Towards Determining Variable Overlap in
Recursive Rule Expansions

David A. Briggs

Technical Report 87-33

April 13, 1987

\J-

Towards Determining Variable Overlap in
Recursive Rule Expansions

David A. Briggs
April 13, 1987

Abstract

One approach to the evaluation of queries against relations defined
by a recursive rule is to derive the series of rules that represent the
resolution of multiple instances of the original rule, and apply each
of these derived rules to the base set of tuples that are in the rela-
tion “non-recursively”. We call these derived rules rule ezpansions.
A significant source of economy in the evaluation is the recognition
of repeating patterns of variable overlap in the literals of the rule ex-
pansions. In this paper we give conditions under which the variables
of a rule expansion will be equated in terms of paths of the a-graph
of loannidis. This characterization should prove useful in developing
strategies for query evaluation.

The research community has recently devoted much attention to the effi-
cient processing of queries against a relational data base that involve oper-
ations beyond those provided by the relational algebra. Although there has
been some variety in the additional operations proposed, a common feature
is the capability to pose queries that require taking the fixed point of an
expression, so-called “recursive” queries, and a common linguistic vehicle
for the expression of such queries are Horn clauses such as one finds in
Prolog. We assume in the reader some familiarity with logic programming
and suggest [Lloy84] for newcomers to the field. The goal is to find efficient
techniques for the evaluation of queries of this sort, and [Banc86] surveys
many of the methods that have been offered. A major focus of attention
has been the identification of methods that exploit any selection conditions

on the computed relation to avoid unnecessary computational effort, and
the work of Henschen and Naqvi as presented in [Hens84] suggests a sound
formal basis for obtaining significant economies. As detailed in [Brig87],
the correctness of the Henschen-Naqvi technique rests on the pattern of
variable overlap in successive expansions of the recursive rule. Repeated
patterns of variable overlap among the literals of successive rule expansions
suggest blocking the query into functional components and also serve in de-
termining how constants provided as selection conditions propagate in the
expansion. Recognizing the pattern of overlap is thus crucially important
for an intelligent processing strategy.

Ioannidis, in [loan86], attacks another aspect of processing recursive
queries, specifically, the detection that the number of rule expansions re-
quired to compute the recursive relation is bounded independently of the
contents of the underlying base relations. He employs a representation of
the recursive rule called the a-graph, and gives a graph characterization
for the boundedness property for a restricted class of rules. In this paper
we show how the a-graph representation can be used to identify patterns
of variable overlap in rule expansions for a very general class of rules. We
demonstrate that variable arguments in a rule expansion will be equated if
and only if a certain kind of path connecting the two variables is present in
the graph. It is hoped that this graph characterization will provide leverage
on the larger goal of generating an efficient iterative program for queries
against the recursive relation.

We deal with linear recursive rules, that is rules that contain a single
instance of the recursive predicate in the tail of the rule, but we allow re-
peated variables in either the recursive consequent or recursive antecedent.
The treatment presented here does not allow constants in either, but we
anticipate no difficulty in their incorporation. Although in general the tail
of the rule may contain many literals aside from the recursive antecedent,
we will for simplicity assume they have all been joined into a single non-
recursive base relation. In practice, this would often be a poor strategy,
and we make the assumption for notational convenience only. Indeed, one
of the hoped for benefits of this analysis is an identification of which of the
base relation literals of the antecendent should be joined, and when. Under

these assumptions, a general rule instance is given by the expression
P(X2,....,X0) <= P(X?,...,X2) AQ(X?,...,X2)

where P is the n-ary recursive relation defined by the rule and Q is the
join of the base literals. All variables occurring in the rule are of the form
X?, where le{1, ..., p} with p distinct variables in the rule. The subscripts
are chosen so that the first m are used by the base relation @, but the
subscripts of the arguments of the recursive predicate P as it appears in
the consequent and antecedent may be any value from 1 to p. The subscripts
are used to distinguish variables within the rule. The superscripts will be
used to distinguish variables in expansions of the rule in a manner to be
described shortly.

The rule describes a way to derive tuples in the recursive relation from
tuples “already” in it, or, alternatively, an inclusion relation that the recur-
sive relation must satisfy. Under the usual semantics, the recursive relation
is taken to be the minimal set, under inclusion, of all sets that satisfy the
rule’s inclusion relation. For this solution to be non-empty, there must be
some tuples explicitly placed in P without recourse to the rule, and we
will denote the collection of these tuples by Py. The solution for P will be
all the tuples that are either in P, or can be derived from tuples in P, by
.repeated applications of the rule. If all the base relations are finite and, as
we have implicitly assumed all along, the arguments to the literals are only
variables or constants, not function complexes, then the solution for P will
be finite.

One might compute P by repeatedly applying the rule to tuples derived
from the previous iteration, with P, supplying the tuples for the first iter-
ation. An equivalent alternative is to derive a series of rules by resolving
in additional instances of the original rule, and apply the rules so derived
to Po, and the analysis presented here bears on that approach.

We would like, therefore, a formal characterization of the rules that
would be generated by repeatedly resolving in an instance of the original
rule. To obtain such a characterization, we must describe the effect of res-
olution on the variables of the rules by defining the the substitutions that
would take place. At each stage we will resolve on the recursive antecedent
of the current rule and the recursive consequent of the original rule. Since

variables may be repeated in either, we may be forced to apply a substi-
tution to both the current rule and the instance of the original rule being
brought in. Before presenting the argument for the general case, we will
look at a specific example. Consider the rule

P(X, X9, X9, X3, X8, X§) < P(XD, X3, X3, X3, X3, XS)A
Q(X?, X3, X3, X2, X3, X3, X3)

Suppose we resolve two instances of this rule. We separate the variables of
the second instance, making all of the superscripts 1 instead of 0, yielding

P(X}, X}, X3, X3, X3, X}) = P(X], X}, X3, X3, X3, XA
Q(X}, X3, X3, X}, X3, X5, X3)

We will resolve on the recursive antecedent of the first instance and the
recursive consequent of the second, so we must unify the literals

P(X?, X3, X3, X3, X3, X3)
P(X}, X}, X3, X3, X}, X3)

We would prefer to leave the literals of the first rule instance as they are,
but the repeated occurrence of X forces us to equate X9 and X7 wherever
they occur. We could replace both of them with some variable that doesn’t
occur elsewhere in the rule, or replace one with the other, but they must
be equated. We will replace X{ with X3, obtaining

P(X3, X3, X3, X3, X3, X§) = P(X}, X3, X3, X3, X3, XE)A
Q(X?, X3, X3, X3, X3, X3, X3)

We can now define a substitution on the variables of the second rule instance
to complete the unification

X} — X?
X! - X2
Xt - X2
X~ X3
X} —» X3

Applying that substitution and completing the resolution, we arrive at the
rule
P(X3, X3, X3, X3, X3, X3) < P(X}, X3, X3, X7, X3, XJ)A
QI(XII: le’ X{”Xg’ Xg’ Xg, Xg)A
QO(X?’ X'gv Xga Xg: Xg’xg’ X’?)

where the Q’s have been subscripted to indicate the rule instance of their
origin.
If we resolve in an additional separated instance of the rule, we must
unify the literals
P(X}, X3, X3, X2, X3, X3)
P(XSZ’ Xz’ Xg’ Xg’ XGZ’ X?)

Again, we are forced to equate XY and X2 in the rule representing the res-
olution of two instances of the original rule. We will effect this by replacing
X2 with X?. Once that has been done, we can define a substitution to ap-
ply to the separated rule instance and complete the resolution, generating
a rule representing the resolution of three instances of the original rule

P(X3, X3, X3, X3, X3, X3) < P(X}, X3, X3, X1, X3, X})A
Q?(Xlzs ng Xll’ X:.‘H ler X?$ X?)A
Ql(xlla lev X?) X?v X?) Xgr Xg)’\
QO(X?$ X?r Xg: Xg’ Xg’ Xg’ X’?)

Note that the instances of the Q predicate from the previous rule were both
modified by the equivalencing substitution.

If we were to continue in this manner, at the rth stage we would define
two substitutions : o,, a substitution to apply to the rule generated thus far,
and 7,, a substitution to apply to the instance of the original rule being
resolved with the rule obtained so far. In the description that follows,
we incorporate into the 4 substitutions the separation of the original rulé
instance that we have accomplished by incrementing the subscripts, so that
each 4, will be a substitution applied to the variables of the original rule.
The substitution 4, will be used to bring in the r+1st instance of the original
rule. Clearly, 7o can be the identity substitution. Given 7,, define the
binary relation R,4; on {1,...,n}, the argument positions of the recursive
predicate, as

k Ryl <= ji =3V 7%(X]) = %(X],

5

Note thal R,y is reflexive and symmetric. We next define an equivalence
rclation on {1,...,n}, .4, as the transitive closure of R,4y. Using the
equivalence relation, define a map des,4; : {1,...,n} — {1,...,n} that
sends each member of an equivalence class to a single member of its class,
the “designate” for the class. Next, define the equivalencing substitution,
Or41 DY

'Yr(X?.,) — X?J“'“(k))
We are now in a position to define 7,44, the substitution to be applied to
the original rule to resolve it with the current rule.
Tr+1 (Xl?) = { - X?d"'ﬂ(')) if k= N

X else

Before exhibiting the formal representation of the rule expansions, we pro-
vide some explanation for the preceding welter of formalism. We view the
resolution of many instances of the base rule as an iterated resolution of rule
instances. Each time we bring in another instance of the rule, we will unify
the recursive antecedent of the clause obtained so far, P(vy,..., Vy,),with
the recursive consequent of the rule instance, P(X7,. .., X2)). Since we are
allowing the possibility of repeated variables in either the consequent or the
antecedent, we. may be forced to apply a substitution to both the clause
obtained so far and the rule instance. We effect the resolution by first
forcing any required equivalencing in the clause obtained so far with the o
substitutions, and use the 7 substitution on the rule instance. In arriving
at the correct specification of the o substitution, consider the literals being
unified. At the r + 1st iteration, we will be unifying ¥ (P(X{,..., X2)),
the antecedent of the last rule instance brought into the burgeoning rule,
and P(X},...,X}), so we need to determine any equivaleicing of vari-
ables in the clause obtained so far forced by this unification and define
0,41 accordingly. The equivalencing will only be of variables occuring in
the % (P(X?,...,X})) literal, and the =, relation is meant to identify
precisely those argument positions that will be forced equivalent. The some-
what obscure definition of ,4, is needed to correctly handle a situation
such as P(X, X,Y,Y,Z,Z) and P(T,U,U,V,V, W), where unification will
force all of X, Y, and Z to be equated. Once the equivalence classes have
been identified, any variable within the class may be chosen as the one that

6

will “survive” the impending & substitution, which must be applied not

only to the literal of the unification pair, but the entire clause obtained so

far. Applying a,,, to the literal we obtain
0r+l'7r(P(X?.$ ceey X?..)) = '7r(P(X9

Vdeo,g1(1) " "7 "du,.“(n)))

In determining the v, substitution to apply to the rule, we map variables
occurring in the head of the rule to their correspondent in the literal above.
This map is well-defined even with repeated variables in the consequent,
because of the equivalencing operation. Variables not occurring in the head
are given a superscript to distinguish them from any variables occurring in
the clause obtained so far.

We are now in a position to express RU LE;, the rule expansion obtained
by resolving ¢ + 1 instances of the original rule.

RULE; = (][] a,.)P(Xg,...,X}’n) &<
=1
'7.‘P(X?l, ceey X?n) A A(H 0’(:)"/(Q(X?, ceey Xg,)
=0 ¥=l41
Since substitutions do not in general commute, it must be understood that
the product of the oy’s are listed in decreasing order of subscripts.

We next define the a-graph of Ioannidis, originally given in [Ioan8e).
Given a rule

P(X2,...,X2) < P(X2,...,X2) AQ(XY, ..., X°)

we define a graph whose nodes are the distinct variables of the rule. We
have a directed edge in the graph from v to p if and only if there is some
ke{l,...,n} such that v = X? and p = X2, in words, if v is a variable
occurring in the recursive antecedent and g occurs in the recursive conse-
quent in the same argument position. We have an undirected edge between
two variables v and g if and only if both occur in the same non-recursive

literal of the tail of the rule. For example, the rule
P(X,X,Y,Z) « P(V,W,X,X)AQ(V,Y) A R(W, Z)
would yield the graph of Figure 1. For our purposes the directed edges are

7

Figure 1:

the only ones of interest, so we eliminate all the undirected edges from the
graph. Ioannidis terms the graph so restricted the dynamic a-graph.

We note that in a rule expansion, it is not the specific variable letters
that occur in literals that matter, but rather the identification of all and
only those argument positions that contain the same variable. This is just
another way of saying that a renaming of the variables of the clause does
not affect the meaning of the clause. We observe further that the variables
in the literals of RULE; are all of the form (l'If.___,_,,l ov)y(v), where v is a
variable occurring in the original rule, and l¢{0,...,¢}. It turns out that
two such expressions for arbitrary variables v and p of the original rule
will be equivalent if and only there is a certain kind of path linking the
two variables in the dynamic a-graph. The paths we need are aberrant in
that we permit traversing a directed edge in either the forward or reverse
direction, but we keep track of the number of forward or reverse traversals
we make in the path. One can think of such a path as mapping to a string
of F’s and R’s, depending upon the direction of the traversal of an edge in
the path. The result we claim is

The n-k-1 Theorem. For all n, k, and ! in N, and variables in the rule
v and p,

Ontk4l"* "’n+1'1n(V) = Ontktl" '0n+k+1’7n+k(ll)

AN
L,
1V

Figure 2:

if and only if there is a path in the dynamic a-graph from v to u such that

1. There are k more forward traversalsin the path than there are reverse
traversals.

2. If one keeps track of the number of forward and reverse traversals as
one progresses through the path, there are never more than n more
reverse traversals than forwards, and never more than k& + [more
forward traversals than reverses.

Pictorially, if we arrange the nodes encountered in the path by levels,
where each time we traverse an arc in the forward direction we drop a level,
and each time we traverse an arc in the reverse direction we go up a level,
the theorem states that the expressions of the equation are equal if and
only if there is a path whose meanderings from v are bounded above by n
levels, below by k + { levels, that ends at u k levels below the start level
(see Figure 2).

Proof(<=). Note that a directed edge from a node v to a node w im-
plies that for all neN, 7,41 (W) = p417a(v). Starting with the expression
Ontk4t " " Ont17a(V), we follow the path, peeling o’s out of the subscripts
of the 7’s as we move up levels, and trading them back in for a higher
subscript as we move down. The bounds guarantee that we never exhaust

our stock to trade as we go, and the overall difference in levels tells us that
when we complete the path, we will be at the node for g with a net loss of
koa’s.

The proof in the other directions is more involved, and we need to climb
up to it via a number of lemmas.

Lemma 1. For all k,neN, n > k, and for all variables v, the superscripts
of 7,(v) and Gp41 - - - Ox417k(v) are less than or equal to n.

Proof. An easy induction on n.

Lemma 2. Foralln >0, ! and I, 7.(X, +.(n) = X?m “(”)) implies
I b

Proof. Note that [,,, desn4(l), for any l. The condition gives desp41(l) Zn4
desn41(l'), by the definition of Ry4;. The result then follows from transi-
tivity of the equivalence relation 4.

Note that | =, ' then implies that desn41(l) = desg4+1(l'), and thus that
an+l'1n(Xg) = Oa1 71:(X.9,,)~

Lemma 3. This is the special case of the theorem with k,I = 0. For all
n, all variables X? and X?, if 7,(X?) = 7a(X?) then there exists a path
from X? to X? in the dynamic a-graph such that the number of forward
arcs traversed equals the number of reverse arcs, and at any point in the
path, the number of reverse arcs traversed is greater than or equal to the
number of forward arcs (See Figure 3). B

Proof. We induct on n. For n = 0, the variables must be the same, so
the null path exists within the bound. Hypothesize the lemma true for n,
and assume Yo41(X®) = Yn41(X?). Now, if neither variable occurs in the
recursive consequent, using the definition of 4,41, we must have r = s. The
variables are thus the same, and the null path again suffices. We cannot
have one variable occurring in the consequent and one not, for then the
superscripts won’t match (by lemma 1 and the definition of 7,41). The last

10

Figure 3:

case to consider is when both occur in the consequent. We would then have
r = j and 8 = ju for some ¢ and ¥, and by the definition of v,,,,

Yat1(X) (XY Sdeo +1(l)) = 1 (X?) = Yot Ju)

.ddl,‘.',. (")

By lemma 2, we have ¢ =, ¢'. If we can show a path from X2 to X° that
doesn’t drop more than one level, or rise more than n levels, we can paste
it together with the directed arcs from X3 to X3 and from X2, to X3, and
obtain the path we’re looking for (see Flgure 4). We havet ,,, ¢, so there
exists a sequence t = #o,¢,...,¢4 = ¢ such that for all pe{O, ce k=13,
tp Rnt1 tpyr, that is, either j,, = Jtopr OF Ta (X3) = 7.(X?) But this
implies that for all pe{0, ..., k—1}, either there is a path from X) toX?

that goes down one level and back up one level or, invoking the mductwe
hypothesis, that goes up no more than n levels and returns to the samc

level (see Figure 5). Combining these paths for each ¢, of the sequence, we
have the path we’re after.

Lemma 4. The special case of the theorem for k = 0 and ! = 1. For all n,
and all variables X? and X? if 044170 (X?) = 0nt170(X?) then there exists
a path in the dynamic a-graph from X? to X? such that the total number
of forward traversals in the path equals the number of reverse traversals,
and during the course of the path the count of reverse traversals less the

11

’ X0 X?

A

Figure 4:

Xe XS XS X
v'P+l "P,)\ ot
X?l’p = X?‘p-u 7"(X?'P) = X‘p'p+l)

Figure 5:

12

Figure 6:

count of forward traversals is bounded above by n and below by —1(see
Figure 6).

Proof. Recalling the definition of the ¢ and + substitutions, we have for
any variable X?

xoy = [W(XD) if 1 (X?) # m(XF,) for any ¢
renTa(Xr) = Tn X?du..u(t)) if m(X7) = 7"(Xa)
Considering the possibilities, we see that if the first alternative holds for
both sides of the assumed equality, we can invoke lemma 2. If the first
alternative holds for one, but not the other, we have a contradiction. If the
second alternative holds for both, we have
Ont1M(X7) = Tn (X?dun+l(l)) =M X?) = On417(X7)

Vdesp g1 (1)

for some ¢ and ¢, with ¢ &,,, ¢, by lemma 2. Using lemma 3, we can
connect X? to X{, and X? to X?,, and connect X}, to X?, as we did in the
proof of lemma 3 (see Figure 7).

Lemma 5. The special case of the theorem with { = 0. For all n and k,
if Ontk - Ont17(X7) = Ynsa(XD),then there is a path from X? to X? that

13

1] l.'l

Figure 7:

has k more forward traversals than reverse traversals, with the number of
forwards less the number of reverses never more than k and never less than
—n.

The proof is by induction on k. For k = 0, it reduces to lemma 3. Assuming
that the assertion is true for k, let

Opngk41°° ’an+l7n(X?) = Tntk+1 (Xf)
By definition,

Ontk+1" " " Ong1In (X:')) =
Ontk " Uu+1'7n(X9) if Opqs--- 0n+1"fu(X.9) #
Tus(X3) for any ¢
’7"+"(X'94n,.+&+| (t)) if Gntk " Ont1Tn (X?) =
7n+k(x?,)

(x?) { Xttt if 8 # ju for any '
Intk+1 = C if 8 = 4w
" TN e (Xe,) HE= 0

Any choice except the latter for both leads to a contradiction, so consider
that situation. By the inductive hypothesis, we have a path from X? to XJ

14

d AN
VY

Figure 8:
that drops k levels, and stays within the bounds. Since
7ﬂ+k (X?d“m}ld}l(')) = 7“+k(xl9‘“”+.+l (.l)) =

On4k+1 " n+k (Xg) = Ongk41Tn+k (Xto,.)

we can invoke lemma 4 to get a path from X to X}, and then drop down
the arc to X? (see Figure 8).

We can now turn to the only-if direction of the theorem.
The n-k-1 Theorem.(=>) For any n, k, and I,

Ontk4l"” '0u+1’7»(X?) = Okl 0u+k+1’7n+k(X?)

implies the existence of a path from X? to X? in the dynamic a-graph such
that

1. The number of forward traversals in the path is k¥ more than the
number of reverse traversals.

2. The difference of reverse traversals less forward traversals as one pro-
gresses through the path is bounded above by n and below by —k — 1.

15

Proof. We induct on I. For { =0, we use lemma 5. The statement of the
premiss for [+ 1 is

Ontkl41° " '0n+1"tn(X?) = Onghtigr - 0n+k+1’7u+le(x2)
Opening up the definitions,

Opntk+i+1° " Ont1Tn (X?) =

Onthtt* On1Ta(XD) i Ot~ Ont1Tn(X7) #
Tntkst(X3) for any ¢

7”+*+'(Xg¢.,+k+z+|(c)) if Onpist - Ont1W(X7) =
'7n-i—l=+l(x?¢)

Ontkti+l " ° 'Un+k+n'7n+k(xf)=
Onthtt* OnthttTotk(X7) if Onprss-- - Onsks1Tnsk (X7) #
Tn+i+(XS,) for any ¢!
'7n+k+l(X?d""+H'“ o) if Outktl Onths1Tntk (X7 =

'7n+k+t(X?,.)

If the first alternative holds for both, then we have the path by the inductive
hypothesis. If the first alternative holds for one and the second for the other,
we contradict the presumed equality. Finally, if the latter alternatives hold
for both, we use lemma 5 to get paths from X? and XJ to X}, and X7,
respectively. Lemma 4 then connects those two nodes in the necessary way
(see Figure 9).

The dynamic a-graph of our first example is given in Figure 10. Note
the path from X? to X7

X?’Xg’xgixgixg’xg’xg

There is a net loss of two levels from X} in this path, but it never rises
above the initial level of that variable, nor drops more than two levels below
it. By the theorem, with n =0, k = 2, and [= 0, we should have

020'1'70(X?) = ’72(X-?)

16

oL NN
VAWAY

af [Vn

Figure 9:

Figure 10:

17

Checking the first argument of Q, and the last argument of @2, we see that
the variables are indeed the same.

One can obtain a regular expression for the paths between nodes by
replacing each directed arc with two directed arcs, one forward and labelled
with an ‘F’ and one directed in the opposite way and labelled ‘R’. The
graph is now a net over the alphabet {F, R}, and there are algorithms for
determining the regular expression for all paths between two nodes. Of
course, we are not interested in the specific sequence of letters in the path
so much as the relative counts of the letters F and R, and we are currently
investigating how to derive this information from the regular expression.

It is our belief that the characterization detailed in this paper will be
useful in deriving a more cogent proof of a result claimed by Agrawal and
Jagadish, and apparently independently by Ness, that any linear recursion
can be expressed as a transitive closure ([Jaga86], [Naug87]) and in recog-
nizing the boundedness property. We are hopeful that it will also serve the
more general purpose of identifying repcated patterns of variable overlap.

References

[Agra86] Agrawal, R., and Jagadish, H., “On Bounded Linear Recursion”,
AT&T Bell Laboratories Technical Memorandum, 1986.

[Banc86] Bancilhon, F., and Ramakrishi:an, R., “An Amateur’s Introduc-
tion to Recursive Query Processing”, Proceedings of SIGMOD ’86
International Conference on Management of Data, pps. 16-52.

[Brig87] Briggs, D., “A Reconsideration of the Termination Condition of
the Henschen-Naqvi Technique”, COINS TR 87-11, University of
Massachusetts, 1987.

[Hens84] Henschen, L., and Naqvi, S., “On Compiling Queries on Recursive
First-Order Data Bases”, JACM, Vol. 31, January 1984, pps. 47~
85.

[Ioan86] loannidis, Y., Processing Recursion sn Database Systems, Ph. D.
Thesis, University of California at Berkeley, 1986.

18

[Jaga86] Jagadish, H., and Agrawal, R., “A Study of Transitive Closure as
a Recursion Mechanism”, unpublished manuscript.

[Lloy84] Lloyd, J., Foundations of Logic Programming, Springer-Verlag,
1984.

[Naug87] Naughton, Jeffrey, personal communication.

19

