Distributed Debugging Tools
for
Heterogeneous Distributed Systems

Peter Bates

COINS Technical Report 87-28
March 1987

Laboratory for Distributed Computing
Computer and Information Science Department
University of Massachusetts
Ambherst, Massachusetts 01003

This research supported in part by the National Science Foundation under grants MCS-8306327, DCR-8318776,

and DCR-8500332. And by the Defense Advanced Research Projects Agency, monitored by the Office of Naval
Research under contract NR049-041.

Contents

1.

20

30

4.

5.

Introduction
Distributed System Debugging and EBBA

Remote Debugging of Distributed Systems

3.1 Primitive Event Collection & Posting in the Toolset
3.2 Simple Remote Debugging)
3.3 Filtered Remote Debugging and Preset Actions
3.4 Task Distribution Through Simple Cooperative Debugging.

L T T T

Distributed Debugging with Distributed Event Recognition
4.1 Centrallydirected

Summary

10
11
13

13
14
17

18

Distributed Debugging Tools
for
Heterogeneous Distributed Systems

ABSTRACT

The behavior of Distributed Systems can be investigated most effectively by distributing the
mechanisms responsible for observing and controlling system behavior. Distribution of monitoring
and debugging tools leads to a style of investigation that is high-level and potentially goal-oriented.
These features lead to tools that are more easily managed by observers, return more accurate probe
information, and are better able to continue to provide information during failures of individual
components.

A distributed implementation of an Event{ Based Behavioral Abstraction toolset is developed
here. The toolset itself is a collection of components that form a distributed system for debugging
distributed systems. The components that comprise the toolset can be combined in varying ways
to provide levels of debugging service appropriate for the resources available at individual nodes.

A L \HY

1. Introduction 1

1. Imntroduction

This paper describes a collection of tools that implement a high-level debugger for distributed
systems. The tools are capable of operating effectively in a heterogeneous environment which con-
tains processors of varying design and power!. Debugging is viewed as a process in which debugging
tool users synthesize selected artifacts of program execution into models that reflect the actual be-
havior of a system under investigation. Models of actual system behavior are compared with models
of expected behavior held by system users and designers to identify significant differences. This
model building and comparison process serves to illuminate the errors in the system and suggest

corrections or direct further investigation.

Debugging tools promote modelling by providing support for monitoring a system under study
and ezperimenting with its future behavior. Monitoring is accomplished by inserting output-
producing probes into the software to make the behavior of the system constituents visible and
provide alternatives to standard system outputs. Experiments are performed through closely con-
trolled execution of system constituents by the debugging tools at the direction of a user. Most
commonly, a software component will be brought to an important point in its execution and then
have some elements of its environment changed before proceeding. To provide their basic services
extant debugging tools rely on two important features of sequential programs: their time invari-
ant execution; and the availability of controllable, accurate total system state. In order to use
traditional tools to debug a system, users must guess what the incorrect behaviors are, determine
which pieces of state information will best illustrate these incorrect behaviors, then devise a plan

for obtaining this information.

The tools described here form an implementation of Event Based Behavioral Abstraction
(EBBA) [BW83] [Bat86], a paradigm for high-level debugging of distributed systems. The main
operational features of the paradigm directly support construction of user models of system be-
havior and comparison of these models to actual system behavior. The behavioral differences that

characterize errors are used to direct more focused investigation or to help identify corrections.

'The local environment consistes largely of DEC MicroVax, TI Explorer Lisp machines, and several Sequent
multiprocessors.

2. Distributed System Debugging and EBBA 2

Behaviors are expressed in terms of events that represent significant interactions of system com-
ponents. Primitive events represent the lowest observable level of system behavior or characterize
some particular aspect of a system’s activity (e.g. 1/O subsystem or process control). High-level
events represent user behavior models that attempt to explain some layered system component.

High-level models are expressed in terms of primitive or other high-level events.

Debugging distributed programs is a more complicated affair than that of sequential systems.
Timely access to distributed state, delivery of the selected state elements, experiments involving
component synchronization, and uncertainties about temporal relations among distributed compo-
nents are among the difficulties to be overcome. Distributed debugging can mean that there is a
centralized tool for debugging distributed programs, or that a tool may be located at one node and
be used to debug a program at another node, or that a substantial portion of the debugging tool
itself may be distributed along with the distributed program. Most extant interactive debugging

tools for distributed systems are of the first two types.

The next section discusses some issues for distributed debugging tools while relating them to
an overview of the EBBA approach and the debugging toolset. Subsequent sections describe the
components of the distributed toolset and the ways they are combined to balance performance

against information requirements.

2. Distributed System Debugging and EBBA

The model of programming assumed here is one in which the procedural and data components
of the computation are physically dispersed in a computer network consisting of heterogeneous
computational nodes. The collection of components that form a computation must cooperate with
one another to produce an overall computational effect. Communication among components is via
message passing as well as transfer of control. The components can operate asynchronously with
respect to one another, and may be created, destroyed, and moved in response to local conditions or
non-local directives. The communication medium is simply a transport mechanism for interprocess

communication and is not assumed to be totally reliable.

Issues that are important for understanding distributed system behavior and for distributing

2. Distributed System Debugging and EBBA 3

the understanding of that behavior include:

e the granularity of information reported by probes and used by cooperating agents to under-
stand behavior. This will affect the amount of communication resources required to move
information as well as the level of detail contained in each report,

o the flezibility of the communication and control mechanisms in order to provide graceful
upgrading of distributed functionality and provide graceful degradation of distributed mon-
itoring components in the face of component failures. Users should be able to concentrate
more “power” on areas that require intensive scrutiny,

e an ability to tailor the investigation tools to the needs of heterogeneous systems, in a sys-
tematic way. Modern distributed computation systems consist of collections of systems with
different hardware and software architectures that attempt to provide specialized, efficient
functions; behavior models derived from such systems lack consistent structure thus making
understanding and comparison difficult.

Observing these issues can lead to engineering appropriate solutions to distributed monitoring
systems that are system and application level independent, provide powerful analysis tools, and

reduce overhead required for monitoring real-time systems.

An important result of extending EBBA as a distributed program is an ability to provide vari-
ous levels of debugging service tailored to the capabilities and constraints of specific nodes in the
distributed system. An ability to operate effectively with varying levels of abstraction granularity
permits an EBBA distributed debugging tool to balance node performance, administrative and log-
ical system partitioning, communication performance requirements, and logical program residency

to achieve a level of tool/system interaction necessary to investigate and explain errorful behavior.

Intervention and experimentation strategies likewise have various levels of service. EBBA pro-
vides no guidelines for which individual system components are to be manipulated by experimenta-
tion activities because such activities and acceptable responses are extremely system and situation
specific. However, increased distribution and cooperation of the event monitor components provides

a means to improve the accuracy and usefulness of interventions that are to be performed.

While the work reporl:;ved here is undertaken largely in support of debugging distributed systems,
its underlying mechanisms for collecting and interpreting behavioral information, and applying con-
trol to such a system are applicable to any system that requires this style of component interaction.
[McD77] [Sno84] [Sno82| [MMS85]

2. Distributed System Debugging and EBBA 4

The basic EBBA model building and abstraction functions are provided by the toolset dia-
grammed in figure 1. The tool user interacts with the Model Builder component to construct
behavior models of expected system behavior. The Librarian is charged with maintaining user-
defined models and distributing these models to cooperating components of the debugging system,
such as an event recognizer. Initially the description of a set of primitive events, those events that
define the basic observable functionality of a system or a particular viewpoint on a system’s activ-
ity, are supplied to form the basis of an event library. As the computation progresses and the user
investigates behaviors, new or refined versions of existing high-level behavioral models are added

to the library.

Observation of system activity is performed using the event recognizer to match the user mod-
els to events arriving on the event stream. The event recognizer contains a sophisticated pattern
matching component that is capable of dealing with a mixed stream of high and low-level events,
helping to resolve time ambiguities, and filter event “noise” as it fits events to user-defined be-
havior models. The primary output of the event recognizer is event instance records representing
behavioral models successfully matched by the pattern matching component. Also output from the
recognizer is a stream of primitive event instance records that mark the progress of the event rec-
ognizer as it fits user models to event stream instances. These event instances are characteristic of
the recognizer execution and open the possiblity of monitoring the activity of the event recognizer

itself.

These basic functional components together with a library of routines for event formatting and
communication, and other routines that implement basic intervention capabilities are the basis for
a distributed EBBA toolset. The components and other available tools can be combined in ways
that permit exploitation of the properties of the system under investigation and observe constraints

imposed on the tools by the system itself.

An important component of the toolset is the Lisp-like extension language, elll, that serves
to bind together all toolset components. The elll is a communication protocol and interpreted
language that permits toolset components to be structured as a message-based object-oriented
system and provides a mechanism for users to extend the basic functionality provided by individual

components. Primitive and high-level event instance records are formatted and exchanged as elll

2. Distributed System Debugging and EBBA

Library
\ primitive

/ events
(€2)

@ @ @ behavi::'e,r;zodels

Model
Builder

Librarian

. Pending Uf,ef
Recognizer Event Behavior
List Monitor

|
__

L—{ Event Queue

—
—
N

X=O0&~02

Queuing

I

Figure 1: Basic EBBA toolset

2. Distributed System Debugging and EBBA 6

messages.

Event exchange is the medium responsible for all system understanding in EBBA. An event
instance record is an encoding of a tuple consisting of an event class name and a list of attribute
values that characterize the specific instance of the event. Two attributes, time and location, are
characteristic of all events. Implicitly the last two attributes of any event tuple are the time the

event instance was created and where it originates. All events take the general form
(event-class ay aj... time location).

The attributes aj, as, ... correspond to attributes described in event attribute binding clauses of

the modelling language.

Toolset components exchange messages to describe their status and to request services of other
components. These messages are coded as expressions using the syntax of the elll extension lan-
guage. All message exchange, both as event instance and for component control, is uniform but not
indistinguishable. A message received at a node is executed to return a result or to cause side-effects
that alter the local environment. Since the execution context for an expression is determined by

the recipient, the same message given to different parties can have different effects.

All toolset component inputs and outputs to have the elll expression form?. Users can enter
elll expressions to directly control the activity of a component if the component allows direct entry
of messages from type-in windows. Likewise, user interfaces, based on mouse inputs and graphical

display output, format messages as elll expressions to be executed by the component they represent.

As well as being used for message-based communication between toolset components, programs
may be written using the elll in order to extend the functionality of an individual toolset component.
elll contains functions that allow function definition and global variable declarations. Most common
arithmetic, relational, bitstring, and character manipulation operations are supported as wired-in
functions. Others implement common programming language constructs such as iteration and
conditional execution. Each component adds functions that permit access to externally important

structures.

2With the exception of user-oriented interfaces.

3. Remote Debugging of Distributed Systems 7

3. Remote Debugging of Distributed Systems

Remote debugging is implemented by placing a user and the set of debugging tools employed
by the user at a single node of the distributed system. Each remote node that is participating in
debugging tasks necessarily contains an agent to aid the central debugging tool. Each agent has
tacit knowledge of its local environment and will respond to requests made by the central site.
The node that contains the debugging tools may or may not be a participant in the distributed
computation under investigation. The central node with which the user directly interacts provides
a way to direct attention to a specific node among the various participants in the session. As the
computation progresses, the tool user interacts with the programs in the computation through the

central toolset and its remote agents.

Remote debugging facilities are easy to provide. Indeed, debugging tools that implement some
form of remote debugging are the predominant sort currently provided for distributed programs

[CW82] [Sch81]. The primary drawbacks to the use of remote debugging are:

* latency associated with reading and interpreting information and effecting intervention activ-
ities often renders the information out of date and the intervention lacking the desired effect,
and

e because of the heterogeneous nature of the processing elements in a distributed system the
computation details change from node to node of the system. In traditional debugging tools
this creates difficulties for obtaining a coherent view of the computation.

Remote debugging within the EBBA framework is simple to provide and provides a level of service
that is least disruptive to activity at a remote node. Connecting a component to the central
debugging tools is accomplished by attaching the component to a runtime library that can locate
the tools, format event instance records, and exchange events with the central tool (ﬁgure 2). Using
events as a medium of tool information exchange provides a uniform system view that isolates both
users and distributed tool components from the vagaries of heterogeneous systems. By selecting
an appropriate level of service for a node, latency can be managed through 'tradeoﬂ's that move the

use of information closer to the place where it originates.

3. Remote Debugging of Distributed Systems

Remote Nodes

Component UWbEBBA
Component
wa
Component UWbEBBA

N

Central Node

Model
Builder

o

Event
Queuing

Recognizer

Figure 2: Remote Debugging Components of EBBA

3. Remote Debugging of Distributed Systems 9

3.1 Primitive Event Collection & Posting in the Toolset

In order to implement the EBBA paradigm primitive and abstracted high-level events must be
collected from the remote sites and distributed to suitable cooperating nodes in the system. Given
the nature of computer systems it is generally not possible for an observer to sit passively to the side
and note when events occur. Primitive event generation is an active process which consumes time
in a system that may have genuine time and other resource constraints. Since EBBA is intended to
operate interactively, the timeliness of event reporting is important. Behavior investigations that
answer user queries result in new queries for further information. For the new information to be
used effectively requires that it be current. Primitive event generation must be accomplished with

resource usage commensurate with the granularity of the system being observed.

The libEBBA component (figure 2) of the toolset provides the lowest level of interaction of

debugger and system constituents. libEBBA contains three kinds of routines

e A connection establishment routine that takes an event library, local identification, and cen-
tral tool location as arguments and attempts to find a central node that will service the
component. If no location is specified, process environment variables are interrogated for a
location. Failing that, the server database is queried to locate a default central node. Default
values are likewise located for other arguments.

e Event formatting and reporting routines provide a number of styles for creating primitive
events to be sent to an abstraction node. The current implementation encodes all event
tuples as readable text strings. This promotes system and data format independence at a
slight cost to encode and decode each event instance record. Calls to an event reporting
routine must be inserted at appropriate places in system components.

o Intervention control routines provide the central tool with an ability to gain control of the
attached component in as timely a fashion as possible.

The need to explicitly attach libEBBA to a system constituent raises questions regarding the
ease of use of the toolset. Most debugging tools must he explicitly added to a software component
as it is constructed. Symbol tables, initialization routines, debugging command interpreters, etc.
are routinely included by program building programs such as compilers and linkage editors. This

aspect is no different for the EBBA toolset.

Of primary importance is capturing the characteristic primitive events of the system. The

3. Remote Debugging of Distributed Systems ‘ 10

‘No. of attributes time to dispatch

fork
vfork
execve
ezit
wait
wazits
kill
killpg

W W NN NN

Table 1: Process control event creation performance

rule of thumb is that each call or operation on implementation level routines and structures is a
candidate for a primitive event. For example, system programmers would require a set of primitive
events resulting from invocation of basic system services, e.g. create-process or open-file. Primitive
events are a level of system granularity. A high-level artificial intelligence program might define a
level of primitive events related to access to a blackboard structure [Mod79], [LC83]. The event

based view of a system attempts to explain what a system is doing, rather than how it is doing it.

Just how much disruption of normal system operation is caused by event generation is an
important consideration. Primitive events can be quickly generated and dispatched to the central
toolset. In a UNIX system with event generation included in the process control subsystem the
performance reported in table 1 was obtained. How much of overall process execution time is
consumed by event generation of course depends on how long a proces runs and how frequently it
reaches an event generation point. The times reported in table 1 can be taken as representative of
a fixed amount of time required for event generation. (time dominated by any one factor? linear

in # attributes? is time and location stamping expensive?)

3.2 Simple Remote Debugging

The minimal arrangement of remote agents and central event monitor provides stmple remote

debugging. The toolset remote agents gather and send all locally observed event traffic, unfiltered,

3. Remote Debugging of Distributed Systems 11

to the central site. The central site consists of a complete toolset (figure 1) which is responsible
for recognition and abstraction of higher level behaviors based on the primitive events received
from the remote agents. When the central event monitor detects a higher level event of interest to
the debugging tool user, it informs the user (or other requestor) and optionally. issues requests to

relevant remote agents to intervene in the activity of the participating computing elements.

This is the classic form of remote debugging. This blind form of event reporting requires
communication costs to be directly proportional to the volume of local primitive events. The
latency for intervention is the time required for the message exchange plus whatever is necessary
for the central abstraction node to perform its task. Simple remote debugging is useful because it
is quite easy to provide and, if monitoring is central to uncovering errorful behavior, intervention

latency is less an issue.

3.3 Filtered Remote Debugging and Preset Actions

An improvement in the communication performance results if the remote agent is instructed
to report only certain primitive events. This comes at a slight cost. The remote agent must be
altered to hold an attention list containing event class names and supplied with appropriate table
manipulation routines to maintain this list (figure 3). Each primitive event generated at the remote
agent’s node is checked against the table and only those currently requested are sent out. This
filtered remote debugging reduces the communication bandwidth requirements by removing event
instances that would be filtered as unnecessary by the central tool. In the toolset implementa-
tion, local filtering incurs little additional overhead. Table checking is a simple binary search and

changing the filtering status of an event is effected by a single message from the central tool.

With the addition of inspection to the remote agent’s capabilities a new level of intervention
service is provided. In simple remote debugging the physical separation of the originator and effector
of the intervention request can introduce delays which render the response too late for the desired
effect. In order to improve on the latency, requests for intervention at a remote node are made
in advance of the time they are to be carried out. The attention list is changed to accommodate

(event-class, preset-action) pairs. When a local event instance is reported that matches the event-

3. Remote Debugging of Distributed Systems 12

Component LbEBBA

Attention
List

Ty Sy s (D

_

Figure 3: Remote Agent with Filtering or Preset Actions

class part of one of the table pairs, the associated preset-action is executed. The event observed at
the remote node that results in the intervention action is necessarily a primitive event since these

are the only events available to the node.

The preset actions technique is useful because all high-level behavior models ultimately are
composed from primitive events. Thus a user requiring intervention activity based on recognition
of a high-level model implicitly specifies the action in terms primitive events. The difference, of
course, is that a primitive event incorporated as a high-level model constituent is a product of
filtering and constraint satisfaction. With preset actions the latency to intervention has improved,
but since the intervention occurs in response to a locally observed primitive event which has not
undergone high-level filtering and constraint satisfaction, many unnecessary (and, depending on

their nature, error causing®) interventions might occur.

*Repeated, unnecessary interventions might disrupt timing relations more than is desired.

4. Distributed Debugging with Distributed Event Recognition 13

3.4 Task Distribution Through Simple Cooperative Debugging

A simple next step to further distribute the debugging task is to give each remote agent the
ability to examine the network event stream. This extension allows remote nodes to initiate local
debugging activity based on events occurring at other remote nodes. This limited listening capa-
bility implements simple cooperative debugging in which many nodes may be active participants in
debugging activity. The remote agent now must listen to the communications medium for event
traffic and extract the event-class fields of incoming event tuples to be used as keys to search the
attention list. When a match occurs, any preset actions associated with the matched attention list
entry are carried out. Now it is possible to effectively cause network-wide patterns of debugging
activity to occur. Instead of being able to act only in response to locally observed events, groups
of nodes may react to conditions that affect each other. The simple cooperative capability is useful
where an intervention is required to affect program components at multiple nodes of a system. An
example is an experiment where a tool user would like to synchronize distributed components upon

the occurrence of an event at another node.

This exhausts the possiblities of remote debugging. Remote debugging is simple and does not
consume a large amount of resources at remote nodes. However, the communication medium is
heavily used for low-level event traffic. This potentially poses a problem where contention for
the communication medium is affected by this traffic. Problemis resulting from the latency to
intervention are improved by adding simple event detection capabilities to each remote agent. In
order to greatly reduce the communication requirements and provide more meaningful remote
node intervention, it is necessary to perform local model abstraction and communicate higher level

information among participants. The next section explores this approach.

4. Distributed Debugging with Distributed Event Recognition

Distributed debugging from the EBBA perspective is more than remote debugging of distributed
programs. EBBA-based distributed debugging emphasizes model abstraction at remote nodes and
exchange of resulting high-level events by participating nodes. While simple cooperative debugging,

described in the previous section, forms a distributed program for debugging distributed programs

4. Distributed Debugging with Distributed Event Recognition 14

which is quite powerful, it can still impose unacceptable levels of event message traffic and result
in unwanted interventions in system activity. Benefits accrued from a more fully distributed event

recognizer include:

e lowered communication bandwidth requirements due to exchange of only necessary or impor-
tant events,

e improved intervention accuracy when intervention is based on local abstractions,
e load distribution of the processing required to effect debugging, and

e an ability to handle more general distributed system architectures that include gateways and
subnets that are not fully connected.

Distributed EBBA high-level debugging nodes are capable of much autonomous activity and, once
set in motion, may carry out a large portion of the monitoring and intervention activity necessary
to understand a system error without requiring interaction by a tool user. Indeed, through the
capabilities of the extension language (elll) quite complicated activities can be carried out by remote

nodes.

4.1 Centrally directed

The components of the remote agents at EBBA nodes that perform event abstraction are
indicated in figure 4. Each component performs the same task as its central toolset counterpart.
Missing are the components dedicated to viewpoint creation and maintenance: the Model Builder
and event Librarian. The Model Builder only responds to user created behavior models so it only
needs to reside at a node where a tool user might need access. This is'fully in keeping with the

EBBA caveat that debugging requires some user to direct the search for errors.

However, the services of the event Librarian (from figure 1) are required by all nodes that
perform behavior abstraction. Each node that is involved in high-level event recognition should
have the same view of the system. Therefore, the librarian should be the same one accessed by all
nodes cooperating on recognition tasks. The librarian, which may be located at any single node
or be a distributed component itself, acquires an additional connection to the network so that all

high-level nodes may access its contents. The Librarian in effect becomes an event model server.

4. Distributed Debugging with Distributed Event Recognition 15

Behavior

Monitor Pending

Events

Event
Recognizer

i Event queue

_/

Figure 4: Abstraction components of distributed toolset

In the centrally directed use of the distributed toolset, coordination of debugging activity at
a remote node is fully under control of the user acting through the central toolset. The tool user
is responsible for partitioning the modelling tasks that are designed to uncover errorful system
behavior and then directing the appropriate remote nodes to work on their portion of the overall
modelling activity. The remote nodes that have been assigned activities make arrangements with
each other to obtain high-level events and exchange locally recognized event tuples required for
effective cooperation. The cooperating nodes contact the librarian to obtain the definitions for the

events they have been assigned to observe.

The centrally directed, distributed use of the EBBA toolset is the limit of its capability in the
prototype implementation. Further enhancements that more fully automate searches for erroneous

behaviors are best covered by artificial intelligence techniques beyond the scope of this research.

4. Distributed Debugging with Distributed Event Recognition

Component LOEBBA . E

+

Component

11 3
]

Attention
List

(A
|
|
|
|
|
!

Model

Builder Librarian

Event
Queuing

Recognizer

Figure 5: Heterogeneous Distributed Debugging Components

16

4. Distributed Debugging with Distributed Event Recognition 17

4.2 Cooperative Debugging — future work

The central theme to extending distributed debugging with artificial intelligence techniques is
to apply more of the information that is available to the modelling process. The goal is to improve
the accuracy and relevance of that process. We are not looking for an automatic debugger which,
given an errorful program, indicates where its erroneous behaviors originate and what needs to be

done to correct them. Instead, the assistance envisioned would be of several kinds:

¢ Explanatory aids, which could give extensive analysis of the difference between user behavior
models and actual system activity, and

¢ Speculation aids, which would take notice of user goals and information accessing trends to
try out models derived from this information. The objective here is to provide a suggestive
role for the tools by filling in areas of a model that the user may have overlooked; or the tools
might work on variations on the models the user has specified.

The partitioned design of the toolset components allows easy integration of these kinds of aids into

the behavior monitor component.

Various techniques suggest themselves to assist in providing these tools. One purpose of event
libraries is to encourage reuse of abstractions. Sophisticated user aids might extend reuse by
structuring strategies and plans for debugging complex problems around libraries and users’ prior
experience with similar situations. More detailed task decomposition, driven by the goal directed
nature of plans for debugging, could result in partial result exchange among cooperating distributed

debugging nodes.

Supplying this more cooperative debugging environment will require much more intensive use
of system computational resources. The need for and use of these higher order tools will naturally
need to be balanced against their impact on the system being debugged and the subtleness or
complexity of the errors undergoing investigation. It is seldom advisable to crack an egg with a .

pile driver.

5. Summary 18

5. Summary

This paper contains a description of the EBBA toolset as a distributed program. It was argued
that by working tradeoffs between remote information processing and communication, an EBBA-
based distributed debugging toolset easily and naturally provides a range of solutions to monitoring
and intervention in a distributed system. Complex, heterogeneous, or arbitrarily structured net-
work architectures are accomodated easily because of the uniform view of system activity provided
by events and the ability of the distributed EBBA tools to operate on high-level abstractions of
behavior. The increased distribution of abstraction capabilities helps EBBA to overcome inaccu-
racies in debugging activity that result from physical distribution of the computation undergoing

investigation.

EBBA-based debugging treats debugging tool distribution as a metaphor for system organiza-
tion. Tool distribution evolves naturally from a basic implementation of EBBA rather than as an
afterthought riddled with special cases. Extension of EBBA as a distributed program can enhance
tool transparency, reduce latency and uncertainty for monitoring and intervention, and take better

advantage of computational power available in a network computer system.

Acknowledgements

REFERENCES 19

[Bat86)
[BW83]

[cws2]

[LC83)

[McD77)

[MMS85|

[Mod79)

[Sch81]
[Sno82)

[Sno84]

REFERENCES

Peter C. Bates. Debugging Programs in a Distributed System Environment. PhD thesis,
Univ. of Mass/Amherst, January 1986.

Peter C. Bates and Jack C. Wileden. High Level Debugging of Distributed Systems: The
Behavioral Abstraction Approach. Journal of Systems and Software, 3(4), 1983.

R. Curtis and L. Wittie. Bugnet: A Debugging System for Parallel Programming
Environments. In Third International Conference on Distributed Computing Systems,
pages 394-399, October 1982.

V.R. Lesser and D.D. Corkill. The Distributed Vehicle Monitoring Testbed: A Tool
for Investigating Distributed Problem Solving Networks. Al Magazine, 4(3):15-33, Fall
1983.

G. McDaniel. Metric: A Kernel Instrumentation System for Distributed Environments.
In Proceedings of Sizth ACM Symposium on Operating Systems Principles, pages 93-99,
November 1977.

Barton P. Miller, C. Macrander, and S. Sechrest. A Distributed Programs Monitor for
Berkeley Unix. In 5th Internal Conference on Distributed Computing Systems, IEEE
Computer Society, May 1985. See also: Software-Practice & Experience, Vol 16 #2, Feb
1986.

M.L. Model. Monitoring System Behavior in ¢ Complez Computational Environment.
Technical Report CSL-79-1, XEROX Palo Alto Research Center, Palo Alto Ca, January
1979. Stanford University Computer Science Department/CS-79-701.

Robert D. Schiffenbauer. Interactive Debugging tn a Distributed Computational Environ-
ment. Technical Report MIT/LCS/TR-264, MIT, September 1981.

R. Snodgrass. Monitoring Distributed Systems: A Relational Approach. PhD thesis,
Carnegie-Mellon University, Computer Science Dept., December 1982.

R. Snodgrass. Monitoring in a Software Development Environment: A Relational Ap-
proach. In Sigsoft/Sigplan Symposium on Practical Software Development Environments,
Sigplan Notices, April 1984,

