more powerful processing elements; the [CAP is a 64 by 64 array of 16-bit processors. Each ICAP
cell is associated with an 8 by 8 tile of CAAPP cells, to which it has access. The SPA processors are
powerful, general purpose microprocessors intended for performing high-level symbolic operations,
and for controlling sub-array processing in the ICAP and CAAPP arrays. To the SPA, the lower

levels appear as an intelligent database that is part of a shared global memory.
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5.1 Associative Processing

Associative procéssing is a technique whereby the processors of the array have the ability to compare
sets of data broadcast from a central controller to their own local data. They can then condition-
ally process both local data and broadcast data based on the results of those tests. Associative
processing can best be understood by example, here a single controller (a teacher) interacting with
an associative array (a class of students) [20]. If the teacher needs to know if any student in a class
has a copy of a particular book the teacher can simply state, “If you have the book, raise your
hand.” The students each make a check, in parallel, and respond appropriately. This corresponds
to a broadcast operation of a controller and a local comparison operation at each pixel in an ar-
ray, to check for a particular value. Both operations assume that the local processors have some
“intelligence” to perform the comparison.

Query and response is just the first part of associative processing, representing a content ad-
dressable (“If your hand is up, I'm talking to yon.”) scheme. To perform associative processing,
we must be able to conditionally generate tags based on the value of data and use those tags for
further processing. As processing continues only sub-sets of the pixels are involved in any particular
operation, but those pixels are operated on in parallel.

The ability to associate tags with values is half the battle for high speed control. We also need
to get responses back from the array quickly. Forcing the teacher to sequentially ask each student if
they have their hand up defeats the process. The teacher can see immediately if any of the students
have their hands up, and can quickly count how many do. Similarly, a Some-response/No-response
(Some/None) wire running though the pixel array allows the controller to immediately determine
properties about the data in the array, and therefore the state of processing in the array without
looking sequentially at the data values themselves.

Additionally, fast hardware to perform a count of the responders allows the controller to see

summary information about the state of the data in the array. We can write programs that can
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conditionally perform operations based on the state of the computation. By using Lhe properties
of the radix representation of numeric values in the array we can use the counting hardware to
sum the values in the array. The ability to sum values gives us the power to compute statistical
measures such as mean and variance.

These examples of students and pixels illustrate the power of associative processing. We use
associative processing as our paradigm ol communication in the upwards direction and control in
the downwards direction between each pair of levels in the hierarchy. We broadcast criteria for
selecting pixels, or regions, or symbolic tokens for selective processing. In this way the higher
levels of processing control the lower levels. We test and/or count the response that comes after
processing data to allow conditional branching for the next step of processing in a given algorithm.

Thus the lower levels provide feedback to higher levels.

5.2 Current Status

At present. we are building a 1/64th scale demonstration prototype of the IUA. This is scheduled for
completion in early 1988 and will include 4096 CAAPD cells, 64 ICAP cells, a single SPA processor
and global controller. The entire prototype will plug into a single-user workstation that will serve
as a host.

The prototype is being constructed in 2 micron CMOS technology and will physically consist of
a 16-by-20 inch motherboard with 83 daughterboards, 86 of which the daughterboards are 4 by 2.5
inches and the remaining three are 20 by 2.5 inches in size. Of the 80 small daughterboards, 16 are
for clock distribution and signal buffering; the other 64 contain the ICAP and CAAPP processors
and their memories. The three larger daughterboards provide the controller interface, feedback
concentration, and ICAP communications network switching. The motherboard also includes a
dual-ported frame buffer memory that allows simultaneous image input and output at video frame
rate.

Each processor daughterboard will contain a single custom VLSI chip, a TMS320C25, 256K
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bytes of static RAM, 384K bytes of dual-ported dynamic RAM, and tri-state bus buffers. The

single custom chip holds the 64 CAAPP processors with their local memories, the backing store

controller, a refresh controller for the dynamic RAM, and arbitration logic for the various devices '
that must access the bus of the associated ICAP processor. The custom VLSI chip is currently

undergoing fabrication through the MOSIS facility. A first run of the complete custom chip is

scheduled for Summer of 1987. Total power dissipation for a processor daughterboard is estimated

at approximately 5 watts.

Our software simulator is being re-written to run on an Odyssey signal processing co-processor
board in a Texas Instruments Explorer. The Odyssey allows a direct etnulation of the ICAP
processor and greatly improves the execution times of CAAPP simulations over our VAX-based
simulator. The Odyssey simulator will also permit us to closely mimic the interactions of the three
processing levels down to the signal level. The Odyssey simulator will initially provide the capability
of a single IUA daughterboard, and will cventually be extended to simulate one motherboard.

A VAX-based high-level emulator is also planned for development. Whereas the Odyssey simu-
lator is designed to allow an assembly language level of programming, the VAX emulator will be the
vehicle of choice for researchers who wish to get an idea of how the user-level [IUA environment. will
behave. The emulator will sacrifice low-level accuracy in favor of greater speed. For example, the
emulator will be restricted to 8, 16 and 32 bit arithmetic, thereby avoiding the bit-serial methods
that are actually used in the CAAPP but are very slow in simulation.

Beyond simply testing our hardware design, our ultimate goal for the prototype is to provide a
powerful interim development environment for image understanding parallel processing research. A
simulated parallel processor is simply too slow to permit any significant amount of experimentation.
Once our prototype is up and running, we will be able to accomplish more in the first ten seconds
of execution time than we have been able to do in our previous five years of simulation.

Because having this much processing power in a box the size of a personal computer is so
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attractive, we have designed our prototype to be easily reproducible for a reasonable cost. It has
also been designed to be easily adapted to different host systems. We thus hope that it will be
possible to construct several copies of the small scale system so that it can be available to a number

of researchers prior to construction of the full scale machine.

6 Motion Analysis

Our research in motion analysis has continued with a blend of theoretical and experimental inves-
tigations. There has been a concentration on the development of techniques that will find practical
use in mobile vehicle navigation. In particular, we are in the process of transferring a motion algo-
rithm from UMass to CMU for recovery of depth under known motion; we expect it to be useful
for both obstacle avoidance and landmark recognition. Let us now discuss some of these efforts in
somewhat more defail.

Our past motion research concentrated in the recovery of sensor motion parameters from analy-
sis of two images obtained via a sensor in motion. This work was reported in the Ph.D. dissertation
research of Lawton [31,32] and Adiv [1]. More recently Pavlin [38] has evaluated the Lawton algo-
rithm for translational motion and determined that the algorithm can be applied effectively with
analysis of only 8 to 16 image poinls belween frames if the sensor is pointed approximately in
the direction of sensor motion. In addition he has speeded up the algorithm and made it more
robust by improving the FOE search algorithm. This was accomplished by computing the error
measure for the assnmed FOE from a sparser sampling of the visnal field (or a more restricted area
if constraints on the possible location of the FOE is available). Then, a smooth surface is fit to the
error values at those points and the computed minimum of this surface is used to focus the search
in the next step of an ilerative search process.

Bharwani et al [8,9,10] has continued to develop an algorithm that will compute increasingly

more accurate depth information from a sequence of frames derived via approximately known trans-
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lational motion of the sensor. This algorithm is intended to be applied after FOE recovery using
the Lawton-Pavlin algorithm, or when vehicle instrumentation supplies sensor motion. The aigo-
rithm matches points between frames up to some match resolution, computes a depth range for the
environmental point, and then uses this information to predict a smaller search window in future
frames, which then can be searched with fincr match resolution and consequently more accurate
depth. An important characteristic of this algorithm is that the temporal depth refinement can be
applied at a constant computational rate and therefore is well-suited for robot navigation. Since the
last report on this algorithm, (10} it has been modified to include the implications of Snyder’s theo-
retical treatment of uncertainty [41] discussed below. Because the FOE and an image point/feature
in the first frame actually have an uncertainty region that is two dimensional (at a minimum due
to digitization error), the search region must also be two-dimensional. This modification has im-
proved the robustness of the algorithm. In addition the shape of the error surface [3] can be used
to dynamically control the resolution of the depth refinement process to experimentally measurable
limits.

The two algorithms, FOE recovery and temporal depth refinement, are being packaged into a
motion analysis subsystem for use in both the UMass and CMU mobile vehicle efforts. The goal
is the analysis of an ongoing sequence of frames from a vehicle in motion to determine obstacles
in the path of motion. At CMU it is hoped that this subsystem will operate effectively at a range
beyond the useful range of the ERIM sensor (40 foot limit). There are three very general stages
of processing that will be briefly discussed. First, frames must be registered since the camera
will not be independently stabilized and therefore jerks, bumps, rocking, cte. will introduce local
random translational and rotational motion between frames even when the vehicle is undergoing
approximate pure global translation. Registration is currently our major problem, and thus for
only having a simple registration scheme involving the selection of distinctive points (high contrast

and high curvature) that are at a great distance (near horizon) and thus will allow subtraction
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of the rotational component. Then the FOE will be recovered via the Lawton-Pavlin algorithm
using a small number of distinctive points, say 8, in the foreground (10-40 feet). Then the depth of
distinctive points in the path of the vehicle will be computed. Finally, either point sets that imply
vertical surfaces, or individual points that are not consistent with lying on a planar road surface
will be flagged for higher level navigational attention.

Snyder [41,42], has theoretically examined the problem of uncertainty of image measurements
in correspondence-based techniques, and their impact in stereo and motion analysis. The location
of image features or points are often determined only approximately due to the effect of processing
with a window (e.g. as in computing interest, operators or using convolution windows) or the result
of more complicated processes as in FOE recovery. At a minimum there is sub-pixel uncertainty
(:£1/2 pixel) due to digitization. Uncertainty in such image locations leads to uncertainty in the
recovery of depth from both stereo and motion, defines limits to the effectiveness of recovering depth
of environmental points or detccting the presence of independently moving objects, and provides the
means to determine the relative cfficacy between stereo and motion analysis in varying situations.
The analysis provides strategies for intelligently controlling the application of stereo and motion
algorithms and determining uncertainty ranges for the results that are extracted.

Glazer’s recently completed thesis [21] presents an approach to motion detection using multi-
resolution methods in a hierarchical processing architecture. Two motion detection algorithms are
developed and analyzed. The hierarchical correlation algorithm utilizes a coarse-to-fine control
strategy across the resolution levels and overcomes two disadvantages of single-level correlation:
large search areas requiring expensive searches and repetitive image structures which cause incor-
rect matches. The hierarchical gradient-based algorithm (22}, generated over low-pass image pyra-
mids, extends single-level gradient algorithms to the computation of large displacements. Within
each level the next refinement of the displacement field is obtained by combining a local inten-

sity constraint and a global smoothness constraints. The mathematical formulation involves the
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minimization of an error functional consisting of two terms, corresponding to the intensity and
the smoothness constraints mentioned above. The minimization problem is solved using the finite-
difference approach which leads to a multi-resolution relaxation algorithm. A formal analysis of the
hierarchical gradient algorithm is presented, including the basic equations for computing a refined
disparity vector, the discrete representations and computations for solving these equations, and
a geometric interpretation of the resulting relaxation algorithm. The experimental results show
that the two algorithms have comparable accuracy and a cost analysis shows that the hicrarchical
gradient algorithm is less costly.

In his recently completed doctoral dissertation |2] Anandan provides a unified framework for
extracting a dense displacement field from a pair of images, as well as an integrated system which
is based on a matching approach. This framework appears to be sufficiently general to encompass
both gradient-based and correlation matching approaches. It consists of a hierarchical scale-based
matching scheme using bandpass filters, orientation-dependent confidence measures, and a smooth-
ness constraint for propagating reliable displacements. His integrated system for the extraction of
displacement fields uses the minimization of the sum-of-squarred-differences (SSD) as the local
match-criterion, computes confidence measures based on the shape of the SSD surface, and for-
mulates the smoothness assumption as the minimization of an error functional, and overcomes
many of the difficult problems that exist in other techniques. The error functional consists of two
terms: one of which is called the approximation error, measuring how well a given displacement.
field approximates the local match estimates, while the other is called the smoothness error, mea-
suring the global spatial-variation of a given displacement. field. The finite-element method is used
to solve the minimization problem. The approach also gives information for extracting occlusion
boundaries in some situations.

Anandan has also shown that the functional minimization problem formulated in his matching

technique converges to the minimization problem used in gradicnt-based techniques (e.g. Glazer’s
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technique mentioned above). In particular, by relating an approximation error functional used
in his matching approach to the intensity constraints used in the gradient-based approaches, he
explicitly identifies confidence measures which have thus far been implicitly nsed in the gradient-
based approach. Finally, he suggests the ways that algorithms operating on a pair of frames can
be developed into multiple-frame algorithms, while discussing their relationship to spatio-temporal

energy models.

7 Low-Level Vision

While low-level vision is not the main focus of our research program, almost any large group working
on intermediate and high-level computer vision will be engaged in some aspects of low-level vision to
support the other efforts. Therc are several basic segmentation algorithms that our knowledge-based
vision research relies upon: histogram-based region segmentation [30,35], straight line extraction
[14], and more recently an algorithm for grouping nearby co-linear edges [11]. Analysis of the
output of these algorithms has led to several additional investigations. Interesting work is being
directed towards edge and line algorithms, as well as texture extraction.

The output of both of our straight line algorithms has made it very obvious that short lines are
a very effective mechanism for extracting textured areas and texture descriptions. Since each line
has a set of attributes including orientation, length, contrast, etc. they can be filtered or grouped in
terms of a variety of features. This may lead to interesting ways to directly extract and characterize
textured areas. Alternatively, lines may be used to provide regions with texture characteristics.

An algorithm for grouping edges into curved line segments has continued to be developed and
has yielded some promising results [18]. It may be integrated with the straight line algorithm by
choosing the ontput from each representation that is most appropriate. Thus, parameterized curves
might replace a piecewise linear sets of edges in the intermediate representation that is examined

by knowledge-based interpretation processes.
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The algorithm for extracting straight lines by grouping on gradient orientation (14] is being
expanded by Reynolds to work on color inf(;rmatinn rather than intensity. Thus, areas of an
image with similar intensity but different color might not be detected by the original algorithm.
However, by computing orientation in 3-dimensional color space, edges can be labelled with both
their orientation and the colors on either side of the edge. In fact this leads to a straight line
extraction algorithm where the line segments represent edges which delimit the boundary hetween
regions of approximately constant color; i.e. instead of a line segment being defined by a gradient
magnitude threshold or uniform gradient orientation, the constancy of color contrast across the
boundary can also be employed. An additional effort to group similar color edges into textured
areas is also being investigated.

Finally, Kitchen and Malin [27] have completed a study of the effect of spatial discretization
on the magnitude and direction response of various simple edge operators. They investigate the
errors as the true subpixel location of an ideal step edge is varied. Their results show a potentially
significant variation can occur in edge magnitude and orientation. They include suggestions for

possible improvements of edge operators based upon their techniques.
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