Shuffle Automata:
A Formal Model for
Behavior Recognition in Distributed Systems

Peter C. Bates

COINS Technical Report 87-27
January 1987

Laboratory for Distributed Computing
Computer and Information Science Department
University of Massachusetts
Amherst, Massachusetts 01003

This research supported in part by the National Science Foundation under grants MCS-8306327, DCR-8318776,
and DCR-8500332. And by the Defense Advanced Research Projects Agency, monitored by the Office of Naval
Research under contract NR049-041.

Contents

1. Introduction: Shuffle Automata Family
2. Simple Shuffle Automata

3. SSA as Behavior Recognizers

4. Basic Shuffle System

5. Constrained Shuffle System

6. Summary and status

10

19

23

SHUFFLE AUTOMATA:
A ForMAL MODEL FOR
RECOGNIZING BEHAVIOR IN DISTRIBUTED SYSTEMS

ABSTRACT

Event Based Behavior Abstraction is a paradigm for debugging distributed systems which fo-
cuses attention on comparing patterns of expected and actual system behavior patterns. Recog-
nizing patterns of behavior in complex distributed systems for the purposes of debugging is a hard
task. The Shuffle Automata model describes a formalism for recognizing behaviors in distributed
systems. The Simple Shuffle Automata defines the basic operational characteristics of shuffie au-
tomata model. However, simple shuffie automata are not capable of satisfying all the needs of
an event based behavior recognizer, so more capable members of the shuffle automata family are
defined. A collection of simple shuffle automata formed as a Basic Shuffle System and augmented
with constraints based on dynamic properties of event models as a Constrained Shuffle System will
represent all event models described within the event based modelling scheme. This paper develops
the shuffle automata family and ties it to event based behavior modelling.

1. Introduction: Shuffle Automata Family

Event Based Behavioral Abstraction (EBBA) is a high-level paradigm for debugging distributed
systems which focuses on comparing models of actual and expected system behavior. Models of
expected behavior are expressed as behavioral patterns in terms of events! which represent signif-
icant interactions of system components. Recognized instances of these higher level patterns can
likewise be considered as events and incorporated as pattern constituents into other behavior mod-
els. Thus, the EBBA paradigm views behavior recognition as a problem in pattern recognition. For
various reasons this approach to behavior recognition is more involved than application of parsing
techniques (as in [Fu82]) applied to an input stream of symbols. This paper will present a formal-
ism, the Shuffle Automata model, that is useful for describing the meaning of event based behavior

abstraction and aids the recognition of behavior models for debugging distributed programs.

Shuffle Automata are a Finite State Automata-like (FSA) formalism that comprise a family of
machines with a common basic operation. Each higher family member enhances the operational
characteristics of the basic model to take in more of the needs posed for behavior recognition. The
connection of shuffle automata to behavior recognition is made by considering the symbols that

form the input alphabet for the shuffle automata to be the events that make up behavior models.

A shuffle automaton consists of a set of states and a finite state control that effects transitions
from an initial state to some final state. Transitions are made from state to state based on the
availability of appropriate sequences of input symbols. An important difference between the shuffle
automata and FSA models is that in order to make transitions in the shuffle automata, the finite
state control examines sets of input symbols, rather than individual symbols from the input alphabet
of the machine. This is a simple means for describing concurrency and collections of behaviors which
are only partially ordered in time. In addition, shuffle automata are also capable of describing the

usual sequential behaviors: sequence, iteration, and selection.

Another important difference is the capability of shuffle automata to use dynamic properties
of events to narrow the focus of a behavioral model. In the EBBA paradigm events are tuples
consisting of a class that the event is representative of, and a list of attributes that distinguish a

particular instance of that class. Shuffle automata can attach functions parameterized by event

! Primitive events are fundamental system activities; High-level events are those expressed in terms of primitive or
other high-level events. See [Bates83] or [Bates86).

attributes to individual transitions and thus constrain model recognition.

The most basic shuffle automata, the Simple Shuffle Automata (SSA), bears strong resemblence
to the familiar FSA generally associated with type 3, or regular, languages [Hopcroft69). The
basic characteristics of user defined behavior models and their recognition by shuffle automata are
established by the SSA. However, the SSA has some inherent limitations that bound its use as a
recognizer for behavior models. The SSA can become unwieldy for complex expressions, does not
fully support hierarchical behavior descriptions, and does not account for the use of event attributes

to perform fine filtering of event information.

The first two of these problems are overcome by the Basic Shuffle System (BSS), a more general
shuffle automaton, which consists of collections of simple shuffie automata. The BSS extension
permits high-level events to be easily incorporated into behavior recognition models and simplifies
their description. To employ event attributes for filtering, the Constrained Shuffle System (CSS),
extends the input alphabet symbol representation to be an event tuple comprised of an event symbol
together with a list of attributes. The algorithm that implements the finite state control for a CSS
includes the use of constraining expressions to effect filtering based on the attributes possessed by

an event instance.

The next sections detail the simple shuffle automata model and the relation of the basic model
to recognizing behaviors in systems. With this grounding, the more general basic shuffle system
is introduced. Several small examples are examined that illustrate the workings as a pattern
recognizer. In next to last section, the most general shuffle automata-based recognizer for behavioral

patterns, the constrained shuffle system is described.

2. Simple Shuffie Automata

Simple shuffle automata (SSA) are similar in form and operation to familiar models for finite
state automata. The important difference is that transitions from state to state are based on the
simultaneous availability of all elements of a subset of symbols from the machine alphabet. In
order to use sets of symbols as transition symbols, the SSA finite state control (figure 1) includes
an input register to hold symbols which have been generated by the symbol sources but not yet used
in a transition by the finite state control. This mechanism is the basis for modelling concurrent

behavior. Also, the symbol generation sources are considered to operate concurrently and may fill

Event Sources

Input Register (R)

T r -

Current L mep,
State

(q) Transition

Function

(m)

Figure 1: SSA control

the input register in parallel. This characteristic is important for distributed programs in which

true concurrent program execution is possible in the network.

A simple shuffle automaton is described by the 7-tuple:
S5A= (Qa 2) TI m, qo, F’ Tmap)

where

Q - finite, nonempty set of states,

Y — finite alphabet of input symbols,

T — transition sets, {t; | t; C T},Vi,j: t; # t;,

m — transition function @ x T’ — @,

go — initial state of the $SSA, qo € Q,

F — set of final states, F C @,

Tmap — iNput register map, L= — L=,

The set of states, @, the input alphabet, T, the transition function, m, and the set of final states,
F, are all similar to the like-named elements in any of the various finite automata definitions. The
SSA control started in state gp reads sets of symbols and moves from state to state according to
the transition function until it enters a final state ¢ € F. The transition sets, T, are a collection
of multisets of input symbols. Each ¢; € T is a multiset whose elements are members of £. It is

possible that the transition sets overlap, that is, Vi,j : t; € T,t; € T,t; Nt; # {}. It is necessary

that every transition set element is a member of the alphabet of the simple shuffle automaton, that

is, ILTJIt,- C X. The transition function m is defined over the transition sets, ¢),15,...,tm.

i=1

The finite state control associated with a S5A is in some state, ¢, from @ and maintains an
input register which contains symbols from X. The input register, R, is a multiset which holds
the input symbols that have been presented to the shuffle automaton by the symbol generating
sources, but not yet consumed by a transition. In a single move, the SSA in state ¢ examines its
input register for a set of symbols which will match any one of the transition sets t;. If m(q, ;) is
defined then the finite state control enters the state given by m(g,t;) and applies the 7pmqp function
to the input register. If the state given by m(g,;) is one of the final states F, the 5S4 is deemed
to have recognized one of the patterns it describes. The recognized pattern corresponds to the list

of transition function applications
m(go,t), m(¢',t'), ...,m(q",t") € F.

Since shuffle automata are closely tied to the EBBA modelling paradigm the set of input symbols
which were responsible for the sequence of transitions is called the event set for an instance of the
pattern described by the SSA.

A directed graph may be associated with an SSA as follows. Each state of the SSA has a
corresponding node in the graph. If the SSA defines a transition from a state ¢ to state ¢’ on a
transition set t;, then the graph contains a directed arc from node ¢ to node ¢’ labeled with t;. A set
of symbols presented in such a way as to cause the SSA to traverse the graph from its initial state
to a final state results in recognition of one of the patterns described by the SSA. The recognized
pattern is the one described by the path taken through the graph. A simple shuffle automaton and
its graph are shown in figure 2.

The 7map function is used in conjunction with the input register to alter its contents following a
transition. Changing the definition of 74, leads to different interpretations of the sets of symbols
which cause a simple shuffle automaton to make transitions and eventually enter a final state. A

simple 7yqp, is one which clears the input set following a transition,
Tmap - R — {}.

The effect is to impose a temporal ordering on the symbol subsets which will cause the simple shuffle

automaton to enter an accepting state. Symbols not consumed in a transition are discarded and

{a, b} @ {c,d,e}
é)
® @
o

{e) e} {at)

Q={s1,2,f}

T = {a,b,c,d,e}

T = {{e, b},{e},{c},{c,d, e}}
([m(s,{a,b}) =1,

m(s,{c}) =2,

m(la{c:d:e})=f,

m(2,{e}) =2,
m(2,{a,}) =f
| otherwise =1
Go=s
F={f}
Tmap ' R+~ {}

Figure 2: A Simple Shuffle Automaton

input symbols R state applicable transition
- {} s
{a} {a}

{Ca e} {a’ ¢, e}
{d} {d}
{c} {d,c}
{e} {d,c,e}
{6} {}

{e, e} {b,e,e}
{a} {a}

{a, b} {a,a,b}

m(s,{c}), R < {}

m(2){e}))R - {}
m(2={e}):R —{}

m(2, {a: b}): R~ {}

SR NN DN K

event set = {c,e,e,a,b}

Figure 3: SSA operation with 7,,,,: R — {}

not considered for further transitions. The rpqp, that clears the input register at each transition
guarantees that a transition from state n to n’ which is followed (in time) by a transition from
7’ to n” occurs in response to symbol sets that are likewise ordered in time. No symbol that is
consumed in the transition from n’ to n" was available for the transition from n to n’. Figure 3
illustrates this for the SSA of figure 2.

Another simple 7,,0p is one which only removes symbols consumed by a transition m(q, ¢;)
Tmap: R R-1;.

This 7y, removes the temporal ordering imposed by the previous function. This might be useful
when an exact match is not required, but only a pattern that is roughly as specified by the shuffle

automaton, or one defective in some way that is yet to be analyzed, is sought.

An important effect of holding unused symbols in the input register is an operational non-
determinism. Non-determinism is introduced, not in {he definition of a shuffle automaton model,
but during its operation. It is always possible to construct a shuffle automaton that appears

deterministic in the traditional sense - all transitions from a given state are unique, i.e.

Vq,i,j : m(qrti) 75 m(Q:tj) = ii # tj'

This is the usual restriction for deterministic finite state automata. However, shuffle automata
are capable of non-deterministic behavior. It is certainly possible that during operation, a shuffie
automaton could be waiting in state g with the above restriction on the transition sets from that
state, but both ¢; C R and t; C R. Which transition, m or m’, will be taken, depends on other

factors.

3. SSA as Behavior Recognizers

An SSA can be used to recognize behaviors that are specified by event based behavior descrip-
tions. A correspondence between event based behavior descriptions and the SSA will be sketched
here?. A behavior model is specified by an event expression [Shaw79] consisting of event name
operands and event operators. Together, the operands and operators specify acceptable sequences
of events that fit the model. There are operators to express sequential behavior (indicated with
infix o symbols), choice among alternatives (|), concurrent behaviors (A), and iteration (postfix

*and).

Not all of the needs for event based model recognition are filled by simple shuffle automata. SSA
are not capable of using constraints to filter events and cannot model complex shuffle expressions
without eliminating their concurrency characteristics. The BSS described in the next section is
capable of describing all event expressions and the CSS described in a following section can use
constraining expressions to filter the input event stream. A suitable set of tools allows a user to
describe behaviors as event based model descriptions which are then recast as recognizing automata
and turned loose on the event stream. When a shuffle automaton enters a final state, it has
recognized a behavior in the system. In the tool use of abstracted events, the recognized event is
sometimes pushed back onto the event stream so it might be incorporated into higher level event

models or distributed to remote nodes of a distributed system.

A behavior model specified by an event expression consisting of a series of sequential behaviors

such as

E=zeo0oeo...0¢e,

2A more complete description containing procedures for transforming models into shuffle automata can be found
in [Bates86).

is recognized by a simple shuffle automaton

{a} e} {en)
©——0O0—0 ®

Likewise event expressions involving the iterative operators such as,
E=ze;*and E=e;*

have the respective recognizers

{er} {e1}
—C® and @ﬁ}_,%

Choice among behaviors, such as in the event expression
E=e|e]|...|€n

is recognized by a simple shuffie automaton

{31}

=
A

Finally, the shuffle operator which indicates concurrency for a model

E=e ANes A...A e,

is recognized by the following single transition machine.

{311329---737;}

® ®

As an example, consider a system with five primitive event classes: create, destroy, dispatch,

getbuf, and IO. A behavior model for file movement might be specified

Jmove = create o (getbuf A dispatch A 10)*o destroy

The recognizer for this model is the simple shuffle automaton

{getbuf, dispatch,I0}
@ {create} O{ getbuf, dispatch, 10} g {destroy} @

A shuffle automaton is capable of detecting a designated pattern of symbols generated by a set
of sources for these symbols. These patterns can be made of symbol sets which are sequential
or concurrent in nature. A higher level behavioral model is recognized when its defining shuffle

automaton reads a set of events which cause it to enter a final state.

For a simple shuffle automaton
S$=(Q,%,T,m,qgo, "map)
a recognition by S defines an event set
E={s;|s €L}

such that there is a series of transitions from the initial state to one of the final states based on the

sets of symbols presented to S

m(QOatj)am(qlat;li):' “’m(qm,t;_n) €F
where
Vi,3jm:s; € E = s; €]

Recognition of a high-level event by a simple shuffle automaton defines a model of actual system
behavior whose constituent events are members of the event set E. For this to work for all event

expressions, it is necessary to generalize to the basic shuffle system.

4. Basic Shuffle System

The SSA is a good basis for pattern recognition in support of event based behavioral abstraction
primarily because of its ability to easily model concurrency and ignore unnecessary information. A
Basic Shuffle System (BSS) extends the SSA to a collection of shuffle automata® (SA) with a com-
mon input alphabet and transition sets that include symbols representing other shuffle automata.
A shuffle automaton in the BSS operates as does a simple shuffle automaton but is capable of
calling other shuffle automata in the BSS to recognize subparts of a pattern of symbols. For each
recognition by a shuffle automaton in the BSS, a copy of the symbol that represents the shuffle au-
tomaton is created and may be placed into an input register. Thus, shuffie automata sub-machines
may be used in the same way as ordinary alphabet symbols to effect transitions from state to state
by a shuffle automaton. The call mechanism is similar to that found in the Augmented Transition
Network formalism [Woods70], {Bates78]. Among the significant differences is the parallel operation

style of the shuffle automata versus the subroutine invocation style of ATN’s.

The need for sub-machines also results from an implication of the SSA model that the shuffle

operator can only connect simple event symbols. The use of a shuffie operator
61 Aez A ---A en

is only possible if all of the e;, ey, ...,e, are event symbols. The reason for this is the transition
sets have no means to represent objects other than symbols as set members. For example, the event

expression
81 A(82|83034)A85
is not directly describable as a simple shuffle automaton because the subexpression

o852 s3084)...

needs to be represented in a transition such as

{ 81, (52 | s3 0 84), 85}

Shuffle automata (SA) includes both the SSA and BSS.

10

The BSS overcomes this difficulty by replacing the (s, . ..) subexpression with a symbol to represent

it in the transition set.

The shuffle automata forming the BSS are effectively merged into a single pattern recognition
entity having a distinguished root machine. Once started in the root machine initial state, the BSS
operates as a set of parallel SA. Each SA in the BSS may be started independently of the others
and multiple copies of a SA may be active at any time. These possibilities arise because many
transition sets marking transitions from a given state may have called for sub-pattern recognition
when the state is achieved. From this perspective, the BSS is more of a higher organizational level

than a machine radically different from the simple shuffle automata.

A BSS is defined by the 4-tuple,
BSS =(%,S5,T,A)

where:
T - input alphabet for the BSS, {s1,52,...,5n},
S - set of Shuffie Automata, {S; | S; is a shuffle automaton},
T - transition sets, {t; | t; CT U S}, Vi, jt; # 5
A — “Active” shuffle automata A C S".
The set of Shuffle Automata, S, contains at least the “root” shuffle automaton, So. The definition
of an individual shuffle automaton, S;, in the BSS is changed slightly from the SSA definition to
accommodate the input alphabet that is shared by all of the Sp, S1,...,Sn. Each S; is defined as
a 5-tuple,
Si = (QSnmS.'a qos;, FS;) rmapS;)
with
@s; — set of states for shuffle automaton S;,
mg, — transition function, Qs; X T — Qsg;,
gos; — starting state for S;, gos; € @s;
Fs; — final states for S;, Fs; C Qs;
Tmaps; — input register mapping function for S;,(X U §)* — (2 U S)*
Each component serves the same purpose and has the same meaning as the corresponding compo-

nents of the SSA.

The transition sets, T, tie all of the shuffle automata in the BSS together. The definition of

transition sets has been extended from the SSA definition to include names of other shuffle automata

11

in the BSS. This permits a state to invoke other shuffle automata to supply symbols needed to satisfy
a transition set and hence to move from the state. Because of this calling property it is important
that the transition sets are not defined in a circular or recursive fashion. To determine if there
are cyclic definitions of events create an n x n connectivity matrix for the shuffle automata in the
BSS. Label each column with the name of a shuffle automaton, S; € S; likewise the rows. For each
transition set ¢; for which m(g,t;) is defined for S;, if some shuffle automata symbol Si € t;, then
indicate in the matrix that S; is connected to Si. The reflexive transitive closure of the connectivity

matrix indicates whether there are any cycles in the graph.

At any time, many SA in the BSS can be active. To monitor these active shuffle automata,
the finite state control contains a set, A, of “active” shuffle automata. This set contains symbols
representing those sub-machines which have been called from a state, but have not yet completed

their recognition tasks. Figure 4 shows an example basic shuffle system.

A BSS begins operation by setting the active shuffle automata set to contain only the root
machine Sg and placing the root machine in its distinguished start state, gos,- The root machine
proceeds in 2 similar manner to the SSA by comparing the input register to transition sets and
performing a transition when a transition set is contained in the input register. However, the finite
state control must account for any symbols S; € S in the transition sets. When a state g of an
active Sy in the BSS is entered, each transition m(g, ;) is examined. Any Sj which are elements
of the t; are called from the state g by adding a copy of the Si to the active shuffle automata set,
placing its finite state control in the starting state gos, , and clearing the input register for Si. Each
Sk so started can operate in parallel with other active shuffie automata. Whenever an S enters a
final state it is removed from the active set and its symbol is added to the input register associated
with its caller. The BSS recognizes a pattern when the S enters its final state. It is not necessary

that the active set be empty for the BSS to accept an input.

In the more rigorous explanation of BSS operation that follows, Si indicates an instance of
shuffle sub-machine S). with a unique id i. The unique id maps the instance back to the state which
made the call. A new identifier can be made from the parent identifier by catenating the current

state number for S} (g) to the parent identifier (4)
new(i,g) =iegq.

The created identifier for a sub-machine can have the state part stripped away and the identifier

12

Sg =

{53, Ss}

So = © ©)
{z} A{z,Ss,b}
5= @ ®
{a,b,c}
= ® @
{a}
r R
® ®
N\ 4
{b,c}
T ={a,b,c,z,z2}

S = {50, S3, Se, Ss}

T = {tl = {SleB}:tz = {Z},t3 = {Z$ SG)b}’
iy = {a’b:c},ts = {a},ts = {b: C}}

A = {So}

@s, = {1,2}, qos, =1, Fs, = {2}, Ms, = {m(1,t;)) = 2}.

QS; = {3:475}: dos, = 3:F$3 = {5}’ MS; = {m(3,t2) =4, m(47t3) = 5}
st = {6, 7}1 goss = 6, F$5 = {7}a Mss = {m(s:t4) = 7}

Qs, = {8,9}, gos, = 8, Fs, = {9}, Ms, = {m(8,t5) = 9, m(8,16) = 9}.

Figure 4: Basic shuffle system

13

of the parent sub-machine returned by a function, pareni(i). The more rigorous definition of BSS

operation follows.

1. the root machine for the BSS is preset, and any sub-machines needed to exit the initial state

are started,
qsg +— o,

ng < {}

A~ {53}

forall j,!: m(qgo,t;) # L and S; € ¢;
A Au{speeay,
q S,"“"(“"’) “ qoSs),

Rsuew(o,q) - {}
i

2. As the symbol generator presents symbol sets {s;, s2,...,8,}, the finite state controls for
active shuffie automata evaluate a symbol distribution function to determine which symbols
to add to their input registers

input {s,,ss,...,3,},
forsome 7,5 : §* € A, s; € {51,52,...,5n},
Rsi — Rgi U{s;}

3. When the input register of a shuffie automaton in the active set contains one of the outgoing
transition sets for the current state of the shuffle automaton, the finite state control for the
shuffle automaton makes a transition and alters the input register accordingly,

if 34,5 : m(gsi,t;) # L and ¢; C Rg;
then
98;; - m(qSi’tj),
Rg; — "map(Rs;;)
forall 7,1 : m(ﬂs;;’t:') # 1 and S5 € ¢
A~ Au{speetiay
qslnew(i,q) “ qos;,
Rs"-m(-'-c) A {}
else goto step 2

4. When a shuffle automata Sj in the active set enters a final state, the S} returns to its calling
shuffle automaton and is removed from the active set,

14

if 3i: 5, € Aand g5 € F,
then
A~ A-{Si},
if £ = 0 then accept,
Rs:arcnt(i) A Rsiurcnt(i) U Sk

5. goto step 3

Each S; € S in a BSS can be shown to be the same as a simple shuffle automata with an ap-
propriately defined alphabet. Viewed in this way, a BSS represents a collection of simple shuffle
automata, each having its own event set. In the event based modelling perspective some event set
elements are primitive events, some are representatives of complex shuffie expression operands, and
some are high-level events. The actual behavior model for an event expression represented by a
BSS is the union of all the event sets bound to the constituent S; € S for the basic shuffie system.
A recognition by a basic shuffle system occurs if a stream of events presented to the shuffle au-
tomaton contains a set of symbols which cause the basic shuffle system root to perform transitions

and eventually enter a final state. For example, for the event expression

fmove = startup o fileaccessto destroy

where

startup = create o dispatch,
fileaccess = (preempt o dispatch) A getbuf A I0.

A basic shuffle system to recognize the behavior described by the event expression is:

{fileaccess}

Jmove = @ {startup} @ {fileaccess} [C-;g {destroy} @
startup = @ {create} @ {dispatch} @
fileaccess = {51,getbuf, 10} @

reem, dispailch
57 = {p pt}@{p}®

and has the structure indicated by figure 5.

15

fmove
I

/O\

startup + destroy
o |
/ \ ﬁleaccess
creale dispatch /

\getbuf 10

preempt dispaich

Figure 5: Hierarchical fmove model structure

Using the event stream of figure 6, we can trace the activity for the fmove BSS. Initially, the
BSS is placed in its start state (state 1) and a request for startup is made. The finite state control
for startup is placed into its initial state (state 5). The active set for the fmove BSS is now

{fmove, startup}.

As the event stream enters, startup makes transitions and accepts with event set

Estortup = {create,, dispatch,}.
The event symbol for startup is placed into the input register for fmove allowing fmove to take a
transition to state 2. From state 2 the BSS requests a fileaccess event. Fileaccess is added to the

active list, the finite state control for fileaccess is placed into its initial state (state 8), and a request

for the subexpression SI is made. S1 is initialized accordingly. The active set is now

{fmove, fileaccess, S1}.

51 is recognized with event set

Esy = {preempt,, dispaich,}

16

creatle
dispaich,
startup,
preempt,
dispatch,
Sh
preempt,
dispatch,
S1;
getbuf,
getbuf,
10,
preempt,
fileaccess,
dispatch,
Si3

10,
destroy,

fmove,

Estartup = {create,,dispatch,}

Es1, = {preempt,,dispatch,}

Egs1, = {preempt,,dispatchs}

Esy1, = {preempls,dispaich,}

Ejilcncceu = {Sjltgetbufl;Iol}

Efileacceu = {513;getbuf21102}

Ejmove = {startup,,fileaccess,,shutdown, }

Figure 6: Event stream and event sets for fmove

17

and returns an S symbol to the calling state of fileaccess. Fileaccess takes the transition, m(8,{S51})
and upon re-entering state 8, requests S1 again. The BSS continues to make transitions, with sub-
machines called as needed, until the fmove shuffle automaton enters one of its final states and

accepts.

The actual behavior model for the fmove behavior model is

Eatartup U ESI; U ESI; U Ejileacceu; U Efileacceaaz U Ejmove

5. Constrained Shuffle System

The extension of the simple shuffle automata to the basic shuffle system model was important
because of the need to easily express hierarchical behavior models and complex subexpressions. The
pattern recognition model of the BSS assumed that events are like symbols in a regular language,
featureless and content free. All symbols with the same name are therefore indistinguishable (except
for their position in a partially ordered set that defines the event stream). EBBA assigns more
meaning to events by insisting that events in a class are distinguishable by the attributes they
possess. The Constrained Shuffle System (CSS), introduced here, provides a capability to narrow
the focus of a behavioral model by including or excluding events based on the relationships of their

attributes.

The first step to providing this capability is to extend the notion of the input symbols to include
attributes. A symbol in the alphabet of a CSS is a tuple:

(e: a, a, ..., an)

where e corresponds to the class name of an event and q;, a3, ..., @, correspond to the event’s
attributes. The event attributes are simple values (the natural numbers) associated with a specific
instance of the symbol. All symbols with the same class name possess the same number of attributes.
Different instances of a symbol may have the same values bound to their corresponding attribute
slots. However, events in a distributed system are all made unique by their combined time and

place attributes.

A CSS is similar to a BSS but contains a set of constraining functions which are defined in

terms of the attributes of the input symbols. The finite state control of a CSS performs transitions

18

in a similar manner as a BSS, but has the additional task of using the constraining expressions to

determine if an input symbol should be included in an event set. A CSS then is a 5-tuple
CSS=(%,5T,C,A)

where:

¥ — input alphabet, {s; = (e;,a1,02,...,8,) | Vj, a; € R}
S — set of shuffle automata, {So, S1,-..,Sm},

T - transition sets, {t; |t; CTUS, Vi,j: ¢ # t;}

C - set of constraining functions, {¢; — {0,1}},

A — “Active” shuffle automata A C 5*.

The set of shuffle automata, S, the transition sets, T, and the active set, A, are the same as the
corresponding BSS elements. The input alphabet ¥ is a set of n + 1-tuples where e; represents the

class name field of the tuple and ay, ..., a, are the attributes associated with the event.

The constraining functions, C, are defined over the same set of values as the attributes of
the event tuples. Without loss of generality, each transition set ¢; may have its own constraining,
function, ¢;, associated with it. Each constraining function ¢, €3, ..., ¢, in C for the CSS is defined
in terms of the attributes associated with the event set for the CSS. Recall that the event set is a
multiset of event instances bound to the event expression member events. In the CSS, the symbols
81,82, .-, 8m that are bound into the event set, each are formed from a tuple (e, a;, a,. ..,a,). For
the event set there is a corresponding m X n array that represents the arguments to the constraining
function ¢;. The j** row of the array contains the attributes for the j** symbol from event set
E = {s1,52,...,5m}. The maximum number of columns is determined by the event symbol with

the largest number of attributes. It is useful to visualize the event set E the following way

51 = (el’al:---sam)
=l %= (e2,a1,...,an,)

sm = (emyal)"'7aﬂm)

The constraining function for a transition set ¢; is defined

aiqp a12 ... Qi

¢ a;,; - (0’ 1)

@m,1 Am2 .- Qman

19

where each q; ; is the jth attribute of event symbol s;. For those event set entries with fewer than
n attributes, fill their positions in the argument array with 0’s. The constraining function ¢; is the

conjunction of all constraints involving attributes of event symbols defined for ¢;.

The constraining functioin ¢; for a transtion set ¢; is formed from a conjunction of all the
constraint expressions associated with the symbols that are members of ¢;. For example, if a set of

primitive events have the following templates

(create, node, lime, pid, creator)

(dispaich, node, time, pid)

(destroy, node, time, pid, destroyer)

(getbuf, node, time, pid)

(10, node, time, pid, length, function, device)

an event defined
fmove = create o (getbuf A dispatch A IO)Fo destroy

with constraints

create.node == destroy.node,
I0.pid == create.pid

would define the transition sets
ty={create},
ty={getbuf, dispatch, 10},
ta={destroy}

with a corresponding set of constraining functions

node; time, pid; creator, 0 0
node; time, pid; length, 0 0
¢; | nodeg times pids 0 0 0 — {0,1}
nodey, times pidy lengthy functions device,
nodes times pids destroyery 0 0

c1+—node, = node; A pid, = pid,,
ca+—pid, = pidy,
cg—node; = nodes.
The constraining function associated with a transition set is useful because it can effectively elimi-

nate event instances from consideration as event set constituents. This constitutes fine filtering for

a behavior model.

20

Each shuffle automaton S; of the CSS is similar to those of a BSS with the exception that the
transition function m involves the constraining functions as well as the transition sets. Each S;ieS
for a CSS is a 5-tuple

Si = (an ms;, 4os;, FS.', TmapS.')

where

@s; — set of states
mg; — transition function, @s; X (T,C) — Qs
gos; — starting state
Fg, - set of final states
Tmaps; — input register map

Operation of the CSS is identical to a BSS with added rules to evaluate constraints associated

with a transition set. Refer to the operation defined for the BSS for a complete description but
substitute the following step 3,

3. When the input register of a shuffle automaton in the active set contains one of the outgoing
transition sets for the current state of the shuffle automaton, and the transition function for
the transition set evaluates to 1, the finite state control for the shuffle automata performs a
transition,

if 3i,5: m(qsi,tj) # Land t; C RS;; and ¢; =1
then
gsi — m(gsi,tj),
Rsi — Tmap(Rs;)
forall j,1: m(qsi,t_,-) # 1 and 5 € t;
A~ AU {Slmw(i'Q)},
qs,““""'“) = qos;»
Rsrcw(i-q) ha {}
else goto step 4

6. Summary and status

This paper has developed the shuffie automata formalism which is useful for performing pattern
recognition in pursuit of behavior behavior modelling for debugging purposes. The shuffle automata
model is intended to provide a guideline for recognizing behaviors in complex systems rather than
a completely rigorous formal system. A prototype debugging toolset has been constructed to

experiment with the EBBA paradigm in a real system consisting of networked uni- and parallel

21

processors. In this toolset, the shuffle automata model forms the core of a distributed model

recognizer.

Acknowledgements

The author would Like to thank Prof. Jack Wileden of UMASS for his early discussions and
criticisms of the shuffle automata model. They were most useful for removing many rough edges

and focusing the intent of the model.

22

)

REFERENCES

[Aho77] A.V. Aho and J.D. Ullman, Principles of Compiler Design, Addison-Wesley, Reading,
Massachusetts, 1977.

[Bates78] M. Bates, “The Theory and Practice of Augmented Transition Network Grammars,” in
Natural Language Communication with Computers, ed. L. Bolc, Lecture notes in Computer
Science #63, Springer Verlag, 1978.

[Bates83] P. Bates and Jack C. Wileden, “High-Level Debugging of Distributed Systems: The
Behavioral Abstraction Approach” Journal of Sofitware and Systems, Vol. 3, #4, 1983.

[Bates86) P. Bates, Debugging Porgrams in a Distributed System Environment, Ph.D. Dissertation,
University of Massachusetts/Amherst, 1986.

[Fu82] K.S. Fu, Syntactic Patiern Recognition and Applications, Prentice-Hall, Inc., 1982.

[Hopcroft69] J.E. Hoperoft, J.D. Ullman, Formal Languages and Their Relation to Automata,
Addison-Wesley, 1969.

[Shaw79] A. Shaw, Software Specification Languages Based on Regular Expressions. Department
of Computer Science Report FR-35, University of Washington, 1979.

[Woods70] W.A. Woods, “Transition Network Grammars for Natural Language Analysis,” Com-
munications of the ACM, Vol. 12, #10, pp. 591-606, Oct. 1970.

23

