THE SIMPLE SIMON
PROGRAMMING ENVIRONMENT:
A Status Report’

Janice E. Cuny Duane A. Bailey
John W. Hagerman Alfred A. Hough

COINS Technical Report 87-22
June 1987

Department of Computer and Information Science
University of Massachusetts
Ambherst, Massachusetts 01003
USA

'The Parallel Programming Environments Project at the University of Massachusetts is supported by the
Oftice of Naval Research, contract N000014-84-K-0647.

Abstract

The Simple Simon Programming Environment is designed to serve as a testbed
for the development of programming support specific to highly parallel computation.
It consists of a set of programming tools together with a kernel that facilitates the
prototyping of new tools. Currently, we have implemented prototypes of five tools:
a textual language for database entry; a preprocessor for the convenient specification
of nearly homogeneous code; a graph editor for describing process interconnection
structures; a graph assistant for creating aesthetic graph layouts; and a “pattern-
oriented” parallel debugger. We briefly describe each of these tools and their use in
future research.

The Simple Simon Programming Environment is designed to serve as a testbed for
the development of programming support specific to highly parallel computation. Such
support might include mechanisms for the specification of multiple processes, the con-
trol of interprocess communication and synchronization, the mapping of logical structures
onto physical interconnections, and the debugging of closely coupled processes for both
correctness and performance.

Since the process of programming itself changes as more sophisticated tools and method-
ologies become available, high-level programming environments must evolve with use [1,2].
We have begun with a rudimentary - but extensible - parallel environment, called Simple
Simon that runs as the frontend to the Simon Multiprocessor Simulator(3,4]. Simon is
an event-driven simulator of concurrent, cooperating processes that are statically specified
and individually programmed. It can model a variety of communication disciplines, exe-
cuting a parallel application program as if each constituent process was running on its own
processor. The Simple Simon environment makes Simon accessible to a local community
of students and researchers. In turn, these programmers form the target community for
the design and evaluation of successively higher-level extensions, making Simple Simon the
testbed for our research.

Simple Simon consists of a set of programming I;ools together with a kernel that sup-
ports the prototyping of new tools. The kernel provides the core facilities of the envi-
ronment; it is briefly described in Section 2. The tools provide optional features of the

environment that can be replaced or modified at the user’s discretion. Currently proto-

The Simple Simon Programming Environment -

types of five tools have been implemented: a textual database language (TDL) that en-
ables the user to enter information directly into our database; a generic code preprocessor
(G:CP) that allows the convenient specification of nearly homogeneous processes; a graph-
ical database editor (GDE) that provides facilities for describing programs graphically; a
graph assistant (GA) that uses heuristics to assist the programmer in designing aesthetic
displays of interconnection structures; and a “pattern-oriented” debugger (Belvedere) that
provides animations of system behaviar. We describe program specification tools in Sec-
tion 3, reserving Section 4 for discussion of the debugger. We summarize the contributions

of Simple Simon in Section 5.

2. The Simple Simon Kernel

Our kernel augments the Simon Multiprocessor Simulator so that it can be used as the
basis for our testbed. As shown in Figure 1, it has three components: Simon extensions that
permit the use of hierarchies of shared memory; a graphics library that provides common
interfaces at a variety of levels; and a database that contains all of the information known

about an applications program. We discuss the database in more detail.
The Simple Stmon Database

Sxisting programming environments for sequential or distributed computing are often
integrated around a database that serves as the central repository of all information known
to the environment. The Poker Parallel Programming Environment (5], for example, uses

a relational database in the specification and representation of programs.

The Simple Simon Programming Environment

Simple Simon Kerhéim

Simon

Extensions

Database

............

: Graphics

A AL

@ﬂ/m/ lco{sl:} QA]

Figure 1: The Simple Simon Testbed. The kernel is shown within the double lines,
while existing tools are shown outside the double lines. Arrows indicate
the transfer of data. Dashed boxes associated with tools indicate use of
the graphics library.

R
.
.
]

The Simple Simon Programming Environment 4

Our database contains both static and dynamic information. Static information de-
scribes program structures and consists of program segments, process interconnections,
port and channel declarations, and a variety of spatial information defining the intended
graphical display of objects. Dynamic information is added to the database as a simulation
executes; it consists of a record of each simulated event, including primitive events (such
as the get or put of a message) and high-level user-defined events (such as the exchange
of values between adjacent rows or columns of an array).

Two views of the database are supported. The first is a high-level interface (used by
most tools), providing object-oriented access to processes, channels, ports, messages and
user-defined events. The second is a low-level interface providing direct access to the event
stream produced by the simulator. Within the event stream, static information is recorded
as events occurring at Ttme 0 and dynamic information recorded as events occurring after

Time 0.

3. Program Specification Tools

Simple Simon currently provides the user with four program specification tool proto-
types. The textual database language, TDL, enables the user to enter information into the
database in a traditional textual manner. It was degigned as a primitive mechanism for
use during the development of our first tools and, as a result, we expect that it will quickly
become obsolete. The other three prototypes - GCP, GDE and GA - were designed to

address more significant issues of parallel program specification.

The Simple Simon Programming Environment 5

Highly parallel programs in our environment differ from sequential programs in two
important respects: they code segments for a large number of processes and they contain
descriptions of the logical interconnections between those processes. Our preprocessor —
GCP - addresses the first of these, i.e., the multiplicity of processes, by providing mecha-
nisms for the replication and specialization of programs for nearly homogeneous processes.
The graph editor and the graph assistant - GDE and GA - address the second of these, i.e.,
the description of process interconnections. GDE provides a graphics-oriented database
editor for the specification of labeled graphs representing interconnection structures. GA
provides facilities for creating aesthetic graph layouts.

Each of the four tools will be described. For the purposes of exposition, we consider

the preprocessor first.

3.1 The Specification of Nearly Homogeneous Parallel Programs

Code for highly parallel programs often appears to require a large number of identical
processes; on closer examination, however, many of these processes can be found to differ
slightly because of initialization and termination details, timing, and edge effects caused
by boundaries of the processor array. The result is that the programmer must potentially
write a large number of similar programs, often duplicating his efforts. Previous attempts
to avoid duplication have involved conditional execution of code segments [5,6]. Our ap-

proach is to provide a macro preprocessor for specializing code at compile time.! Process

"In the context of Simon, this preprocessor has the added advantage that it automatically generates the
necessary, cumbersome channel names for interprocess communication.

The Simple Simon Programming Environment 6

specialization can be based on unique IDs, defined ports or user defined parameters. Fig-
ure 2 shows an example of preprocessor code. The segment is part of a gridsort program
[7] designed for octagonal meshes (Figure 3); it shows the conditional generation of two
comparison swaps, the first between pairs of adjacent rows of processes and the second
hetween pairs of adjacent columns of processes. In the first swap, processes in even rows
send their value north to be compared in the odd row process above; the smaller of the
two values is then sent back. The variable row is a parameter giving the-row in which a
process resides. The code generated for all even row processes — except those on the top of
the array - consists of just the get/put pair shown; processes on the top of the array do
not have a north port defined and so (as a result of the first ifdef statement) do not par-
ticipate in this swap. (This is an example of an “edge effect” mentioned earlier.) The code
generated for all odd row processes ~ except those on the bottom of the array - consists of
the put/get pair together with the compare and exchange statements shown; processes on
the bottom of the array do not have a south port defined and so do not participate. In the
second swap, the code segments are generated for even and odd columns of processes in a
similar manner. This generic code segment produces sixteen different program segments,

two of which are shown in Figure 4.

3.2 Teztual Specification of Process Interconnection Structure

TDL provides a mechanism for entering descriptions of process and interconnection

structures directly into the database. It allows the user to specify processes, ports, and

The Simple Simon Programming Environment

#if (row¥2 == Q)

ifdef north
PUT("EVENROW" ,north, param(datum)) :
GET("EVENROW".north,param(datum));

endif
#else
ifdef south

GET("EVENROW" , south, param(your_datum));
temp=MIN(your_datum,datum) ;
PUT("EVENROW" , south, paran(temp)) ;
datum=MAX(your_datum,datunm) :

endif

#endif

#if (col¥%2 == 0)

ifdef west
PUT("EVENCOL",west.param(datum));
GET("EVENCOL" ,west , param(datum)) ;

endif
#else
ifdef east

GET("EVENCOL",east ,param(your_datum)) ;
temp=MIN(your_datum,datun);
PUT("EVENCOL",east,paran(temp));
datum=MAX(your_datum,datunm) ;

endif

#endif

Figure 2: Preprocessor code segment prior to specialization.

The Simple Simon Programming Environment

Figure 3: Octagonally connected 8 x 8 mesh of processors.

PUT("EVENROW" ,north,param(datum)); PUT("EVENCOL" ,west ,param(datum)) ;
GET("EVENROW" ,north,param(datum)) GET("EVENCOL" ,west ,param(datum)) ;
GET("EVENCOL" ,east ,param(your_datum));

temp=MIN(your_datum,datum);

PUT("EVENCOL",east ,param(temp));

datum=MAX (your_datum,datunm) ;

(a) o

Figure 4: Specialized code resulting from the generic code in Figure 2. (a) shows the
code for a process that is an even row and an odd column in the interior
of the array; (b) shows the code for a process that is in an even column in
the first row of the array.

The Simple Simon Programming Environment 9

channels. In addition, it allows him to associate code segments with processes, processes
with ports, and ports with channels. Figure 5 shows an example of a TDL program. It
describes a mesh interconnection and uses preprocessor facilities for generating process
IDs, process parameters and port definitions as described in the comments. Each port
definition explicitly names the channel to which it connects and the type of access (read,
write or read/write) it requires. While TDL is convenient for some structures, it is

cumbersome for others, leading us to the development of graph editing tools.

3.3 Graphical Database Editor

Eventually, we expect that most input to our environment will be graphical but our
initial version of GDE is limited to the description of process interconnection structures
using labeled graphs in which the nodes represent processes and the edges represent logical
communication channels.

Despite the fact that most existing parallel algorithms use one of a very few intercon-
nection structures, we believe that the explicit description of interconnections is important.
Such descriptions lend themselves to informa.tivev graphical displays, suggest information
useful in the mapping from logical to physical structures [8], and provide redundancy for
error analysis (making it possible, for example, to check for mismatched ports, dangling
channels, path redundancy, or disconnected compoﬂents). Explicit specifications enable
the programmer to create the nonstandard graphs that are often needed when existing al-

gorithms are composed into actual programs. In addition, they provide convenient mecha-

The Simple Simon Programming Environment

/* set up loop through processes */
#for row = 1,side,1
#for col = 1,side,1

/*+ set up parameters related to processor location */
assign rowml= row-1
assign rowpl= row+l
assign colmi= col-1
assign colpl= col+l

3t % R R

/+ assign process ID, code segment and parameters */
process gs'row‘col {
code "gs.c";
param ‘row, ‘col, ‘datum, ‘'side;

/* declare ports depending on where we are */
if (row>1)

port north { channel ch'rowml‘col‘row‘col; access r,w;};
endif

if (row<side)
port south { channel ch‘row’col’'rowpl’col; access r,w;};
endif

if (col<side)
port east { channel ch‘row‘col’'row’'colpl; access r.w;};
endif

if (col>1)
, port west { channel ch‘row’colml‘row‘col; access r.w;};
endif

#endfor
#endfor

Figure 5: Segment of a TDL specification for a square mesh.

10

The Simple Simon Programming Environment 11

nisms for attaching labels (for example, processor id, code names, or parameters) to graph
components.

Few existing systems permit explicit specification of interconnection structures; those
that do rely on either textual input as in the definition of structured processes [6] or
graphical input as in the Poker Parallel Programming Environment. We prefer the graph-
ical approach. In Poker, the programmer is presented with a CHiP lattice [9] in which
he connects processors by drawing the edges between them with cursor movements. The
resulting display is appropriate for the CHiP architecture but not for the more general,
logical structures that we describe.? In addition, the manual interconnection of processes is
not feasible for massively parallel systems; because such systems are often designed in the
small and then scaled, programmers need facilities for concisely describing graph femilies.

GDE is an early prototype, implemented so that we can experimentally determine the
types of graph operations that are most useful in describing families of interconnection
structures. Currently the editor has a textual input language that borrows features of
Lisp but is not Lisp; the language is intended only for preliminary experimentation and
we do not expect it to appear in future versions of the editor. Using GDE, a graph family
is described by drawing its smallest instance and then modifying that instance into the
next larger one. Commands used in the modification are recorded and then iterated to

form larger family members. Thus, for example, the graph operations that transform the

“Currently, Simple Simon does not make a distinction between logical and physical structures. We
expect to add such distinctions to Simon in order to investigate the properties of mappings from our logical
specifications to actual hardware configurations.

The Simple Simon Programming Environment 12

three node complete binary tree of Figure 6 into the seven node tree of Figure 7 can be
repeated to form any larger, complete binary tree. Figure 8 shows the full specification for
the family of complete binary trees in which the appropriate iteration has been added by
the programmer; this example shows the use of labels, labeling each node with its height
(counting up from the leaves). We believe that many, if not all, useful graph families can
he described in this iterative manner.

In our final system, we expect that input will be graphical and that the accompanying
textual description will be produced automatically. For this reason, we have not been
concerned with placement issues and we use a simple directional placement relative to
bounding bozes (shown as rectangles in our figures). As nodes and subgraphs are added to
the display, they are positioned using compass directions (N, NE, E, SE, S, SW, W, and NW)
relative to the largest bounding box on the screen. This scheme is not entirely satisfactory.
Consider, for example, the alternative description of a complete binary tree description
given in Figure 9. It builds the tree from the leaves upward by connecting adding a new
root and then making a copy of the original tree to form the second subtree. For this
description, our placement strategy results in the tree becoming increasingly skewed as it
grows. We expect that these problems will be solved when we switch to graphical input.

Regardless of how the graph is described, its presentation can be changed with the help

of our Graph Assistant.

The Simple Simon Programming Environment

ol e

(setq tree (list (add-vertex N))) o
(setq left tree)

(setq right (copy tree E))

(a) (6)

@@EJ [ég[\i]

(connect left root)
T (connect right root)
(setq root (list (add-vertex N))) (setq tree (append root left right))

(c) . (d)

Figure 6: GDE description of a three node complete binary tree. The description
starts with a single node created with the add-vertex function (a); this
node is copied once to create a pair of siblings using the copy function (8);
a root node is added using the add-vertex function (c); and the root is
connected to its children using the connect function (d). The rectangles
shown are bounding bozes used for spatial reference.

13

The Simple Simon Programming Environment

(setq left tree)

(setq right (copy tree E))

(setq root (list (add-vertex N)))
(connect left root)

(connect right root)

(setq tree (append root left right))

Figure 7: GDE description of a seven node complete binary tree constructed from
the three node tree described above. Note that these instructions could
be iterated to form successive members of the family of complete binary
trees.

(setq tree (list (add-vertex N '((height 0)))))
(dotimes (i (- level 1))
(setq left tree)
(setq right (copy tree E))
(setq height+1 (+ (extract (car tree) 'height)1))
(setq root (list (add-vertex N '((height height+1)))))
(connect left root)
(connect right root)
(setq tree (append root left right)))

Figure 8: GDE description of the family of complete binary trees, parameterized by
level, with nodes labeled by their height (from the leaves).

14

I'he Simple Simon Programming Environment 15

(setq tree (list (add-vertex N)))

(setq root (list (add-vertex NE)))

(setq right (pinned-copy tree E))
(connect root tree)

(setq tree (append root tree right))

(setq root (list (add-vertex NE)))
(connect root tree)

(setq right (pinned-copy tree E))
(setq tree (append root tree right))

Figure 9: Tree built from the leaves upwards. In the first step, a root has been
added to a single node using the add-vertex and connect operations; in
the second step, a right subtree has been added using a pinned copy of

the original (now left) subtree. In the third step, these steps are repeated
to form the next family member.

The Simple Simon Programming Environment 16

2.4 The Graph Assistant

The graph assistant supports the creation of aesthetic graph layouts. We anticipate its
use in presenting structures that were described textually, in providing alternate displays of
structures that were described graphically, and in displaying structures that were created
dynamically.”

The Graph Assistant uses heuristics for creating appealing display that are invoked
at the user’s direction to place a graph on the screen. Figure 10 shows an example.
The programmer inputs his interconnection structure - a mesh - to the database and
then invokes the Graph Assistant. It's first attempt at a display is shown in Figure 10a.
Interacting with the Graph Assistant, the user fixes the corners of tfle graph as shown in
Figure 10b and then invokes a “pull” heuristic which minimizes the tension on the edges,
creating the graph in Figure 10c. The final display, Figure 10d, is created with the use of
a “equalize” heuristic which creates edges with uniform lengths.*

As another example, consider the cube connected cycle shown in Figure 11. It is shown
as originally displayed in Figure 11a and after a single application of the “pull” heuristic
in Figure 11b. At this point, the programmer manually “fixed” the nodes on the perimeter
of the graph (as indicated by the filled in circles) and then iterated the “pull” heuristic to
get the graph shown in Figure 11c. The final graph, Figure 11d, was achieved by manually

3 At this time, Simon does not allow dynamic creation or deletion of processes but we intend to add the

necessary extensions.

4The fact that the edge lengths were not entirely equalized in this simple example is an artifact of our
implementation which we are in the process of remedying.

The Simple Simon Programmins Enviromment 17

() (6)

(¢) (d)

Figure 10: Placement of the n..iv- of a mesh using 11 “.raph Assistant.

" The Simple Simon Programming Environment

(a) (6)

() (d)

Figure 11: Placement of the nodes of a cube connected cycle using the Graph Assistant.

18

The Simple Simon Programming Environment 19

separating the inner triangles (and repositioning the fixed nodes slightly to get parallel
cube edges).
We are currently investigating new layout heuristics, paying to particular attention to

methods for exploiting symmetry.

4. Parallel Debugging

Highly parallel computation is not amenable to existing debugging techniques since
parallel programs do not have the consistent global states, manageable quantities of po-
tentially relevant information or reproducibility that have formed the basis for sequential
debugging paradigms. Instead, their behavior is best understood in terms of the flow of
data and control resulting from interprocess communication. These behaviors are often
very structured: fine grain, tightly coupled processes communicate across regular intercon-
nection networks resulting, at least logically, in patterned data and control flows. Since
many of the errors in parallel programs are communication related, we believe that the
identification of these patterns will form the basis for highly parallel debugging paradigms.

We have designed and implemented a “pattern-oriented” debugger, called Belvedere.’
which we are using to investigate the animation and manipulation of interprocess com-
munication patterns. Belvedere is a trace-based, po.?t-mortem debugger [10,11] providing
animations of program behavior. It operates on the event stream view of the database

and provides animations of both primitive simulator events and high level, user-defined

“ Belvedere comes from the Latin bellus meaning “beautiful” and vedere meaning “view.”

The Simple Simon Programmniing Environment - 20

events.”
Belvedere treats the event stream as a relational database. Users can select portions

of the database for animation using standard database queries such as
add messages with event=READ-MESSAGE and time<61400
and

add messages with

event=SEND-MESSAGE and message_name=conflicts

liach query results in the selection of a set of records which can be further modified by
subsequent queries. At any time, the selected records can be animated. Figure 12 shows
snapshots of sample animations of the above two queries. The animations were taken
from the trace of a hypercube program implementing simulated annealing of the traveling
salesman problem {12]|. Each iteration of the program has two phases; in the first, pairs of
processes communicate along cube edges in order to evaluate possible perturbations and, in
the second, a ring synchronization is performed to implement accepted changes. Animated
events are shown with highlighting. Figure 12(e) shows the first phase of an iteration using
normal animation in which highlighting lasts only as long as the event itself; Figure 12(d)
shows the path of a token during the ring synchronization using traced animation in which
highlighting persists’

6 While most existing systems do not provide such detailed information, its presence will allow us to de-
termine which types of debugging information are most useful, perhaps providing insight for future hardware
designs.

7To obtain these animations, with all of the processes and channels displayed, a set of background records
were selected prior to each of the queries.

The Simple Simon Programming Environment 21

et et
-qf
D0
o

orect
/7
g
A..‘ wech mrect
[]
u 1=)
rock rec? roch orec?
h
[UL g
P wrea? ores) s
i
—J

(a) (6)

Figure 12: Animations of a Simulated Annealing of the Traveling Salesman Problem.
(a) Animation of processes communicating across cube edges during the
first phase; (b) traced animation of the ring synchronization.

The Simple Simon Programming Fnvironment 22

During animation, Belvedere automatically invokes event animators associated with
cach type of simulator event selected. The animators perform closure operations on the
selected events in order to insure a coherent display. To depict a PUT-MESSAGE event, for
example, the effected processes and channels must be displayed; thus, a closure operation is
performed, selecting CREATE-PROCESS and CREATE-CHANNEL ev;mts for the needed objects;
once these events are selected, their associated animators are automatically invoked.

While these simple animations are helpful, complex programs present patterns that are
often difficult to interpret. Consider, for example, the snapshot of message traffic shown

in Figure 13. It is taken from a gridsort program(7] in which an array of values (stored

=il [e .I_D -l
i ia 0O N9
=l J
e Jﬂc—+.ﬂc -

n L I
J [=
=-n - Ladll® P =
L o0 ul
'_H o)
- b e e b e~

Figure 13: Snapshot of message traffic during a gridsort.

one per process) is sorted. During a single iteration, every process in the array does a

The Simple Simon Programming Environment 23

comparison-exchange with each of its adjacent neighbors. Logically, these comparisons
proceed in lock step: even rows, even columns, even diagonals, odd TOwWS, odd. columns,
odd diagonals. In the snapshot, however, the pattern is obscured by low-level details and
asynchronous execution. Since the programmer understands his code in terms of sequences
of row, columri, diagonal swaps, it is important that he be able to determine the extent
to which these patterns exist in the actual system behavior. To present that behavior
in a way that matches his conceptual models, we have adopted the notion of abstract,
user-defined events [13,14] and incorporated facilities to impose user-defined perspectives.
on those events.

The programmer can define abstract events in terms of patterns of lower level events.
Once a high-level event is defined, instances of that event are identified within the event
strecam. Each instance constitutes a new event that is time-stamped and inserted into the
event stream. Abstract events thus become available for selection by user queries.

Animating abstracts events requires some care. The programmer thinks of these events
as occurring in an orderly manner because he thinks of them from a particular point of
view, usually that of the individual process. In order to animate them in a manner that is
consistent with his expectations, we provide the ability to define specific points of reference

or perspectives.®

The programmer could, for example, ask to see the gridsort’s behavior
from the perspective of processor (2,2) as shown in Figure 14. Note that he would then

see the abstract row and column exchanges sequentially as he expected because processor

8Points of reference are conceptually useful but are also necessary to display concurrent overlapping
high-level events in a coherent manner.

The Simple Simon Programming Environment.

[B e w2 (] [-
s
N\
1= =)
-t [} ez [} D
lalile inl ul Ia}
u g H J H U
«n D w2 N wn -
0 f"‘] n n
J Y U U
- 0 e O b e -

(a)

Figure 14: High-level row (a) and column (b) events from the perspective of processor (2,2)

-t »w] =il) wie
[ul o T at ul
|9 1= M J
= -z -] [l o2
sl s n
U upan .
az N =D -
Il o n
u
-y o] h W =)

(6)

24

The Simple Simon Programming Environment 25

(2.2) participates in those events sequentially. (The animation of high level events from
perspectives occurs during the time period that the point-of-reference participated in the
event; during this time all locations (processors or channels) involved in the event are
highlighted but only the component events involving the point of reference are animated.)
Belvedere supports perspectives from processors, channels and data items.

Viewing the behavior of a program from a single perspective may well be mislead-
ing: from the perspective of process (1,1), for example, the user would never see any
0DD-ROW-SWAP, ODD-COLUMN-SWAP or ODD-DIAGONAL-SWAP events. In addition, the use of
perspectives often sequentializes concurrent behavior possibly obscuring the existence of
timing errors. To gain accurate insights into his program’s behavior, the user will have to
view it from a variety of perspectives. Since this is so easily done with Belvedere, we expect
that it will be a valuable tool in determining discrepancies between actual and intended
behaviors.

Belvedere is an early prototype and there remains a lot to be done. For example,
Belvedere interprets system behavior according to user supplied patterns; patterns that
occurred are displayed but there is no mechanism for reporting patterns that did not occur.
In addition, it is well known that the best aids to debugging are often those encoded
during the initial programming phase but we do not provide for such programmer input.
Belvedere’s animations are appropriate for nonshared memory, message passing systems
but it does not provide support for shared memory architectures. And finally, Belvedere

assists only with parallel programming errors; it does not provide any aid in detecting

‘The Simple Simon Programming Environment 26

errors in the sequential sections of code. We expect 1o address these shortcomings in

future work.

5. Conclusions

We have presented a rudimentary parallel programming environment that operates
as the frontend of a multiprocessor simulator and serves as the testbed for much of our
research. The environment itself consists of a number of programming tools and a kernel
which supports the development of new tools and prototypes. Within this testbed, we have
begun to experiment with tools for the specification of nearly homogeneous process code,
the explicit description of interprocess communication structures, the aesthetic display of

graphs, and the debugging of parallel programs.

Acknowledgments

We would like to thank Mary Larson and Neville Newman for their contributions to
the design of Simple Simon. In addition, we would like to thank Mark Bailey and Craig
Loomis for their programming support, Mary Larson for her work on the preprocessor and
Neville Newman for his extensions to the simulator. Finally, we would like to acknowledge
l.awrence Snyder for his suggestions which resulted in a number of improvements in this

text.

References 27

References

(1] L.J. Osterweil, “Toolpack ~ An Experimental Software Development Research Project,”
[EEE Transactions on Software Engineering SE-9(6), pp.673-685 (1983).

[2| W.Teitelman and L.Masinter, “The Interlisp Programming Environment,” Computer,
pp.25-33 (1981).

[3] R. Fujimoto, “Simon’s User’s Manual,” University of California at Berkeley (1984).

(1] D. E. Heller, “Multiprocessor Simulation Program Simon,” Shell Development Cor-
poration (1985).

[5] Lawrence Snyder, “Parallel Programming and the Poker Programming Environment,”
Computer 17(7), pp. 27-37 (1984).

|6] Hungwen Li, Ching-Chy Wang and Mark Lavin, “Structured Process: A New Lan-
guage Attribute for Better Interaction of Parallel Algorithm and Architecture,” Proc.
1985 Int’l Conf. on Parallel Processing, pp. 247-254 (1985).

[7] Chip Weems, “Image Processing on a Content Addressable Array Parallel Processor,”
University of Massachusetts, COINS Technical Report 84-14 (September 1984).

[8] Duane A. Bailey and Janice E. Cuny, “An Approach to Programming Process Inter-
connection Structures: Aggregate Rewriting Graph Grammars,” to appear Proc. of
Conf. on Parallel Architectures and Languages Europe (1987).

[9] Lawrence Snyder, “Introduction to the Configurable, Highly Parallel Computer,”
Computer 15(1), pp. 47-56, 1982.

[10] R.M. Bélzer, “EXDAMS - Extendible Debugging and Monitoring System,” Proceed-
ings AFIPS Joint Spring Computer Conference, 1969, pp. 567-580.

(11] H. Garcia-Molina, F. Germano, W.H. Kohler, “Debugging a Distributed Computing
System,” IEEE Transactions on Software Engineering SE-10(2), pp. 210-219 (March
1984).

[12] Edward Felten, Scott Karlin, and Steve W. Otto, “The Traveling Salesman Problem on
a Hypercubic, MIMD Computer,” Proceedings of the 1986 International Conference
on Parallel Processing, pp. 6-10 (August 1986).

References 28

113] Peter C. Bates, “Debugging Programs in a Distributed System Environment,” Uni-
versity of Massachusetts, COINS Technical Report 86-05 (January 1986).

[14] Peter C. Bates and Jack C. Wileden, “High-level debugging of distributed systems:
the behavioral abstraction approach,” Journal of System Software 3, pp. 255-244

(1983).

