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Abstract

For a unit step edge, we calculate the gradient magnitude and direction reported by various simple
differential edge operators as a function of the edge’s actual orientation and offset with respect to
the pixel grid. To be consistent with previous work (of Abdon and Pratt) we have initially chosen
to analyse (among others) the Sobel, Prewitt, and Roberts Cross operators, using a digitization
model in which the pixels have uniform square receptive fields that tesselate the image plane. Our
quantitative results provide insights into the behavior of these commonly used operators, insights
that can guide their proper application in problems of image understanding and robot vision. We
also suggest novel techniques for improving the performance of these operators.
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1 Introduction

Despite the development of more sophisticated edge detectors [15,10,5,11,17], simple operators
such as the Sobel [7], Prewitt [21], and Roberts Cross [22] are well established and commonly
used, chiefly because of their computational simplicity, a consideration of particular importance in
applying computer vision to practical tasks such as robotics. Therefore it is important to study
the behavior of these operators, in order to discover their strengths and weaknesses, so as to make
best, appropriate use of them in applications.

We are particulary interested in the extraction of straight-edge features for visual guidance of
autonomous robot vehicles, and for recognition of polyhedral objects using techniques based on
that of Burns [4]. For this task, a detailed understanding of edge-operator performance is crucial.

Because of the importance of edge operators, there have been numerous comparative studies
evaluating the efficacy of various edge operators [8,9,6,2,3,14]. These studies generally are of two
types: analytical or empirical. In analytical studies, some formal model of an edge is used and the
behavior of the operator on such an edge is analysed mathematically in terms of the parameters
of the edge and the operator. In empirical studies, the edge operator is applied to images, either
natural or synthetic, and statistics of its performance gathered. These statistics may be on the
fidelity of the operator to known edge locations in the image (2], [8], or on some measure of
intrinsic edge coherence [14]. Of course, there is no sharp distinction between the analytical and
the empirical. An empirical study may use a precise mathematical edge model in generating
synthetic images; an analytical study may use numeric simulation in obtaining its results. Also,
authors may use combinations of these two approaches in a single study [2].

The study described here is basically an analytical one. It follows on most immediately from
some work of Abdou and Pratt. We use the same step-edge model, and include all “differential”
edge operators that they look at. However, in their study Abdou and Pratt present results for
all significant edge orientations only for one special offset with respect to the pixel grid, and for a
limited range of offsets for only two special orientations. Our study goes beyond theirs in that we
consider fully the joint effect of edge orientation and offset over the full range of significant offsets;
the study thus elucidates more fully the behavior of these operators over the entire variation in the
edge model. We also propose simple techniques for improving the performance of these operators.

2 The Edge and Digitization Model

The edge model we use is of an infinite straight step edge. Since all the operators we examine
are linear in the image intensity, we can without loss of generality take the edge to be a step
edge of unit contrast; zero intensity on one side, unit intensity on the other. Thus the edge is
characterized only by the (directed) straight line defining the boundary. The most convenient and
natural parameterization of this line is in terms of its orientation # and perpendicular offset p from
the origin, with 8 chosen so that it points from the dark side of the edge to the bright. See Figure 1.
We choose this model chiefly for consistency with Abdou and Pratt, but it is a reasonable model
for the local appearance of many edges encountered in practice.

Our digitization model is this: Imagine the image plane tessellated with a square grid. Without
loss of generality we can take the sides of these squares to be of unit length. A pixel is identified
with each of these squares, and takes this square area as its receptive field. That is, each pixel
integrates the light intensity over its associated square, with uniform weighting over the square.
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Figure 1: Parameterization of straight step edge passing through a pixel.

Digitization is more fully treated in {20}.

So, for a given pixel and edge, the intensity for that pixel can be computed as follows: First,
because of the symmetry of the pixel grid and of the operators examined, we need consider only
orientations in the range zero to 45°. Take the origin to be at the center of the pixel. Then for an
edge with orientation @ and offset p, the integrated intensity I(p,0) for the pixel is merely the area
of the intersection of the pixel with the bright side of the edge. It is given by:
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where 7 = pcscf - 1/2cotd. The point (1/2,n) is the intersection between the edge line and the
right border line of the pixel square. This is a general formulation of the edge digitization model
used by Abdou and Pratt for the three special cases they treated, as will be described below.

3 Edge Operators

All the operators considered here are differential operators (in the sense of Abdou and Pratt).
That is, they use convolutions to compute approximations to the X and Y components of the
image intensity gradient. Typically, edge magnitude and direction are obtained by taking the L2
(Euclidean) norm and direction of this gradient vector. That is

My = /12 + I?
tanf = I,/I,
where I, and I, are respectively the X and Y components of the intensity gradient, M; is the
magnitude (computed according to the L norm), and 8 is the gradient direction, chosen to be in

the proper quadrant. However, for computational reasons the L and Lo, norms are sometimes
used instead, for the edge magnitude, respectively

M, = |Iz| + |Iy|
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Figure 2: Convolution masks for 7.

Moo = max (||, Hyl)

The operators we analyse are the Prewitt [21], Sobel [7], Roberts Cross [22], “One by Two” [4],
“Two by two” [4], and “Two and Three”, a hybrid of the Prewitt and Sobel operators devised
during this study. The convolution masks used by these operators in computing I, are shown in
Figure 2. The masks used for I, are rotations of these by 90°. We place the origin at the center
of the neighborhood; that is, at the center of the central pixel for the 3 x 3 operators, and midway
between pixel centers for the 2 x 2. Thus for each neighboring pixel, its relative displacement
(Az,Ay) from the neighborhood center is shown in Figure 3. For an edge with parameters (p, §)
with respect to the origin of the neighborhood, the intensity at the neighbor with displacement
(Az, Ay) is given by

N(Az,Ay,p,0) = I(p+ Azcosf + Aysind, )

Thus, for example, for the Sobel operator

I(p,0) = N(+1,+1,p,6)+ 2N(+1,0,p,0) + N(+1,-1,p,0)
- N(-1,+1,p,0) - 2N(-1,0,p,8) - N(-1, ~1,p,6)

From this and the corresponding expression for I,,, we can compute the magnitude response M and
direction response  for the Sobel operator, as a function of a straight edge’s actual offset p and
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Figure 3: Relative displacements of neighbors from neighborhood center.

actual orientation §. (Whether M is M;, M3, or My, depends on the norm chosen.) The analogous
computations can be done for the other operators.

Since the operators we consider are designed to compute the gradient of a smooth image surface,
from which the digital image is obtained by sampling, it is hardly to be expected that they will
report exact contrast and orientation for a discontinuous step edge. In a sense, it is inappropriate
to apply these operators to a step edge. However, these operators are commonly used, and a step
edge is a more realistic model for many image events than is a smooth surface, so it is certainly of
interest to investigate how these operators perform on a step edge.

As mentioned earlier, by the symmetry of the pixel grid we need consider only edge orientations
in the range 0° to 45°. To cover the responses to any edge passing through an operator’s n x n
neighborhood, we must consider offsets p that range from zero up to (n/2)(sin + cos @), which is
n/2 at § = 0°, and (n/2)/2 at § = 45°. Edges with parameters lying outside this region of (p,0)
space do not pass through the neighborhood.

However, in an image, if an edge passed entirely outside the unit square centered at the origin
of the neighborhood, then that edge would be more strongly responded to at a different position
in the pixel grid. Therefore the most interesting region of response is for edges that pass through
this central unit square. Put another way, if among the discrete image positions at which the edge
operator is applied we define an edge position to be a position such that an edge passes through
the unit square centered at the origin of the operator’s neighborhood, then we are particularly
interested in the response at such edge positions. Of course, it is impossible to distinguish edge
positions from non-edge positions locally, because the response for a neighborhood located directly
on a weak edge will be indistinguishable from that for a neighborhood slightly offset from a stronger
edge. However, the responses for edges passing through the central unit square are the best that
the operator could be expected to do, even if we assume that there were some perfect method for
determining edge positions.

Abdou and Pratt considered only three slices through the (p,8) space, namely 0° < 6 < 45°,
p=0;0=0°0<p<1/2;and 6 =45°,0< p < \/5/2 While this gave some indication of an edge
operator’s response, it cannot characterize the behavior of an edge operator over the full variation
of the edge model.



Operator Minimum (-} | Maximum (+) | Avg (-) | Avg (+)
Prewitt 7429 1.837 | -3.498 0.641
Sobel -3.712 0.010 -1.066 0.010
Roberts Cross -8.130 4378 | -4.446 1.402
One by Two -8.060 15.982 -2.630 4.408
Two by Two -8.130 4.378 -4.446 1.402
Two and Three -3.695 0.680 | -2.090 0.220

Table 1: Direction errors for the various operators

Operator M, M, M,
Prewitt 0.7500 | 0.6882 | 0.5000
Sobel 0.6667 | 0.6569 | 0.5000

Roberts Cross | 0.2500 | 0.3515 | 0.4970
One by Two 0.3334 | 0.4713 | 0.5006
Two by Two 0.4970 | 0.3514 | 0.2500
Two and Three | 0.6981 | 0.6734 | 0.5000

Table 2: Minimum of normalized magnitude for the varions operators on edge positions

4 Results

For each operator, we sampled the range of edge orientations 0, 0° to 45°, at 256 equally spaced
points, and likewise sampled the range of edge offsets p, 0 to \/§/ 2, at 256 equally spaced points.
For each such (p,8) pair we compute the magnitude and direction response, as described above.
These are displayed as contour plots in Figures 4-9. (The figures for the Roberts Cross
and the Two by Two operators contain the same plots, differently ordered.) In each plot, 8 runs
from top to bottom; p from left to right. The dashed curve in these plots, given by the equation
p = (sin 8+ cos0)/2, delimits the region of (p,0) space corresponding to edges that pass through the
central unit square. Some of the contours appear jagged in these plots. This is merely an artifact
produced near discontinuities by the interpolation scheme used in our contour-plotting program.
The true contours are actually smooth, though they lie along a discontinuity.

A summary of these results appears in Table 1 and Table 2. For each operator, Table 1 gives
the greatest negative and greatest positive value of the orientation error § — § , that is, the difference
between the reported edge orientation # (from the gradient) and the actual edge orientation 8. This
table also gives the respective averages of the negative and positive values of this error # — 4. In
Table 2, the magnitude responses of the operators using various norms are normalized by division
by the greatest magnitude achieved, to make these magnitudes comparable across the various
operators. The table shows the normalized minimum values attained by the magnitude on edge
positions. It gives bounds on the variation in reported magnitude cansed by the positioning of an
edge with respect to the pixel grid.

All results presented in the figures and tables so far are for edge positions only. However, the
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Figure 4: Prewitt operator response: (a.) reported edge orientation 6 (b.) edge magnitude My (c.)

edge magnitude M, (d.) edge magnitude M, ( a. to d. read p from left to right, 8 from top to
bottom)
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Figure 5: Sobel operator response: (a.) edge orientation § (b.) edge magnitude M; (c.) edge
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Figure 6: Roberts Cross operator response: (a.) edge orientation f (b.) edge magnitude M; (c.)
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entire response of an operator to any edge passing through its n x n neighborhood is also of interest.
Figure 10 shows this extended response, in direction and magnitude, for the Sobel operator, with
f again sampled at 256 equally spaced points in the range 0° to 45°, but with p sampled at 256
equally spaced points in the range 0 to ny/2/2, that is 3y/2/2. The two dashed curves in this fignre
delimit edges passing respectively through the central unit square and through the whole 3 « 3
neighborhood. Outside the central unit square, the responses of the other operators tend to be
much the same as that of the Sobel operator, and are therefore not presented here.

5 Discussion

There are a number of observations that can be made from the results presented here. One imme-
diate observation is that the Roberts Cross and Two by Two operators are in a sense duals of each
other; their responses are identical, except with M; and M, interchanged. This was unexpected,
but in retrospect, hardly surprising. Both take simple differences between adjacent pixels, using
axis directions tilted at an angle of 45° from each other. However, the interaction between the axis
tilt and the pixel spacing and digitization is not trivial, so this duality is an interesting result.
Other observations having to do with reported direction and reported magnitude are presented
below. Since the observations about magnitude are somewhat simpler, we will deal with them first.

5.1 Edge magnitudes

It is clear from Figures 4-10 and Table 2 that even for a straight step edge of uniform constrast, the
magnitude reported by an edge operator at edge positions along that edge can vary considerably.
This poses difficulties for any scheme which attempts to distinguish edge positions from non-edge
positions by using a threshold on magnitude.

Consider the magnitude plots in Figure 5. The dashed boundary curve separates responses on
edge positions from responses on non-edge positions. Since the magnitude contours cut. across this
curve, it is clearly impossible to choose a magnitude threshold that will discriminate edge positions
from non-edge positions for edges at arbitrary orientation, even if the edges are of uniform contrast.
Any threshold will include non-edge positions for some orientations and exclude edge positions for
other orientations. Only for the Roberts Cross with the Lo, norm, and the Two by Two with the
Ly norm (which is essentially identical) do the magnitude contours run parallel to the boundary
curve, and only for the Prewitt, Sobel, and “Two-and-threc” with the L; norm do the magnitude
contours not cross the boundary curve (though these latter operators have a strong orientation
bias in their responses). Only for these edge operators is it possible to choose a threshold that will
discriminate edge positions from non-edge positions for edges of uniform contrast with arbitrary
orientation. Notice that this “preferred” behavior occurs for the L, and Lo, norms, which are
often regarded merely as computationally expedient approximations to the Lz norm. Here we have
situations in which the simpler norm has an advantage that is not just computational.

It is often felt to be desirable that the response of an edge operator should show no orientation
bias, that is, the magnitude reported by the operator should be independent of edge orientation.
Diagrammatically, this means that the contour lines should run vertically in the figures. Notice
that for the 3 x 3 operators there are regions where the contour lines run horizontally, meaning
that the magnitude depends solely on the orientation for an edge of fixed contrast . Also, the
requirement that an edge operator have no orientation bias and the requirement that it be possible
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to threshold edge positions from non-edge positions are incompatible, in that the former requires
that the contours be everywhere vertical while the latter requires that locally they run parallel to
the (dashed) boundary curve, which is not vertical.

We should point out that this discussion ignores consideration of noise. The problem of sepa-
rating edge positions from non-edge positions associated with the same edge, and from false edges
caused by noise is a complex one, needing further study. One standard approach is to use not
just isolated magnitude responses, but instead some of the structural properties of an edge, like
relative magnitude of directionally adjacent pixels, as is done in [13]. However, our treatment does
isolate the difficulties caused purely by the geometry of the edge operators, and shows that they
are far from negligible. It can also seen that when noise is small, these geometric difficulties with
thresholding can be overcome by suitable choice of operator and norm.

5.2 Edge orientation

We now discuss the orientation response of the operators. Under the conditions we have considered,
the absolute error in direction reported by these operators at edge positions can be quite large,
greater than 8° for the Roberts Cross and Two by Two operators. Even the best of the commonly
used operators, the Sobel, has a directional error of almost 4°.

Suspecting that the superior performance of the Sobel operator was due to its heavier weight-
ing of pixels closer to the center of the neighborhood, we experimented with a number of other
combinations of mask weights. The Two and Three operator was the simplest and best of these.
Even so, the improvement over the Sobel in worst-case error was very small, and its average error
was worse, suggesting that little is to be gained by further adjusting weights.

Consideration of the contour plots in Figures 4-9 shows that the raw orientation errors of
Table 1 are not so important of themselves. If a given operator reports an edge orientation 8, all we
can say is that the true values of # and p lie along the contour defined by 0, but they are otherwise
undetermined. However, if # depends monotonically on 8 alone (this would be manifest by perfectly
horizontal contours), then this dependence could be inverted to yield the true orientation # from
the reported orientation 0. For a number of the operators, the contours are not quite horizontal,
suggesting an approximate calibration procedure instead. For each roported orientation 6 there is
a small range of possible true orientations # that could have yielded f. Choose, say, the midpoint of
that range as an estimate of #. We have not yet implemented this idea, but it seems that for most
of the operators it could considerably reduce the orientation error, perhaps to as little as 17. In
practice, the mapping could he precomputed, and stored in a lookup table, making the calibration
process very inexpensive.

An even more intrigning idea is to make use of the orientation outpnts from two different
operators at the same poqlt.mn If one operator reports orientation f,, then we know that the true
p and 6 must lie along the f; contour of that operator. Similarly, if a second operator reports 02,
we know that p and @ must lie on the @, contour of that second operator. If these two contour
lines have a unique intersection, we can read off the true orientation #, and the true sub-pixel edge
offset p, and from these and the magnitude determine the actual step height. Thus the responses
of two different operators yicld all the parameters of the edge, inclnding its location to sub-pixel
precision.

Again, the contour intersections could be precomputed, and stored in a two-dimensional lookup
table, indexed by 6, and 0. Further savings could be realised by doing these computations in terms

14



of the ratios I,/ I, for the two operators, avoiding the inverse tangent. Even though it is necessary
to apply two different operators, this may still be cheaper than applying a single expensive operator.
Preliminary examination shows that several pairs of operators might be suitable for this technique,
in that their sets of orientation contours have well defined interscctions.

It should be kept in mind that these results are for an ideal case of response to a perfect,
noise-free, straight step edge, in which it is assumed that edge positions can be distinguished
from non-edge positions. In practice, these directional errors will be much larger, and may make
infeasible the use of the calibration or contour-intersection techniques described above. Even for
perfect edges, the directional error for non-edge positions can be as great as 45°, as can be seen in
Figure 10. This is because the orientation reported for an edge that just clips the neighborhood
will be 45°, regardless of the edge’s actual orientation—even if its orientation is close to 0°.

Clearly, all these observations are crucial to techniques such as [4,19] which use gradient di-
rections for straight-edge grouping and other purposes. On the one hand they set limits to the
performance that can be expected from these techniques using these conventional simple edge op-
erators; on the other hand they suggest computationally inexpensive ways of markedly improving
such techniques.

6 Future Work

There are four directions in which this work could be developed. First is to examine other edge and
digitization models. A suitable digitization model would use (Gaussian weighted receptive fields for
pixels. This could be somewhat easier to analyse than the model with square receptive fields used
here, and would also provide a more realistic approximation to the optical characteristics of real
cameras. Other edge models could be considered. However, even curved edges should appear almost
straight at the scale of the neighborhoods considered; ramp edges could be modelled by blurring
of a step edge, which could be absorbed into the Gaussian weighting of the pixel receptive fields.
Therefore it seems unlikely that any more complex edge model would be necessary. As mentioned
earlier, we chose step edges and square receptive fields in this paper chiefly for consistency with
previous work [1,2].

A second direction is to consider the effects of image intensity quantization and noise. It is
clear from our analysis here, and from our experience with actual images, that the effects of spatial
discretization alone are quite significant, and certainly comparable to those caused by noise and
intensity quantization. However it would be desirable to quantify the relative importance of these
effects more rigorously.

A third direction is to carry out some of this analysis in the spatial-frequency domain. Except
for the computation of the magnitude and direction of the gradient from its I and I, components,
all steps of processing are amenable to such an analysis, which would perhaps lead to further
insights into the behavior of edge operators under the conditions we have considered.

And the fourth direction is to implement and evaluate the techniques we have proposed (cal-
ibration and contour-intersection) for improving the performance of edge operators. While our
preliminary examination indicates that such techniques will be feasible, it remains to prove them
in practice, and to quantify the improvements obtainable.
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7 Conclusion

We have mapped out the magnitude and orientation responses of a number of commonly used sim-
ple edge operators on a step edge, using a digitization model in which pixels have uniforin square
receptive fields. This allows us to quantify the limits to the performance of these operators, even
under ideal conditions. For computing edge orientations, it would seem that the Sobel operator
is most accurate; for discriminating edges from non-cdges by thresholding, only the Roberts Cross
operator (using the Ly, norm), the Two by Two operator (using the L; norm), or possibly onc of
the 3 x 3 operators (using the ; norin) would be suitable. This work also suggests several compu-
tationally simple techniques (calibration and contour intersection) for improving the performance
of edge operators.
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