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Abstract

Algorithms designed for highly parallel processing often require specific interpro-
cess communication topologies, including vectors, meshes, trees, toruses and cube-
connected structures. Static communicalion struclures are naturally expressed as
graphs with regular properties, but this level of abstraction is not supported in current
environments. Qur approach to programming massively parallel processors involves a
graph editor, which allows the programmer Lo specify communication structures graph-
ically. As a foundation for graph editor operations, we are currently investigating prop-
erties of aggregate rewriting graph grammars which rewrite, in parallel, aggregates of
nodes whose labels are logically related. We have found these grammars to be efficient
in their description of many recursively defined graphs. Languages generated by these
grammars can be associated with femilies of graphs. We also suggest extensions to
the formalisin that make usc of extended labeling information that would be available
in graph editors.



1. Introduction

It will soon be possible to experiment with the first massively parallel processors - en-
sembles of a thousand or more individually programmed computing elements. Algorithms
for these machines are often characterized by relatively small, tightly coupled processes
that require extensive interprocess communication. The communication channels needed
for an algorithin collectively form its communication structure. These structures are fun-
damental to massively parallel computation: they form the basis for our understanding of
algorithms, and the characteristics of their implementation often dominate program per-
formance. Furthermore, the extent of their specification affects the feasibility of automatic
error detection and correction. It is surprising, then, that few of the programming environ-
ments and languages proposed for these new machines provide for the explicit specification
of communication structures.

Programining environments that do provide for explicit specification of communication
structures use one of two approaches: either the structures are specified textually[1,8] or
they are specified graphically|10]. Graphical specification is the more natural; parallel
algorithms found in the literature are often accompanied by a graph. Existing tools for
specifying these graphs, however, arc inadequate for two reasons. Firstly, they rely on the
user to manually draw interconnections, which is obviously infeasible for large numbers
of processors. Secondly, they ignore the fact that the number of required processors (and
hence the graph size) is often dependent on problem size; thus the programmer wants to
specify not graphs but graph families.

A graph editor based on a parallel graph rewriting mechanism could provide an efficient.
tool for the specification of families of communication structures. In addition, by using
such an editor to describe both logical and physical structures, it may be possible to
gencrate or control mapping strategies by comparing graph constructions. As a foundation
»for graph editor operations, we report here on a graph rewriting mechanism that models

methods that programmers use in constructing graphs. We also address variations in this



Graph Grammar Based Specification of Interconnection Structures 2

mechanism that make use of labeling information that would be available in applications,
such as communication graph editors.

In the next section, we discuss characteristics of communication structures in highly
parallel environments. Section 3 presents the formalism of aggregate rewriting graph gram-
mars and cxamples of grammars that concisely describe large, ‘regular’ graphs. Section 4

examines possible extensions to the labeling mechanisms of these grammars.

9. Characteristics of Communication Structures

Like any editor, a graph editor for communication structures should be biased towards
correct constructions - in this case, of graphs commonly used in parallel algorithms. Typ-
ically, these graphs are ‘regular’ in the sense that they have one or more of the following

characteristics (Figure 1):

e Sparsity. Most communication structures are sparse: for a family of graphs the ratio
of channels to processes is roughly constant. This occurs because physical constraints

limit the number of direct connections to each processor.

e Recursive Consiruction. Most algorithms are designed in the small but are intended
for arbitrarily large machines. Often this results in scalable, recursive structures such

as trees, cubes, and multistage permuting networks.

o Near Symmetry. Most parallel algorithms are characterized by a number of identical
processes, each having the same ‘local’ view of the communication structure. Some of
the resulting structures, such as the n-cube, are completely symmetrical but others,
such as grids, have ‘cdge effects’, that is, minor differences in programming due to

input/output requirements at the boundaries of the process structure.

e Low radius. Most algorithms require some nonlocal communication which is more

efficiently realized in structures with low radius.
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Figure 1: Three common communication structures. The tree is typical of a divide-
and-conquer algorithm, the FFT network models polynomial evaluation,
and the binary cube is typical of physical modeling programs.
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In pursuing efficient graph cditor operations, therefore, it is sensible to identify mech-

anisms that are capable of constructing large ‘regular’ structures in a directed manner.

3. Aggregate Rewriting Graph Grammars

g[100 \ 110

Figure 2: Graph aggregates. A complete binary tree with integer-labeled nodes sug-
gests several aggregates: (a) the set of leaves, (b) the left subtree, and (c)
a path from root to leaf. Each can be described as the set of nodes whose
labels are related in some specific way.

In this section we introduce aggregate rewriting (AR) graph grammars. An aggregate
is a set of logically related nodes in a graph; for example (Figure 2), the leaves of a binary
tree form an aggregate, as does its left subtree and a path from its root to a leaf. AR
graph grammars rewrite entire aggregates in a single step (Figure 3). Each rewriting
rule is extrapolated from a production that transforms a small, fixed size subgraph; thus
arbitrarily large aggregates can be manipulated, allowing concise descriptions of recursively
definable graph families.

Informally, a production of an aggregate rewriting graph grammar removes an aggregate
from a host graph, transforms it, and reinserts the result by regenerating edges that provide
the interface. Derivations in these grammars are similar to both those found in sequential

and parallel graph rewriting systems: productions are parallel in their rewriting of nodes,
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Figure 3: Aggregate manipulation. A production (a), which manipulates a single leafl
of a binary tree describes the manipulation of all leaves. This production
is used to grow successively larger, complete trees (b).

and sequential in their rewriting of aggregates. This dual nature is especially useful in the

manipulation of large graphs. We now provide a more formal definition.

3.1 The Formalism

For the purposes of this paper, we work with undirected graphs without self-loops or
multiple edges! A graph is a system G = (Vg, Fe, La,7c), in which Vi is a finite set of
nodes, E¢ is a sot of two element sets on Vi;, and L is a set of node labels identified with
nodes by a total labeling function 4¢ : V¢ -+ L. Graphs (¢ and H are isomorphic if there
is a bijection + : Vi — Vg which induces the natural bijection between E; and Ey. An

occurrence of G in H is a subgraph G' of H which is isomorphic to G; for the moment, we

!Althongh, the definitions may be subjected to obvious extensions.
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assume that this isomorphism is label-preserving.?

An aggregate of graph G in graph H is a graph consisting of the union of the occurrences
of ¢ in H (Figures 4a-b). Since the aggregate consists of all occurrences of G in H,
it is uniquely determined by graphs G and H. A aggregate rewriting production P =
(M, D, ¢, ) rewrites occurrences of a mother graph, M, to copies of a daughter graph, D,
under the direction of an tnheritance function ¢ : Vp - Vps. The inheritance function ¢
is a partial, surjective function that indicates, for some nodes of the daughter graph, a
node in the mother graph that will provide interface edges. The function 7 : {1,...,k} —
gdom(#) -k~ 1 defines a disjoint k-partitioning of the domain of ¢, such that for each
1 < 1 < k, the restricted inheritance function @l is surjective. A production is applied

to a host graph yielding a tmage graph.

a b« a b c b ¢
[ ] ®

bl "¢| a hI a ¢ b/ ¢ J

c| a ,,/b a bI c d al”
[ ] [ ]

Figure 4: (a) A host graph with a -- b occurrences, (b) an aggregate of a — b graphs,
(c) the rest graph and (d) the interface. As is the case here, it is often
useful to have graph occurrences overlap.

We now describe the mechanics of the parallel rewrite rule. All occurrences of the
mother graph are removed from the host graph - yielding the rest graph (Figure 4). The

interface is defined by those edges which either are incident to both the rest graph and an

*While it is common to require that the isomorphism between G and G' be label-preserving, it is not
necessary. It is also possible to constrain the occurrence by other predicates as we discuss in a later section.
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occurrence of the mother graph, or are incident to two distinct occurrences of the mother
graph. For cach occurrence of the mother graph found in the host graph, a daughter
graph is disjointly added to the rest graph. The interface is rewritten using the following
(Figure 5):

o If the edge ¢ = {u,v} is incident to the rest graph at u and an occurrence of the
mother graph at v, an edge is introduced between u and all instances of nodes

v' € dom(¢) C Vp for which ¢(v') = v.

o If the edge e = {u,v} is incident only to nodes in mother graph occurrences,® an edge
is introduced between respective copies of the daughter graph, incident to instances
of all pairs of nodes u',v' ¢ Vp whenever u',v' € w(f) for some 1 < ¢ < k and

d(u') = v and ¢(v') = v.

Various applications of the inheritance function are depicted in Figures 5b-d. In each
example, the a - b edges are inherited from interface edges between the rest graph and
instances of the mother graph; the b - b edges are inherited from interface edges between
distinct instances of the mother graph. In (b), the inheritance function was trivially
partitioned so all pairings of nodes in m(1) from respective daughter graphs inherited the
host b - b edge; in (c), the inheritance function was nontrivially partitioned éo only nodes
in the same partition inherited the host b - b edge; in (d), the inheritance function was
not total and nodes labeled ¢ did not inherit any edges.

An aggregate rewriting graph grammar (or AR grammar) is a system G = (I, A, P, S)
where ¥ is a finite, nonempty label set, A C ¥ is a terminal label set, P is a finite set of
aggregate rewriting productions, and S is a start graph. A graph H directly derives a graph
K, written H => K, if there exists a production that transforms II into K as described

previously. The reflexive, transitive closure of => is written =>, while the transitive closure

“Note that an interface edge may be twice incident to a single instance of a mother graph.
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Figure 5: The various effects of inheritance functions on production application. The
effect of rewriting the same host graph(a), using a total inheritance func-
tion without partitioning (b), a total inheritance function with partitioning
(c), and a partial inheritance function (d).
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is written =>. A graph H derives I il H > K. H derives K in n steps if there exist
K; such that 1 > K, => --- =» K, .= K. A graph K is a sententtal form of a grammar
G (X,A,P,8)if S > K. The language of G is the set of all sentential forms that are

labeled only from A.

3.2 Examples

In this section, we give specific grammars and discuss the general characteristics ol AR

grammars that they exemplify.

Example 1. Binary Trees. The grammar of Figure 6 generates the language of complete
binary trees. It demonstrates the power of an individual production to manipulate arbi-
trarily large aggregates: productions are applied sequentially but each application operates
in parallel on all leaves. Applications of the first production add a new level to the tree

and applications of the second production terminate the derivation.

L
L={L,nl}, A A{rl}, S~ e

L L r L
(o, . o ,¢(3) = 1,7(1) = {3})
bl 12 3
L 1
( : ; ; y$(2) = 1, m(1) - {2})

Figure 6: Grammar for the construction of complete binary trees. Figure 3 demon-
strates a derivation using this grammar.

Example 2. Binary n -cubes. The grainmar of Figure 7 generates the language of binary

n cubes. In the construction of an n-cube, two duplicates of the smaller (n - l)-cube
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are made and then grafted together by interface edges generated within a partition of the

inheritance function; this process is shown in the derivation of Figure 8.

C
S:2A={C}, S =~ e

¢ C C

o, #(2) = ¢(3) - 1,7(1) = {2},7(2) = {3})}
12 3

Figure 7: Grammar for the construction of n dimensional binary cubes.
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Figure 8: Derivation of various binary cubes. Note that solid edges are edges added
hy the production, dashed edges are inherited from previous cube in-
stances.

Example 3. Palindromes. Some distinction can be made between various graph gram-
mars by their ability to describe string languages|2]. The grammar of Figure 9 generates
the language of all vectors labeled with palindromes over {a,b}. The first production gen-
erates a single character palindrome, the second production begins an even length string
and the third production begins an odd length string. The fourth production extends
vectors by adding a nonterminal to each of its ends and the remaining productions convert

nonterminals to terminals. In each sentential form, any pair of nodes equidistant from the
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center must have identical labels and must, therefore, be rewritten at the same time by a
single production. Note that a string grammar generating palindromes is quite different —

it rewrites a single nonterminal in the center of the string.

A
Y= {A,B,C,(l,b}, A = {a:b}’ S e

A C

(o, o ,8(2)=1,n(1) = {2})
1 2
A B B

(o, o o ,6(2)=¢(3) - 1,7(1) = {2,3})
1 2 3
A B C B

(o, o o — o ,4(2) = ¢(4) = 1,n(1) = {2,4})
1 2 3 4
B B C

P - ( e, o d 1¢(3): l»”(l) = {3})

1 2 3
B C

(o, . .8(2)=1,x(1) - {2})
i .
C a

(o, o,8(2)=1,n(1) = {2})
1 2
cC b

(e, o,8(2)= Ln(1) = {2})
1 2

Figure 9: Grammar for the construction of palindrome labeled vectors.

This grammar typifies the bias AR grammars have toward the generation of regular
structures: it is easy to produce the set of palindromes but it is relatively difficult to
produce the set of nonpalindromes. In fact, if we limit ourselves to single-node rewriting

productions as in this example, non-palindromes cannot be produced at all. This is because
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a single non-terminal cannot rewrile nontrivially in the middle of the vector and preserve
the ordered linear structﬁrc: il P is a production rewriting a single node to a connected,
nontrivial daughter graph, P increases the degree of each inheriting node. Clearly, single
node replacements must occur at the ends of the vector. If the nonterminals at the end of
the strings are similarly labeled, the string will have the same prefix and (reversed) suffix;
if they are labeled differently, then there is no control on the relationship between the left
and right sides. The result is that a grammar that is either too conservative (generating
only graphs which have the form wvw) or too liberal (generating graphs whose ends are
independent. - a superset of the nonpalindromes). Using more complicated AR grammars
that are not limited to single node replacements, it is possible to describe the set of
nonpalindromes.

This grammar demonstrates an especially important property - the capacity for AR
gramimars to copy arbitrarily large structures. In the generation of a cube, the copies of ag-
gregates were interconnected; i, is also possible to create disjoint copies with appropriately
partitioned inheritance functions, as in Figure 10.

IFinally, we conclude this section with some general characteristics of AR grammars

shared by all of the above grammars. Noting that inheritance functions are surjective, we

have:

Obscrvation 1 AR graph grammars are node preserving: whenever H = H', then #Vy <

# V.

If a restriction of the inheritance function of a production P defines a graph isomorphism
hetween a subgraph of the daughter graph and the mother graph, P is monotonic. For

monotonic productions, we can extend this to edges as

Observation 2 If every production of an AR graph grammar ts monotonic, the grammar

1s edge preserving.
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Figure 10: Partitioned inheritance functions aid in the copying of arbitrarily large
aggregates. An aggregate, labeled everywhere ‘a’, is copied three times
by a production which partitions each inheritance to each of three disjoint
nodes.

13

Grammars limited to single node productions node aggregate rewriting graph grammars

(or NAR grammars) -- form an important subclass of AR grammars and include all of the

grammars in this section. Monotonicity is trivially tnet by NAR grammars and so we have

Observation 3 NAR grammars are both node and edge preserving.

NAR graph grammars are most closely allied with the constructions of node label con-

trolled (NLC) grammars [3,4,5,6,7] and the parallel NLCp grammars. These grammar

formalisms differ from NAR grammars, in that they admit some context — edges arc pre-

served (or destroyed) based on labels of nodes neighboring the mother node. We have

found that the uniform treatment of incident edges, while more restricted, leads to graphs

with many of the characteristics described in Section 2.



Graph Grammar Based Specification of Interconnection Structures 14

3 9

3-o-—— —

i
L]
|
2 e 0 ° °
|
i,_
|
¢

Figure 11: The node labeled ‘a’ has various identities: the node [3,2], an element
of row 3, and an element of column 2. Other labels that seem logical to
the programmer define the set of labels that are semantically important
in the transformations of the node.

4. Extensions to Aggregate Rewriting Graph Grammars

In this section we suggest some labeling extensions that make use of information one

might expect to find in graph editors.

Labeling Using Sets

Giraph editors perhaps provide richer descriptions of graphs than are considered in the-
oretical discussions. For example, a single node may have many labels which are suggested
by viewing the structure in different ways. Figure 11 depicts a grid with a node labeled ‘a’.
As this node is logically a member of both row three and column two; manipulations of row
three or column two should involve node a. As AR graph grammars partition nodes into
disjoint aggregates (based on a single label), they are incapable of supporting the various
views of the graph.

Thus, an extension to the formalism we have suggested is labeling of nodes from 2%.
Instead of label preservation, a natural constraint on the occurrence bijections is then

label-membership, t.e., if ¢ : G — G', then ¢ (v) € vg:(e(v)).

Predicate Labeling
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Figure 12: (a) A predicate labeled production which connects three nodes. (b) The
effect of the production on a grid. Only three point subgraphs with
consistent labeling are rewritten.

Aggregates might also be specified as a restriction on label values. For example, if we
label nodes with integers, we might select even nodes by the label expression 7 - 0 which
requires the hinary representation to end in zero. If 7 is considered a free variable, then hoth
nodes of the left and right sides of a production are labeled using expressions involving 1.
When the free variables found on the mother graph of the production are satisfied by labels
in the host graph, an occurrence is found, and the transformation inserts daughter graphS
labeled in a manner that is consistent with the binding of the free variables. Figure 12

demonstrates the use of this labeling technique.

The Node Identification Filter
Rozenberg has suggested the use of ‘filters’ to restrict graph languages|9]. For exam-
ple_ labeling of graphs may obscure the underlying structure which may be important. to
analysis of the grammar. As communication structures are composed of distinguishable
clements, identification of similarly labeled nodes in graphs proves useful. We extend the
traditional notion of filter to a mechanism that filters sentential forms. Figure 13, depicts

a usc of an tdentification filter: in each sentential form one or more nodes of each daughter
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Figure 13: A production that transforms a totally disconnected set of points labeled
(¢, 7) into an octagonal connected mesh. This uses free variables to iden-
tify relations between nodes, and a node identification filter to reunite
sitnilarly labeled disjoint nodes in the image graph.
graph are identified with daughter graphs whose nodes are similarly labeled. The need
for identification occurs when the disjoint daughter graphs are re-introduced into the host

graph. It is often useful to have two occurrences rewrite to overlapping graphs, or for a

single occurrence to rewrite to a graph that forms new edges with the rest graph.

We are investigating the power of AR graph grammars that introduce the identification

filter in production application.

5. Conclusion

The process of describing communication structures for highly parallel computation is
in desperaic need of automation. Communication graph editors are an important step to-
ward making the specification of large communication structures viable. We have identified
characteristics common to ma‘ny statically programmed communication structures; these

characteristics suggest biases a communication graph editor must have in constructing
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families of graphs.

Aggregate rewriting graph grammars represent a conservative parallel graph rewriting
system that provides much of the support necessary for cornmunication graph editors. In
this paper we have introduced AR grammars and demonstrated some of the characteristics
of grammars admitting node aggregate rewriting.

While such graph grammar formalisms can aid in the construction of efficient editors,
their use of single node labels may be too restrictive to construct some common communi-
cation structures. We are now investigating the use of filters on these grammars, and their
power in providing global information in localized rewriting systems such as aggregate
rewriting graph grammars.

Acknowledgments. We would like to thank Grzegorz Rozenberg for helpful comments
on this material.
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