'Ib

Expressing Linear Recursions as Graph
Traversals

David A. Briggs

Technical Report 87-39

April 29, 1987

Expressing Linear Recursions as Graph
Traversals

David A. Briggs
May 7, 1987

Abstract

The connection between relations implicitly defined by recursive
rules and results of computations defined via graph traversals has
received attention from a number of researchers. In this paper we
demonstrate that any recursive relation defined by a single linear re-
cursive rufe can be expressed as the result of a graph traversal. Under
certain conditions, the computation performed during the traversal is
simply reachability, implying that the transitive closure of the graph
encodes information sufficient for materializing the recursive relation
without aay operators beyond those provided by the relational alge-
bra.

The expression and evaluation of queries against a relational data base that
require some form of a fixed point operator, so-called recursive queries, have
received a grea$ deal of attention recently. Researchers have proposed a va-
riety of language constructs for such queries and have offered a variety of
algorithms to implement their proposals. Here we confine our attention to
a specific class of recursive queries, linear recursive queries of the Datalog
language with & single recursive rule, and show that the extension of the re-
cursive relation can be realized essentially by a graph traversal over a graph
definable solely in terms of the extensional data base. We believe that cast-
ing the computation in this form is useful for several reasons. First, graph
traversal has been thoroughly studied, and results from previous investi-
gations become immediately available for this context. Second, properties
of graphs that facilitate the computation of a traversal by permitting a

simpler or faster algorithm translate into integrity constraints on the graph
derived from the data base which, if present, permit the corresponding
simplification in the query evaluation as a graph traversal. Identifying the
graph that is implicitly traversed in a recursion determines access paths
which support its evaluation, and thus serves in the design of the physical
data base. In general, representing the recursion as a graph traversal offers
a new vantage for the design and analysis of algorithms to support it.
The organization of the paper is as follows. In the first section we
delimit the class of queries we address and describe the general strategy of
the construction. In the second we detail the specifics of the construction
and argue that the traversal over the derived graph does indeed preserve
the semantics of the recursion. In the final section we discuss methods to
handle recursions that violate some of the simplifying assumptions that we
make, and relate the work described here to other research in the field.

1 Linear Recursion, Rule Expansions, and
Blocked Decompositions

We confine our attention to a class of recursive relations expressible in Dat-
alog, a language like Prolog, except that function complexes are not allowed
as arguments of predicates. We impose the reasonable constraint that all
rules are range restricted, that is, any variable occurring in the consequent
- of a rule must occur in the antecedent. We will consider only recursions
defined by a single linear recursive rule, that is, only one of the antecedent
literals is recursive with the consequent literal, and for simplicitly we will
assume that the recursive antecedent is another instance of the predicate
of the consequent. We assume that there is additionally a single “exit”
rule that equates the recursive relation with some base relation. For con-
venience we will initially assume that the antecedent of the rule consists of
the recursive literal and a single non-recursive base relation literal and that
the arguments of both recursive literals are all variables. We will discuss
relaxing these conditions later. We make no assumptions about repetition
of variables in the recursive literals, nor about the presence or absence of
variables in the non-recursive antecedent, other than what is implied by
the range restricted character of the rule.

2

Such a recursion is expressible by a pair of rules, the recursive rule, and
the exit rule, in general,

P(X},....,X)) <= P(X},....,X))AQ(X}],...,X})

P(X?,...,X%) <= Py(X?,...,X9)

where P is the recursive relation and P, and @ are base relations, and all
the variables are drawn from some finite set V = {X?, X2, ...}. We will
use R to denote the recursive rule, P4 for the recursive antecedent literal,
Q for the antecedent base literal, and Pg for the recursive consequent. For
a concrete example consider

QXY X2, X3)

We define the mth rule expansion, denoted R,,, to be the rule derived by
resolving m + 1 separated instances of the recursive rule. In [Brig87b] we
defined sequences of variable substitutions (¥;)i>o and (0;);>; such that

Rm = (ﬁ Up)P(X?l,...,X?n)c

I'=1

mP(X0 .. X2) ANCTT or)n@(Xe,...., X9)

=0 =41

Clearly, if we replace the letter ‘P’ in the antecedent of an expansion
with ‘P,’, we have a non-recursive rule whose evaluation contributes to the
extension of P. We will use PJ to denote the recursive antecedent of R,,,
PZ for the consequent, and Q" for the literal (ITp,,, ov) 1 @Q(X?,. .., X?),
omitting the superscript m when it can be gathered from the context.

We describe Ioannidis’s dynamic a-graph for a recursive rule R, denoted
Gr or simply G, as the directed graph (V, E), where V = {X?,...}, the
variables occurring in the rule, and £ = {(v,w) : 3k1 < k < nAv =
X Aw = X]}. The dynamic a-graph for the example rule is given in
Figure 1. Note that within rule expansion R,,, all predicate arguments are
of the form o, - - - 014, 1 (X?), with X?eV and 0 <! < m. In [Brig87b] we
proved the following.

3

X0 X0

X2 X?

X7
Figure 1: An example a-graph

The n-k-1 Theorem. For all n, k, and { in N, and all variables X?
and X? in the rule,

Ontk4l"* "Yn(Xf) = Otk '1n+k(X3)

if and only if there is a path in the dynamic a-graph from X? to X?, that
may traverse directed arcs in either the forward or reverse direction, such
that

1. There are k more traversals of arcs in the forward direction than there
are traversals of arcs in the reverse direction.

2. If one keeps track of the number of forward and the number of reverse
traversals as one proceeds through the path, then the number of re-
verses less the number of forwards is never more than n, and never
less than —k — .

We may picture the statement of the theorem by imagining a path between
two variables plotted on a two-dimensional grid. As we move from node
to node along the path we proceed from left to right on the grid. If we

4

Figure 2: Example path from X7 to X7

traverse a directed arc in the reverse direction, we gain a level in height,
while traversing an arc in the forward direction drops a level. The theorem
states that the two expressions are equal if and only if there is a path that
drops k levels and stays within the bounds imposed by n and I. Figure 2
shows such a plot for a path from X3 to itself from the graph for the example
rule. Its characteristics imply, among other things, that 0,7 (X?) = 71 (X?).

A useful visual aid for comprehending the implications of the n-k-l the-
orem for variable equivalencing in the m-th rule expansion is to imagine a
table of m + 1 rows, each containing all of the variables occurring in the
rule, with the rows indexed from top to bottom by the numbers 0 through
m. We make the table a graph by connecting a variable entry in one row
to a variable entry in the next by a directed arc if there is a directed arc
from the variable of the first to that of the second in the dynamic a-graph.
Now, for two variable entries z and y, occurring in rows ¢, and t,, respec-
tively, 0m - - - %, (z) = 0 - - - %, (y) if and only if the two variable entries are
connected in the table-graph by some sequence of arcs, without concern for
the direction of the arcs.

The strategy for the construction of a graph whose traversal computes
the recursion is to group the literals of R, into blocks that can be inter-
preted as functions, as in Figure 3, where

Br,

Jm

"Figure 3: Blocked Decomposition of R,,

p
(m+1—j—h)modp = r

= g1

m

H = A Qp
k=m-h-r+1
JH+(+1)p-1

B = A e@r
k=j+lp
-1

Jm = A Qp

k=0

If the QY literals are ordered by subscript, the block sequence
J™.B» ... B" H™"

q—1) *¥y

partitions the sequence inito consecutive, contigilous subsequences. The
number of literals within the B blocks is the same for each, nainely p,
which we shall call the blocking factor. The arcs connecting blocks indicate
the passage of arguments from the block at the tail to the block at the
head. i

We interpret each block as a function that receives a sét of bindings from
its predecessor block and provides a set of bindings to its successor block.
Specifically, the bindings a block receives are for variables it has in common
with its predecessor, and the bindings it passes on are for variables it shares
with its successor. For each individual tuple of bindings it receives, it finds
all bindings for any other variables appearing in its conjunction of literals
that make the conjunction true, and passes out as a result the bindings for
variables appearing in its successor. For example, consider the following
three block sequence

Block 1 Q,(X,Y) A Q:(X, 2)

Block 2 Q,(X, Z,W,U)

Block 3 Q4(Z,V) A Qs(U, 2)

The first block passes to the second the set
S={X,2):3YQ:X,Y) AQ:(X, 2)}

7

The second passes to the third the set
T={(Z,U):3X3aW(X,2Z2)eS AQs(X, Z,W,U)}

To be useful for evaluation our decomposition must possess the following
properties.

e Mediation. All overlap among blocks containing base literals is me-
diated by intervening blocks, that is, if two blocks C; and C,, with at
least one consisting of a conjunction of @ literals, have a variable z
in common, then all blocks between C; and C; contain an occurrence
of that variable. The proviso that one of the blocks consists of @
literals excuses P, and Pg from this constraint, and we shall later
show why we cannot force their overlap to be mediated and discuss
the problems posed by unmediated overlap between the antecedent
and consequent.

e Iteration. The B blocks all compute the same function. A sufficient
condition for this is that they are ail isomorphic, that is, each is a
renaming of the other, and that the variable overlap between each
and its adjacent blocks occurs at the same argument positions.

o Stability. The decomposition should be relevant to subsequent rule
expansions. Specifically, if the blocks are regarded as functions the
functions should not change in subsequent expansions, and rule R,
should in effect differ from R,, by the insertion of a single additional
B block function.

If we can establish these properties for our decomposition, then the re-
cursive relation can be computed by a procedure that evaluates finitely
many of the rule expansions and unions these results with those of another
computation involving a traversal of a graph derived from the blocked rule
expansion. The nodes of the graph are tuples of bindings for the distinct
variables of a B block that satisfy the conjunction. We have a directed arc
from v to w if v and w agree at those positions corresponding to overlap
between adjacent B blocks. If we substitute ‘P’ for ‘P’ in PP, we obtain
a function that depends only on the contents of the base relations. The

union, over all residues r, of the composition of H, with this function pro-
vides a set of bindings that selects a subset of the nodes of the derived
graph, based on the overlap of the H, block with B,_,. The nodes in the
graph reachable from this subset provide bindings to be passed to the J
block function, which produces bindings for the consequent. It should be
clear that the graph traversal mimics the iterated expansion of the recursive
rule, and so the result obtained from it will be the same as that obtained by
a more conventional algorithm. There is one hazard which we will discuss
later corresponding to unmediated overlap between PJ* and P2.

In the next section we show that there exist choices for 5, h, and p to
force the above conditions, for sufficiently large m.

2 Variable Equivalencing in Rule Expansions

We begin with a number of definitions.

Definition. For a rule R and associated graph G, define the opposite
of G, G°P, to be the graph obtained from G by reversing the direction of
the arcs.

The opposite of G is the graph that would be associated with the rule
RYP obtained from R by exchanging the recursive consequent with the
recursive antecedent. Many of the concepts and arguments we use below
have analogs in the opposite, and we will sometimes claim a result by this
duality. In particular, note that by the n-k-I theorem, 04441 - 1 (X°) =
Ontk+ - Tn+k(X]) in an expansion for R if and only if op i+ - (X?) =
Onti+l - - N+k(XP) in the expansion for ROP.

Variables that are distinct in @ may be equivalenced in an instantia-
tion of @, and we are particularly interested in which variables become
equivalenced and in which instantiations. By the n-k-l theorem, we know
that distinct variables will be equivalenced within the same instantiation if
there is a path connecting them that places them on the same horizontat
grid line, the special case of the theorem with k = 0. Our interest in the
values for n and [that effect any within literal equivalencing that can ever
occur motivates the following definitions.

Definition. For a graph G, define the attic of G, Ng, as

Ng = pnVrVs '1,,+|(X,?) = '7n+l(X?) = '7n(X9) = 71.(X7)

9

Figure 4: Example requiring space above and below

By the n-k-1 theorem, any two variables that can be connected by a path
that places them on the same level, and never drops below that level, can
be so connected by a path that requires no more than Ng levels. We will
omit the subscript when G is understood.

We have the following dual concept. -

Definition. For a graph G, define the cellar of G, Lg,

Leg = plvrvs -
Ol41 70(X1?) =011 "70(X:’) =
o1 %(X7) =01 %(X7)

Not every pair of variables that can be connected by a path that places
them on the same level can be so connected by a path that does not require
some space both above and below that level. For example, consider the
graph of Figure 4. The variables X and Y are connected by a path that
places them on the same level, but it obviously requires space on both sides.
To cover such cases, we define the number of additional levels that might
prove useful for equivalencing variables.

Definition. For a graph G, define the relative attic of G, N{,

Ng = pnVrVs
OLtnt1Mm+1(X7) = O0Lgantr - Tt (X7) =
OLg4n" - 7n(X?) =0Lg4n " '7n(Xg)

The relative attic is the fewest number of additional levels above the line
that are useful for equivalencing variables if we have provided Lg levels
below the line. Its dual is

10

Figure 5: N=L=3and N'=L'=0

Definition. For a graph G, define the relative cellar of G, Li;, as

L; = uplvrVs
ONg++1 * N (XT) = ONgi1 - INg (X7) =
ONg+l""* '7Na(xv?) = ONg+ "7N0(X2)

Evidently, N§; < Ng and Li; < L¢g. As usual, we will omit the subscripts
when the context provides the graph. Consider the graph of Figure 5. For
this graph, L== N =3 and L'=N'=0.

The following is easily derived from the definitions and the n-k-1 theo-
rem.

Lemma 1.
VrVsVk3n3l
Onigk4l " 'rn(X?) = On4k4i"- "7u+k(X?) —
onpktr IN(XD) = Onegrer - Inr(X7) =
ON+k+L * "7N(X:?) = ON4k4L " '7N+I¢(X2)

If we let k£ = 0, this lemma tells us that if { > NNAm -1 > Lorl 2>
N Am —12> L', the variables of @ are “fully equivalenced”, by which we
mean that no other instantiation will have any fewer distinct variables. The
example of Figare 6 shows that the sum N + L' may be different from the

11

Figure6: N=L=3and L' =0, but N' =1

sum N'+ L. We will later require that the rule expansion index be greater
than or equal to both of these sums, so for convenience, let M denote the
larger of the two.

The above discussion suggests that for large enough m, there will be a
band of Q literal instantiations in the “interior” of the expansion that will
be isomorphic. We will need some additional notions to analyze the literals
at the extrema and to determine a satisfactory blocking factor.

We define three equivalence relations for the nodes of G. Let vand w
be elements of V.

Definition.v =y w <= v (v) = Iv(w).

Definition.v =, w <= o1 ---%(v) =0 - w(w).

Definition. v = w <> ongr - IN(V) = Ongr - IN (W)

Clearly, =y and =, are both refinements of =.

For each relation we define an associated graph obtained from G by
merging equivalent nodes and erasing redundant directed arcs, and we de-
note these graphs, Gt, Gy, and G=. We will denote nodes of these graphs
with [v], standing for the equivalence class of the node v under the appro-
priate relation. We will say that [v] occurs in P4, Pc, or Q to mean that
there is some w equivalent to v that occurs in Py, Pg, or Q.

The following facts are easy to see.

1. The indegree of every node of G is less than or equal to 1.

12

2. The outdegree of every node of Gy is less than or equal to 1.

3. The indegree and outdegree of every node of G are both less than.
or equal to 1.

4. G = ((GOP)y)OP
5. Gn = ((GP),)P
6. G= = ((GP))°P

The following iemmas relate the existence of paths in the collapsed graphs
to the existence of paths in the original graph. Since in the n-k-1 theorem
we allow paths that traverse arcs in either the forward or reverse direction,
we refer to a “forward” path in the lemmas to mean a path that traverses
arcs in only the forward direction.

Lemma 2. VnVkVYIVIVs if 0pikqt - Yo (X0) = Opppqi - - * Tn+4(X?) then
there is a k-arc forward path from [X?] to [X?] in G=.

The converse holds, provided that n > N'Al> Lorn > N Al > L.

Lemma 3. VnVAVrVs if 0ngs - - 7a(X°) = 7n44(X°) then there is a
k-arc forward path from [X?] to [X?] in Gy.

The converse holds, provided that n > N. The dual for Gy, is as follows.

Lemma 4. VIVKVrVs if o4y - 3(X°) = o4t - - - 7e(X?) then there is a
k-arc forward path from [X?] to [X?] in Gy.

The converse holds if | > L. We also have the following.

Lemma 5. If 0nyisr- - 10 (XD) = Opgrst - - Ye4t(XP) then in Gy there
exists a node [v] and some ¢, ¢ > 0 with a f-arc forward path from [X?] to
[v], and a ¢ + k-arc forward path from [X?] to [v].

Proof. By the n-k-1 theorem, there is a path connecting X° and X?. Let
v be a node on the lowest level of this connecting path and apply Lemma 3.

Lemma 6. The premiss is as for Lemma 5, and we claim the existence
of a node [v] in G, and a ¢ such that there is a t-arc forward path from [v]
to [X?] and a ¢ + k-arc forward path from [v] to [X?].

Proof. Let v be a variable on the highest level of the path and apply
Lemma 4.

We alluded earlier to a sequence of Q literal instances within a rule
expansion whote variables will be “fully equivalenced”, and we now identify
the instances of this sequence. Consider, within the rule expansion R,, for

13

some m, m > M, the subsequence of literals Qn/, @41, - - - @m-v- They
possess a property that we call k-interval overlap consistency, by which we
mean that the variable overlap between two instances within this sequence
that differ by k in their subscripts occurs at the same argument positions
for all instances that differ by k. We first show that all of these instances
are fully equivalenced.

Lemma 7. For any m and /, and any variables X? and X0, if m > M
and N' <1< m-— L', then

a'm...f\”(X?)zam...»n(X?)<=>X?EX2

Proof. The only-if direction of the conclusion is immediate. We prove
the reverse direcetion by induction on /. For | = N', the implication is
immediate since under the conditons of the premiss m — ! > L. As-
sume it is true for /, and let [+ 1 < m — L['. Consider an equivalence
class, [vo] = {vo,...,n}. We must show that for any choice of v; and vj,
Om - Y41(¥%) = Om - - - W41 (v;). If both occur in P, then there exist w; and
w;, With w; = wj, O+ W41 (%) = O - O (wi), and O - - W41 () =
Om - O n(w;). The result then follows from the inductive hypothesis. So
all members of the equivalence class that occur in P are taken care of. Let
v; be a member that does not occur in P¢. If v; does not occur in P4, then
it is the only member of the equivalence class, since there can be no paths
from it to another node in the graph, and the implication follows trivially.
So assume that v; occurs in P4. Now, either there is a member of the class
that occurs in Pg or there is not. If there is not, then every member of the
class can only be equivalenced by a path that uses levels below the line,
for a path that used a level above the line as well would force the existence
of a member in the class that occurs in Pc. Clearly, by the definition of
L', L' levels must be adequate to equivalence any of the variables in the
class, and {+1 < m — L' insures that we have enough levels to accomodate
the path. On the other hand, if there are some members of the class that
do occur in Pc, then as we argued above, the equality expression holds for
any two of them. Now, there must be some of these that are connected to
v; by a path that uses only levels below the line, since any path starting
from v; must immediately drop a level, and the first time it returns to the
initial line, we have a variable that is in the class. Clearly, the number of
levels required by the shallowest such path can be no more than L', by the

14

definition of L', and since { + 1 < m — L', we again have enough levels at
our disposal to accomodate the path.
The lemma demonstrates that the variables of the literals Q. . . . , Qm—1+
are fully equivalenced, and k-interval overlap consistency follows quickly.
Lemma 8. Let m > M, Lk, K'eN, I > N, and l + k+ K < m - L'
Then for all variables X? and X?

Om-NXP) = Om- k(X)) <=
Om Nt (XD) = O Nprran(XO)

Proof. Assuming either side of the if-and-only-if, by Lemma 2 there is a
k-arc forward path from [X?] to [X?] in G=. Each arc in this path indicates
the existence in the tail equivalence class of a variable X? occurring in P,
whose correspondent X? of Pc is a member of the equivalence class at the
head of the arc. By the result of the previous lemma, provided we are
within the given bounds, we can construct a path that does the trick by
piecing together paths that equivalence members within a class and the
forward arc from XJ to X3.

We will derive the B blocks from this interior sequence of @ literal
instances. It can be shown that for any choice of blocking factor, the B
blocks are renamings of each other, but to obtain mediation we must be
more fussy. Consider the following example rule

P(X3, X3) <= P(X?, X3) A Q(X?, X)

The @Q literals for Ry are

Q(X}, X})

Q(X?, X})

Q(X}, X3)

Q(XY, X3)
If the blocking factor were 1, the overlap wouldn’t be mediated, since every
instance shares a variable with an instance that is at a distance of two from
it. If one draws the graph for this example, the problem derives from the
fact that there is a “gap” of length two between two nodes that occur in
Q, that is, a path of length two from a node that occurs in @ to another
node that occurs in @ with the intermediate node not occurring in Q. We
will choose a biock size that is as big as the largest gap to force mediation.

15

Formally, in Gz, let p be the length of the longest non-null path from a
node occurring in @ to another node occurring in @ with no intermediate
node along the path occurring in @, if such a path exists, or 1 if no such
path exists. It is not hard to show

Lemma 9. Let p be determined as described above', and m > M with
| ==k’ | = g > 2. For ke{0,...,q— 1}, let By = NZAEP~1 Qm Then
for ky, k€{0,...,q — 1}, k1 < kg, if a variable occurs in both B:, and By,
it occurs in By 4.

We use a similar ploy to force that the overlap between P7* and any
block containing Q literal instances is mediated by H;", only for this case
the gap we are concerned with is defined differently.

In Gy, for each [v] occurring in P,, define gap([v]) to be 0, if [v] occurs
in Q or there is no [w] occurring in @ with a forward path from [w] to [¢],
else the length of the shortest forward path from a node [w] occurring in @
to [v]. Let ho be the maximum for all [v] occurring in P4 of gap([v]). Then
the following can be shown.

Lemma 10. For all m > N + hy, if a variable of P occurs in some
literal Q", 0 < I < m, then it occurs in some literal Q7 with m —ho < k <
m.

Proof. Use Lemma 3 and the definition of A.

In a similar vein, we define j, to be the value of kg for (G°P)y, and
claim by duality,

Lemma 11. For all m > jo + L if a variable occurs in P2 and in some
Q™ for 0 <! < m, then it occurs in some @ for some ! with 0 <! < j.

From the foregoing discussion, we have a value for p, and our value for 5
and A should be large enough to achieve full equivalencing for the B blocks
and mediated overlap with the instances of the recursive literals. If we let
h be the larger of ho + 1 and L', and j be the larger of jo + 1 and N/, we
guarantee almost all of the aspects of mediation. The exceptions are that
J block overlap should be mediated by By and H block overlap should be
mediated by B,_,. Both of these can be established by arguments similar
to those outlined above.

We know that the B blocks are isomorphic, by the k-interval overlap
consistency property. To complete the demonstration of iteration, we must
show that the overlap of each with its predecessor occurs at the same argu-
ment positions, and similarly, the overlap of each with its successor occurs

16

at the same argument positions. This is obviously true for the block overlap
within the fully equivalenced zone, but it is not so evident that the over-
lap between B, and J must occur at exactly the same “output” positions,
or that the overlap of B,_, with H, must also occur at exactly the same
“input” positions. We prove one of these, and claim the other by duality.

Lemma 12. Assume) and p are determined from the graph as described
above. Let m bhe greater than or equal to M, X? be a variable occurring
in Q, and l;¢{0,1,...,p — 1}. Then there exists X° occurring in Q and I,
0<I; <5-1with

Om - U+ (XD) = Om - - W, (X7)

if and only if there exists X? occurring in @ and l3¢{0,1,...,p — 1} with

Om: "'7.i+P+h,(X3) =0n-- '7.i+la(x?)

Proof.(=>). f j—I; < p, then let t be s and Iy be p+12—5. H j—1; > p,
then certainly /; + j — Iz > p as well. By Lemma 2 we havea |, +j — [,
arc forward path from [X?] to [X?] in Gz, so let the sequence of nodes on
this path be be [X?) = [v), [v1),...,[v,+5-1] = [X}]. By the definition of
p, there must be some node among [v;—1,—p|,- - -, [Vj-1,-1] that occurs in @,
so let [vy] be the node. Let ¢ be chosen so that X? = v, and X? occurs
in Q. There must be a choice for ¢, since [v;] occurs in @. If we let /5 be
k — j + I, + p the conclusion can be obtained.

(¢<=) By Lemma 6 we know there exists in G, a node [v] and a value ¢,
¢, > 0, with a ¢,-arc forward path from [v] to [X?], and a (¢, +p—Is+14)-arc
forward path from [v) to [X?). Trace back I, + 1 arcs from [X7] to a node
we will call [u]. The purpose of this initial backward movement is to take
us out of block By. Next, trace back arcs from [u] until one of the following
conditions is met.

1. a node occurring in @ is encountered

2. jo arcs have been traversed, where j; is the maximum gap value de-
scribed above

3. a node with no predecessor is encountered

17

Regardless of the stopping condition, we claim that in the trace we en-
counter a node [w] for which there exist numbers k, and k. and a variable
X? such that

1.

2
3.

4.

0<ki<k:< 10

. X9 occursin @

there is a k;-arc forward path in Gy, from fw] to [X7)]

there is a ks-arc forward path in Gy from [w] to [u](and thus, a
k; + I, + 1-arc forward path to [X?])

We consider each stopping condition in turn.

1.

If we reach a node occurring in Q after backing up less than or equal
to jo arcs, let [w] be the node we reached, k; be the number of arcs
from [w] to [u], ky be 0, and X? be a variable occurring in Q that is

_equivalent to w.

. If we traverse jo arcs backwards, the node we reach either has a pre-

decessor or it does not. If it does, then by the definition of jo, it must
have a descendant node that occurs in @ and is within jp arcs of it.
We let [w] be the node we reached, pick X{ as a variable occurring
in Q that is in the descendant node, and let k; be the number of
arcs from [w] to the descendant. Of course, k; is jo. If the node we
reached after backing up jo arcs from [u] has no predecessor, then
[X?] must be descended from one of the nodes we encountered along
the way. Call the first common ancestor of [u] and [X}] encountered
in the trace {w). Let k; be the number of arcs between [w] and [u],
k, be the distance from [w] to [X?], and X? be X?.

If we reach a node with no predecessors, then [X?] must be descended
from one of the nodes we encountered along the way, and it reduces
to the case we just considered.

Now, it can be shown that

Om " Vj—1—ka+ky (X?) =0m: - Ti+h (X?)

18

by using the variable w as a connection. Since j > Jo+1and 0 < k; <
k2 < §o,0< j—1—ky+k, <j—1,s0o we have a value for l5.

This lemma and its dual complete the proof that our iteration condition
is met. The stability condition is actually not hard to show, and we omit the
proof. Taken together these three conditions insure that the expansions of
any linear recursive rule can be organized in this fashion, and consequently
viewed as-a graph traversal.

We earlier stated that we could not force overlap between the recursive
antecedent and the recursive consequent in a rule expansion to be mediated
by the @ literal instances, and the following example shows why.

“P(X3, X3, XJ) <= P(X}, X, X3) A Q(XY, X3)

This rule falls within the class of range-restricted rules that we are consid-
ering, but bécause one of the connected components of the graph contains
no variable occurring in @, there will always be some overlap between the
consequent and the antecedent that is unmediated. To see what happens
to these variables in a rule expansion, one can form a dummy predicate ¢’
that contains all and only these variables, and analyze it separately. It is
easy to see that the range restricted character of the rule forces that they
will form cycles in Gz, and each successive rule expansion induces a cyclic
permutation of their locations in argument positions of @'. If the blocking
factor p is a multiple of the period of all these cycles, they pose no problems
for the computation as a transitive closure, for the permutation induced by
a B block will be the identity. The permutations induced by the blocks
J and H, are fixed, and can be correctly simulated. If the blocking factor
is not a multiple of all of the periods, either the blocking factor must be
changed to be a multiple, or the graph traversal must take into account not
only the reachability of a node from another, but also note at what dis-
tance, to correctly mimic the permutations these variables would undergo
in the expansion.

3 Extensions_ and Related Work

We have imposed the restrictions that the arguments of the recursive literals
can only be variables and that there be a single non-recursive literal in the

19

antecedent. The former is simple to relax. If there are constants in the
recursive literals, and any two distinct constants are connected in the graph,
we know at once that the number of rule expansions necessary to calculate
the relation is bounded, since at some point the two distinct constants
will be equivalenced, a contradiction. Otherwise, any time 2 variable is
equivalenced to a constant, the variable must become the constant, so we
have a selectiop condition on the relation containing the variable, and the
graph we traverse is simpler than what it would be if the constant were
replaced by a variable.

If there are several non-recursive literals in the antecedent, although
there is always a single relation definable in terms of the many, comput-
ing it might involve taking an unrestricted Cartesian product, potentially a
very expensive operation. The full a-graph of loannidis includes undirected
arcs between variables that occur in the same non-recursive literal, and it
seems that the analysis performed here could be applied to the connected
components of the full a-graph. Exactly what additional computation must
be be performed to coalesce the results is a subject of future investigation,
but it would appear that the results would have to be “tagged” with iden-
tifiers to be used to join them up, the identifiers corresponding to a source
tuple in P, and a distance.

This work derives from a number of sources. The author’s interest was
first piqued by the work reported in [Hens84]. The notion of connecting
the recursive computation to a graph traversal via the pattern of the rule
expansions helped clarify some issues in that algorithm(see [Brig87al]). The
work of Rosenthal, et al, described in [Rose86] uses graph traversal as a
starting point for recursive computation over data bases, and the question
of the relation of recursion as graph traversal and recursion as inference
rule gained interest. Ioannidis’s dissertation, although primarily directed
at the question of boundedness of recursive rules, employed the graphical
representation of the recursive rule we have adopted, and it has proved a
convenient vehicle for recognizing and characterizing the pattern of variable
overlap in rule expansions. Jagadish and Agrawal realized this in the paper
[Jaga86], and the work presented here is closely related to theirs. The chief
differences of this work are that the analysis here is explicitly tied to a
formal representation of the rule expansions, the analysis here is deeper,
and the graph constructed here is, in general, different from the graph

20

constructed by their method. In effect, they choose a blocking factor that
forces something much stronger than mediation. For their blocking factor,
if { < j and a variable z occurs in both block B; and B;, then either
J = t+ 1, or z occurs in all of the B blocks. Their purpose is to permit
the graph to be put in a form like the familiar graphical representation of
a binary relation, but this is not essential to define a graph traversal that
mimics the recursion. Their blocking factor also avoids the problem noted
for unmediated overlap between the recursive consequent and the recursive
antecedent, since it is always a multiple of the periods of all the cycles in
G=.

We have shown how a simple linear recursion with a single recursive rule
and a single exit rule can be viewed as a graph traversal by a close analysis
of the rule expansions that a single linear rule can generate. It is the
connection of the graph to the rule expansions that gives the construction
a secure formal basis. We are hopeful that the general ideas employed
here may serve in the analysis of more complicated recursions. We are also
investigating the potential for supporting the recursion by maintaining the
transitive closure of the graph in stored form.

References

[Agra86] Agrawal, R., and Jagadish, H., “On Bounded Linear Recursion”,
AT&T Bell Laboratories Technical Memorandum, 1986.

[Banc86] Bancilhon, F., and Ramakrishnan, R., “An Amateur’s Introduc-
tion to Recursive Query Processing”, Proceedings of SIGMOD
‘86 International Conference on Management of Data, pps. 16~
52.

[Brig87a] Briggs, D., “A Reconsideration of the Termination Condition of
the Henschen-Naqvi Technique”, COINS TR 87-11, University
of Massachusetts, 1987.

[Brig87b] Briggs, D., “Towards Determining Variable Overlap in Recur-
sive Rule Expansions”, COINS TR 87-33, University of Mas-
sachusetts, 1987.

21

[Hens84] Henschen, L., and Nagvi, S., “«On Compiling Queries on Recur-

[foan86]

[Jaga86)

[Lioy84}

[Rose86]

sive First-Order Data Bases”, JACM, Vol. 31, January 1984, pps.
47-85.

TIoannidis, Y., Processing Recursion in Database Systems, Ph. D.
Thesis, University of California at Berkeley, 1986.

Jagadish, H., and Agrawal, R., “A Study of Transitive Closure
as a Recursion Mechanism”, unpublished manuscript.

Lloyd, J., Foundations of Logic Programming, Springer-Verlag,
1984.

Rosenthal, A., Heiler, S., Dayal, U., and Manola, F., “Traversal
Recursion: A Practical Approach to Supporting Recursiye Appli-
cations”, Proceedings of SIGMOD 86 International Conference
on Management of Data,pps. 166-176,1986.

22

