An Approach to Programming Process Interconnection
Structures: Aggregate Rewriting Graph Grammars®*

Duane A. Bailey
Janice E. Cuny

COINS Technical Report 87-25
April 1987

Department of Computer and Information Science
University of Massachusetts
Ambherst, Massachusetts 01003
USA

‘The Parallel Programming Environments Project at the University of Massachusetts is supported by the
Office of Naval Research, contract N0O00014-84-K-0647. Duane Bailey was also supported by an American
Electronics Association ComputerVision fellowship.

Abstract

We describe a mechanism for generating families of process interconnection struc-
tures. Parallel programming environments that support individually programmed pro-
cessor elements should allow the programmer to explicitly apecify the necessary chan-
nels of communication at the level of logical abstraction of the algorithm. For highly
parallel processors, the specification of this structure with traditional methods can be
tedious and error-prone. Aggregate rewriting graph grammars provide a framework for
describing families of regular graphs. Using this scheme, the difficulty of specifying
an algorithm’s communication structure is independent of its size. In addition, we
note that scripts of derivation sequences generating different members of a family of
structures can suggest an intra-family contracting map.

1. Introduction

When the processing elements of a parallel processor are individually programmed,
explicit description ol the necessary channels of communication often aids in the correct
and efficient implementation of an algorithm. Knowledge of the underlying communication
structure of an algorithm can provide redundancy needed for automatic error detection
and correction, and it can provide structural information useful in mapping to a target
architecture. Only a few parallel programming environments, however, support the explicit
specification of communication structures|8,11].

Programmers are most effective when they work at the level of abstraction required by
the algorithm. For programmers of parallel algorithms, this means communication struc-
tures should be logically depicted as graphs, as these representations usually accompany
informal presentations of parallel algorithms. Graphical representations of communication
structures serve as a basis for the display of mapping, control and debugging information.
Programming environments that support graphical specification are currently very rudi-
mentary: they rely on the programmer to draw each interconnection. This manual process
is tedious, error prone and not feasible for large architectures. In addition, there is cur-
rently no support for the abstraction of families of communication structures. Description
of graph families is necessary because mosi; algorithms are designed in-the-small but are
intended for arbitrarily large machines.

In this paper, we present a new form of graph grammar - called an aggregate rewriting
graph grammar - and demonstrate its use in the specification of families of regular com-
munication structures. This type of grammar facilitates description of regular structures
at the programmer’s level of abstraction. The resulting description is natural, compact
and, in the case of recursively constructed graphs, a description that suggests contracting
quotient maps|4].

In the next section, we informally describe aggregate rewriting graph grammars. The

third section demonstrates the use of these grammars in describing a number of common

An Approach to Programming Process Interconnection Structures 2

network structures. The fourth section suggests mapping techniques naturally induced by
recursive descriptions. Our final section discusses the use of aggregate rewriting grammars

within a programming environment for highly parallel computation.

2. Aggregate Rewriting Graph Grammars

The use of graph grammars in Compufer Science has been largely restricted to de-
scribing transformations on structures that are easily represented by graphs: databases,
derivation trees of a compiler, operations on abstract data types, etc. These systems do
not, in general, have the regularity that we would expect to find in process interconnec-
tion structures. For our domain, we have been able to define a restricted form of graph
grammar that introduces and preserves regularity and thus forms a natural basis for our
descriptions.

An aggregate rewriting graph grammar (subsequently, an AR grammar) is a sequential
graph rewriting mechanism|3,10|. The subg_raphs to be rewritten at each production step
are aggregates of nodes - the union of occurrences of a production’s left side — allowing

massive, but regular, changes in the structure of the transformed graph.

Terminology

The labels on nodes of our graphs consist of a major label and a subscript. The subscript
is an n-tuple of strings! We assume that nodes are uniquely labeled: a graph containing
two nodes with the same label is equivalent to the graph built by identifying those nodes
as in Figure 1. For the purposes of this work, we also assume graphs have no duplicate

arcs, and that each arc is undirected.

[ach production identifies a mother graph, which is rewritten to a daughter graph similar

to that of NCE grammars|6]; when the mother graph is restricted to a single node (node

UI'he set of strings, along with valid operations on those strings (such as the operations of concatenation
and addition we use in this paper), is determined by the designer of the grammar.

An Approach to Programming Process Interconnection Structures 3

A4 A4 A4
4 /I I\. 4 /1\ 4
0 Al Al 3 0 Al 3

Figure 1: The two graphs shown above are equivalent; nodes generated with equiv-
alent labels are identified.

aggregate rewriting graph grammars, or NAR grammars) these grammars are similar to
NLC grammars|7]. The application of a production rewrites an aggregate — the set of all
occurrences of the mother graph in the host graph.? The aggregate is removed from the
host graph, a distinct daughter graph is created for each instance of the mother graph,
and the union of these new graphs is re-embedded into the remainder of the host graph.
Unlike string grammars, however, there are often a number of possible re-embeddings; the
arcs connecting the aggregate to the remainder of the host graph and the arcs connecting
instances of the mother graph - called tnterface ares - must be inherited by the image graph
in some consistent manner. This is described by a inheritance function (or connection
Junction|7]) which identifies the mapping of interface arcs between occurrences of mother

and daughter graphs.

The inheritance function for AR grammars is a partial surjective function, ¢, from
the nodes of the daughter graph to the nodes of the mother graph; it has been described
more formally elsewhere[l]. Informally, if ¢(x) = v then all edges incident to instances
of the node v of the mother graph are inherited by respective instances of the node u in
the daughter graph. When two or more nodes of a daughter graph inherit edges from the
same node, the inheritance function may be partitioned (written ¢ = 3; ¢;) to indicate
that images of the two nodes will never share inherited edges. Copies of edges incident to

two mother graph occurrences may never cross the partitioning of the inheritance function.

“These occurrences may be constrained: for example, in this paper we assume a relation between the
labels of a mother graph and its occurrence, and we extrapolate labels from the daughter graph that are
consistent with each rewritten occurrence of the mother graph.

An Approach to Programming Process Interconnection Structures

a b b a (a)

l.> b b

b 2

2 - e =k =1 a a (b)
b
3 b b
t.> b b

b 2

I - b) ¢l(2) = 47 ¢2(3) =1 a a (C)
3 b b
b b b

b 2

I - y ¢l(2) = a a (d)
3C c c

Figure 2: The various effects of inheritance functions on production application. The
effect of rewriting the same host graph (a), using a total inheritance func-
tion without partitioning (b), a total inheritance function with partitioning
(c), and a partial inheritance function (d).

An Approach to Programming Process Interconnection Structures 5

The effects of various inheritance functions are depicted in Figure 2. A host graph
containing two occurrences of the node b is shown in (a). In (b), the inheritance function
was not partitioned so all pairings of inheriting nodes from different daughter graphs
inherited a copy of the host b - b edge; in (c), the inheritance function was partitioned so
only node instances from the same partition are incident to the same b — b edge; and in
(d), the inheritance function was not total, thus nodes labeled ¢ did not inherit any edges.

A graph grammar gencrates graphs in the same way that a string grammar gencrates
strings: a start-graph is iteratively rewritten by productions until each node of the graph
is labeled with terminal symbols. The language of a grammar is the set of all terminally

labeled graphs that can be generated from a start-graph.

Production types

For the remainder of this paper, we assume the productions of AR grammars not
allowed arbitrary connection functions, but rather are restricted to three production types

that differ in the inheritance of interface arcs. These have the following semantics.

¢ Relabeling productions. The nodes of the mother graph are possiblj} relabeled
and the injective mapping from mother to daughter nodes serves as the inheritance
function. Thus, in the figure below, A is relabeled B and as a result, B inherits the

arcs of A.

A c™mB-C

\/A=>B

Ce C

¢ Extension productions. The mother graph is rewritten to a larger daughter graph,

as shown. An injective function from the mother graph to the daughter graph serves

An Approach to Programming Process Interconnection Structures 6

as the inheritance function. Excess nodes are not mentioned by the interface arcs

and thus serve to ‘extend’ the host graph.

A A-B-C

A A B (C
—

¢ Replication production over S. If S is a finite subset of the set of strings, the
daughter graph consists of exactly n = |S| copies of the mother graph; daughter
graph nodes are labeled with the respective labels of the mother nodes, each prefixed
with a distinct member of S. The power of this production type is detailed below:
this replication production makes multiple copies of the node B, whose labels are
prefixed with members of the string set {0,1,2}. Each receives a copy of the interface

arcs mentioning B,.

R
By ™3 Boy Bio Big

Agp Ay, Aop Ao

By By Bip B:p

Aggregates

The regularity of a communication network is often reflected by the labeling of its

nodes. For example, the binary n-cube structure can be generated by labeling each of 2"

An Approach to Programming Process Interconnection Structures 7

10 111

O1g-——— ~-———e11 001 o1

100 110

00 @~ - 10 000 010

Figure 3: Two and three dinensional binary cubes. Each node is connected to all
other nodes whose addresses differ in a bit. The 3-cube can easily be
constructed by grafting two 2-cubes together.

nodes with a binary number and connecting nodes whose labels differ in exactly one bit (see
Figure 3). Aggregate rewriting graph grammars make use of the regularity of subscripts
in labels by allowing productions to rewrite aggregates of nodes that are similarly labeled.
A label specification may contain variables which potentially match labels that induce
an assignment. For example, il string concatenation is written S - T, then the label

specification

5-0

malches strings ending in 0. A set of label specifications identifies an aggregate of nodes if
a set of the nodes suggest a consistent assignment of variables in the specification. Thus,
the specification

AO-S b Al-S
matches all pairs of A-labeled nodes differing in exactly the first digit, which also share an

arc. This specification can be used, for example, to identify the diagonal arcs of Figure 3.

Because mother and daughter graphs of productions specify aggregates, they become

powerful rules for rewriting arbitrarily large structures simultaneously. Thus, while AR

An Approach to Programming Process Interconnection Structures 8

grammar productions are applied sequentially, they rewrite many subgraphs of a host
graph in parallel. The result is the union of the daughter graphs, appropriately embedded.
In the next section, we present a number of examples of regular communication struc-

tures which are generated by AR grammars.

3. Examples

In this section we demonstrate the power of AR grammars for describing families of
regular communication structures. The set of strings for generating labels is the set of
digits in an appropriate base (usually binary). We shall assume nonterminal labels are
upper-case roman letters (e.g. ‘T’), while a single terminal label Q2 is used. To aid in
the interpretation of these grammars, we supplement these examples with scripts which

indicate derivation sequences which generate the desired family of structures3

Binary Trees

Several methods of generating binary trees are possible — we demonstrate two. The
first is a ‘leaf-weighted’ construction (Figure 4), which appends a new layer of leaves on
a n-level complete binary tree to generate an (n + 1)-level successor. The labeling of this
tree is such that level n is labeled with n digit binary numbers. The children of a node
are determined by appending either a 0 or 1 on the node’s label. The script for the leaf-
weighted grammar indicates that the family can be derived by the derivation sequences
(123)"4. Figure 5 shows a derivation for n = 2. The semantics of the production sequence

1-2-3 is to generate a new layer of leaves, while production 4 terminates the derivation.

The second method (Figure 6) is ‘root weighted’: it generates a (n + 1)-level binary
tree by generating two copies of an n-level binary tree, and then constructing a common

root (Figure 7). From the script we note that L -2 -3 is the sequence of production

3Scripts do not indicate all possible production sequences, however, they do generate all graphs in the
language.

An Approach to Programming Process Interconnection Structures

| Leal-weighted Tree
jStért-graph: Ty *
2| xs Y xos Xis

i
i 3 (Xis -, Ts.i
|
|

14| Ts -5 Qg
| Script: (123)"4]

Figure 4: ‘Leal-weighted’ tree description. An n-level binary tree is constructed by
adding a new level of leaves.

X Xo,a Xia To T

Q

Xo X1 Xop X0 Xoxg Xi1 Q0 o o O

Figure 5: An example derivation of the grammar in Figure 4. Productions 1-3 add
a new layer of leaves to the tree. Production 4 rewrites the labels to
terminals. Note how Xy and X, , are identified with existing nodes Ty
and Ty in the last steps.

An Approach to Programming Process Interconnection Structures 10

[Root-weighted Tree |
:Start-g;aph: Ty

1 ! Ts rp—lj_()_,’l} To,s Thi,s
2| Tis = Tis-Xs
3! Xs =, Ts

4| Ts = Qs
récript: (123)"4 - |

Figure 6: A ‘root-weighted’ tree grammar. A n-level binary tree is constructed by
joining two copies of an (n — 1)-level binary tree by mentioning a common
root.
sleps that increases the height by copying the tree (production 1) and generating a new
root (production 2). While the labeling of this tree is identical to that of ‘leaf-weighted’
generalion, we will see in the next section that the different generation of leaf- and root-

weighted trees causes them to have distinct mapping characteristics.

Cubes

The binary (in general, m-ary) n-dimensional cube is constructed with the grammar
depicted in Figure 8. The labels on the vertices of the n-dimensional binary cube structure
are binary strings from 0 to 2" -- 1. Each node is linked to vertices that differ in exactly one
bit position. As the script shows, the productions 1 and 2 duplicate and connect smaller
cubes to form larger cubes.- Because each production matches an aggregate of nodes, the

productions have the same semantics for arbitrarily sized host graphs.

Perfect shuffle

The perfect shuffle is described by the grammar found in Figure 9-a. This follows

the original construction of Stone[12], which creates two copies of 2" nodes (here, L;

An Approach to Programming Process Interconnection Structures 11

X by TA
(N Toa Tia
. N . . 2 / 3 \ 1234
To Ty To T
95
) /X
/‘\)
AN
L

Bwo Q1 e On

Figure 7: An example derivation of the ‘root-weighted’ tree grammar depicted in
Figure 6. Productions 1-3 duplicate the tree and construct a common
root..

| m-Ary n-Cube |

Stg{ti—vg_raph: C,_)

Tpl{O,...,m—- 1}
RN

|
I Cs Cos-*'Cm-1,5
1!

2|Cis Clgys - Csi-Csj
3 Cs A Qg

t Seript: (12)"1_3_ A - I

Figure 8: An m-ary n-cube grammar. The m copies of a m-ary, (n -- 1)-cube are
_Joined together in productions 1 and 2.

An Approach to Programming Process Interconnection Structures 12

and I?;) shuffles them, adds exchange arcs, and then reunites the relabeled copies. The
script generates the 2" copies of L and R nodes with n applications of productions 1
and 2. Production 3 gencrates shuffle arcs, while production 4 generates exchange arcs.
Identification of similarly labeled nodes causes the L; and R; to be thought of as the same

logical node. Figure 9-b shows the identification of logical nodes.

We have seen in this section that AR grammars are capable of describing a variety of
regular structures. Other structures, not presented here, such as SW-banyans|5| and cube
connected cycles|9] have also been described with AR grammars in a similar fashion. We
have found that manipulation of labels is an extremely powerful capability. In the next
section we will show that the structure of the script can provide an aid to the mapping of

large logical communication structures into small processor arrays.

4. Mapping Techniques

One of the most important problems designers of parallel programming environment
must address is the mapping of logical communication structures onto the physical com-
munication network. It is often the case that the processor is too small to adequately
handle the processes required by the algorithm! Our description of families of communi-
cation structures does, however, allow us to identify special mappings that contract logical
communication structures onto processors.

FFishburn and Finkel suggested a number of quotient mappings for common communi-
cation structures|4|. Essentially, if a n-process problem was to be mapped to a smaller
m-processor array of the same family, a quotient map partitions the problem into m equiv-

alence classes which are then mapped directly to the processor array® Most of these map-

* Another problem occurs when the communication structure is not a member of the family of structures
that may be easily mapped into the hardware. We will not discuss intra-family mappings induced by these
descriptions in this paper.

f . . .
“Ideally, this maps an identical number of processes to each processor, and maps the same number of

An Approach to Programming Process Interconnection Structures

Perfect Shuffle B]
Start-graph: L), R,

rpl{0,1}
1 Ls Rs =" Lys Lis Ros HRis
12| Lis Ris ™ Lis Ris
i

3 L‘-.s Rs, 5 Q;.sﬁ:vRs.,'

4]Bso Rsa 5 0s0-0sy
|_ Script: (12)"34 .

S|

Figure 9: (a) Perfect. shuffle grammar, and (b) node identification.

13

An Approach to Programming Process Interconnection Structures 14

pings are identified by labeling the nodes of the graphs appropriately. For example, a
square grid labeling each node with binary row and column binary indices from 0 to 2" — 1
can be reduced in size by dropping the least significant bit from both indices of each node.

Becausec AR grammars naturally suggest recursive descriptions of graph families the
scripts provide a natural ordering of derivations. For example, a binary n-cube is generated
by the derivation sequence (1-2)"-3. In the process of generating a (n+ 1)-cube, a smaller
n-cube is first generated. Clearly, every node labeled S of an (n + 1)-cube is attributable
to exactly one node of an n-cube: the node labeled with n digit prefix of S. A natural

mapping of a boolean (n -+ 1)-cube into an n-cube is the one induced by this quotient map.

In general, recursively defined families have quotient maps suggested by their parame-
terized derivation sequences as described above. The implementor of the complete binary
tree, for example, has the option of selecting either the leaf-weighted or root-weighted
grammars which suggest the leaf-weighted and root-weighted quotient mappings defined
by Fishburn and Finkel{d]. The ability to make this decision aids the user in fashioning
a mapping of an arbitrarily large algorithm into the processor in a manner that \is most

eflicient.

5. Conclusions

We have informally described AR grammars, which can be used to specify families
of regularly structured graphs. In light of programming highly parallel processors, these
grammars show promise in accurately describing a wide variety of structures. The power of
aggregate rewriting productions allows the user to apply straightforward logical transfor-
mnations on a structure in a manner that scales up. In addition, where computing resources
are limited, the derivation scripts suggested by these grammars provide a useful basis for
logical channels to cach physical channel. A counter-example can be found in complete binary trees, which

fail to map evenly since 2™ - 1 does not divide 2" - 1for 1 < m < n. However, augmenting trees with an
extra node fixes this problem|2].

References 15

mapping large logical process structures onto smaller physical processor arrays.

As we expect highly parallel processors will soon be impossible to program by hand,
graph construction tools must provide descriptive primitives that manipulate aggregates of
nodes similarly. Furthermore, as the size of the problem increases we believe the user will
find appropriate manipulation of labels a useful mechanism for generating node specific
data. We believe aggregate rewriting graph grammars can provide support for future

graphical interfaces to parallel programming environments.

References

[1] Duane A. Bailey and Janice E. Cuny. Graph Grammar Based Specification of In-
terconnection Structures. Technical Report 87-23, University of Massachusetts at
Ambherst, March 1987.

|2| Duane A. Bailey and Janice E. Cuny. The Use of Shape Grammars in Processor
Embeddings. Technical Report A-86-23, University of Massachusetts at Ambherst,
July 1986.

[3] H. Ehrig, M. Pfender, and H. J. Schneider. Graph grammars: an algebraic approach.
In 14th Conference on Switching and Automata Theory, pages 167-179, 1973.

|4] John P. Fishburn and Raphael A. Finkel. Quotient networks. IEEE Transactions on
Computers, C-31(4):288-295, April 1982.

(5] Rodney L. Goke. Banyan Networks for Partitioning Multiprocessor Systems. PhD
thesis, University of Florida, 1976.

|6] D. Janssens and G. Rozenberg. Graph grammars with neighbourhood--controlled

embedding. Theoretical Computer Science, 21:55-74, 1982.

References 16

[7] D. Janssens and G. Rozenberg. On the structure of node-label-controlled graph

languages. Information Sciences, 20:191-216, 1980.

[8] Hungwen Li, Ching-Chy Wang, and Mark Lavin. Structured process: a new lan-
guage attribute for better interaction of parallel architecture and algorithm. In 1985

International Conference on Parallel Processing, pages 247-254, August 1985.

|9] Franco P. Preparata and Jean Vuillemin. The cube-connected cycles: a versatile

network for parallel computation. Communications of the ACM, 300-309, May 1981.

[10] H. J. Schneider. Graph Grammars, pages 314-331. Lecture Notes in Computer
Science, Springer-Verlag, Berlin, September 1977.

[11] Lawrence Snyder. Introduction to the configurable highly parallel computer. Com-

puter, 15(1):47-56, January 1982.

[12] Harold S. Stone. Parallel processing with the perfect shuffle. IEEE Transactions on
Computers, C-20(2):153-161, February 1971.

