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Abstract

I discuss how the Edinburgh Designer System can be extended and used to support
symbolic computation for robotics. I conclude that the Algebra Engine requires to han-
dle temporal constructs, groups and tolerances, that the taxonomy can support actsvity
modules and that automatic plan formation would require the creation of a specialist.



The Edinburgh Designer System as a Framework for Robotics
The Design of Behavior

1 Introduction

The Edinburgh Designer System (EDS) (Popplestone, 1984b, 1985) provides a coherent
set of inference engines which operate upon a common formalism appropriate to the repre-
sentation of engineering designs in general. This formalism stems from the work of Barrow
(1983), but has been extended in various ways, including to provide for the representation
of the evolution of a design. The exploration of the space of possible designs is related to
the work of Latombe (1977), although conducted in a Prolog framework. The EDS has
been implemented at Edinburgh, and has been mounted on a Sun workstation at U.Mass.
My present concern at U.Mass is to define extensions of the EDS needed for Robotics.

In the EDS, a design is specified in terms of modules, which are engineering functional
units (eg a motor or a keyway or a shaft). Thus modules are not necessarily rigid bodies,
but may be features of bodies (eg an oilway) or assemblies of bodies (eg a gear-box). The
extension of the EDS to deal with plan formation requires that modules be regarded as
existing in time, for example the activity of drilling of an oilway or the support of a shaft
while a gear is fitted to it.

Barrow specified interactions between modules in terms of connections between ports
of modules. This formalism is appropriate for his domain-(the logical analysis of VLSI
designs) because interaction between modules always occurs in a standard way through
conductors. However in general engineering, interaction between modules can take place
in a rich variety of ways, so that knowledge about such interaction cannot be regarded as
a static part of the EDS. Considerable conceptual economy can be achieved by treating
the interaction between modules as a module in its own right, called an interface module.
Such interface modules can be regarded as establishing a relational network or graph upon
the concrete modules.

In order to describe the formalism and behaviour of the EDS, I will use Prolog terms,
typeset in mathematical form, with the Prolog convention that variables begin with capital
letters. The EDS represents facts about particular modules which have been postulated
to exist in the design with terms which are free of Prolog variables, whereas general facts
about classes of modules are represented using Prolog clauses, which will contain Prolog
variables.

Modules have parameters, which are symbols denoting quantities which are determined
at design time, and variables which are symbols denoting quantities which may vary while
the module is operating. For example a gear has as one of its parameters the pitch radius, -
and as one of its variables its angular velocity. Interface modules will define constraints
upon parameters of the modules connected by the interface. For example the interface
module meshing._gears equates the pitch line velocities of the two component gears. The
parameters and variables of particular modules are ground level terms. For example r$gl



may denote the pitch ragius of the gear gl1. In fact module parameters and variables are
all substitution instances of the Prolog term V$M. H we think of A$B as being Ap, this
notation turns out to be quite in accordance with engineering conventions, for example if
g1 is a gear and r is its pitch radius, then r$g1 corresponds naturally with ry; which could
appear in engineering texts.

Modules are classified in a tazonomy, which is part of the formal support of the explo-
ration of possible designs. For example, having decided that gl belongs to the module-class
gear, a further step of detailing it is to decide that g1 belongs to the module-class spur_gear.
Other important steps in detailing involve deciding on values for parameters, and using
one of the engines to determine new relationships.

In the EDS, the representation of shape is supported by a Constructive Solid Geometry
(CSG) modeller (Requicha, 1978). The current implementation makes use of the ROB-
MOD modeller (Cameron, 1984), but an interface to the Noname modeller (Armstrong,
1982) is currently being implemented. It is straightforward to interface the EDS to any
CSG modeller which has a well defined textual or procedural interface. Current work at
U.Mass includes the development of a ray-tracing modeller which will provide high quality
images.

We use the term snference engine for any program which applies some body of knowl-
edge relevant to the EDS. Such an engine will typically follow paths in the relational
structure placed upon concrete modules by interface modules, and infer new relationships
between entities which are at some distance from each other in the original structure, or it
may derive new relationships by examining cycles in the structure. The inference engines
typically perform forward chaining upon facts about the design: it is necessary to place
strict limits on this chaining to avoid an undesirable proliferation of deduced facts.

Thus the RAPT interpreter (Corner, Ambler, and Popplestone, 1983) (Popplestone,
Ambler, and Bellos, 1980) is used as an inference engine for deducing module locations
from defined spatial relations. Spatial relationships hold between geometric features of
modules, which are derived from the primitives which make up the shape. Thus the
spatial relationship fits may be used to express the relationship between a journal on a
shaft and the bush of a plain bearing.

The term “specialist” is used in the EDS context to mean systems which it is intended
to provide which provide an integrated treatment of knowledge about some sub-domain of
design, for example planning of machining or assembly. specialists will be procedural, but
will make use of appropriate declarative knowledge held in the taxonomy.

Any system which supports the activity of design must cope with the fact that designing
involves exploring a space of possible designs. The exploratory nature of designing is
treated by regarding any statement that the human designer makes to the system as
an assumption, which may or may not form a part of the final design. For example, a
designer may wish to consider the possibility of using an electric motor or a hydraulic
motor in a given application, or, at a greater level of detail, the possibility of using a
journal bearing versus that of using a rolling element bearing. While some of the design
work associated with a given assumption may be lost if an alternative assumption is finally
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chosen, it is important to avoid the massive loss of effort which would arise if chronological
backtracking were employed, and consequently we employ an Assumption Based Truth
Maintenance System (ATMS) (deKleer, 1984) to manage these assumptions. As well as
assumptions about the existence of particular modules, the design process will also involve
making assumptions about the values of parameters of modules and the spatial relations
between their features.

Specialists likewise may make use of ATMS to support a more automatic exploration
of design space in their area of specialism.

The EDS has been implemented in Poplog (Hardy, 1984) (Sloman and Hardy, 1983)
running under Unix on a Sun workstation. While the basic formalism is expressed in
Prolog terms, most of the engines described have been written in Pop-11, or a mixture of
Pop-11 and Prolog.

2 The Algebra Engine

Of all the inference engines, the Algebra Engine is the most basic. It is capable of simpli-
fying expressions denoting a number of entities important in engineering and of interest to
robotics, including locations, vectors and Constructive Solid Geometry shape descriptions.
It also embodies Minipress, a system with many of the capabilities of the Press (Bundy,
1979) program for solving equations involving trancendental functions symbolically. Press
was developed at Edinburgh by Bundy and his co-workers.

The Algebra Engine was originally conceived of as being an extension of Press. The
choice of Press as the basis for the Algebra Engine was determined by the need to solve
equations in trancendental functions, since these commonly occur in engineering, and
the need for an engine which could be readily interfaced to form a sub-system of the
EDS. There are a number of algebraic manipulation packages available on the market, for
instance REDUCE and MACSYMA, both of which are LISP based. Both of these packages
have a front end which means that users do not have to couch their needs in rebarbative
LISP syntax. However they are not readily accessible in a form which makes them ideally
suited to be sub-systems of the EDS.

2.1 Simplification

We shall use T1 — T2 to mean that the Algebra Engine unconditionally rewrites an
instance of term T1 as term T2 during simplification. These rewrite rules do not con-
stitute a complete definition of simplification. The statement T'1 = T2 means that the
Algebra Engine may replace an instance of T'1 with T2, or conversely, depending upon
circumstances.

The Algebra Engine can be called upon to simplify a term by executing the Prolog goal
X :=Y where Y is bound to the term being simplified. For example

X=a+b+2%xa+c-0b



will bind X toa *3+c+ 2.

Algebraic simplification is not in general a straightforward, or even well defined prob-
lem. There is not, in most algebras, a standard “canonical form” into which all expressions
can be transformed and which will serve as a basis for doing any operation subsequently
required. Thus expression simplifiers for the ordinary algebra over the reals or complex
numbers will normally do a number of standard useful operations, leaving others to be
performed by specialist code for specialist purposes, or to be specified by options in the
simplifier.

The EDS Algebra Engine does not make use of a formal theory of type, but relies upon
a use of symbols which is consistent with laws built into the simplifier. Thus, for example
it is not possible to use + to mean boolean or (or unton) operation, since the Algebra
Engine assumes that + obeys the laws of an abelian group and a boolean algebra does not
obey the same laws (eg. X +Y = X + Z does not imply Y = Z if ‘4’ is interpreted as
union). In terms of Universal Algebra (Cohn, 1965), we restrict any set of entities upon
which function symbols operate to be a variety. It should be noted that 0 and 1 are to be
regarded as nullary operators.

2.2 Datatypes and basic notational conventions

It is necessary to represent integers, real numbers, 3-vectors, locations (ie Euclidean trans-
formations of 3-space), matrices, and shapes defined as subsets of 3-space. In the present
implementation of the EDS integers and reals are representated as fixed and floating point
quantities respectively. However rational arithmetic is available within Poplog and has
definite advantages for the more theoretical aspects of design.

We use X— > FX, where FX is a term in X to mean the function which maps X to
FX. (cf. A\z.F(z)). Thus I— > I'1 2 is the squaring function.

Other datatypes are represented as terms. Thus vectors are terms with the functor
vec. In particular, vee(X, Y, Z) is a 3-vector and vec(0,0,0) — O, since zero is known to
the simplifier as the identify of the abelian group operator +.

The unit vectors are denoted by the atoms ¢¢, 55 and kk, although these are all rewritten
as vec(1,0,0) etc., since these symbols are not regarded as basic operators of the Algebra
Engine.

We use the term location to mean a rigid transformation of 3 space which preserves
handedness of axes, ie a member of the Euclidean Group. The best canonical representation
of constant locations is a matter of some debate: a presentation of the possiblities is to
be found in (Brady, Hollerbach, Johnson, Lozano-Perez, and Mason, 1982). At present
the EDS uses a 4 x 3 array representation, derived from RAPT, although a 4 x 4 matrix
representation would have the advantage that locations were no longer special entities.

X + Y means the addition of entities usually added.

— is used for Binary subtraction and unary negation.

Thus

X+Y=Y+X, X+0—0,



X+(-X)—0, X+(Y+2) — (X+Y)+2Z

This latter is in accordance with Prolog conventions. Binary minus is rewritten by X —
Y — X +Y %(—1). X+Y may denote the sum of reals, complex numbers, matrices, etc.

X * Y means commutative multiplication, eg. of numbers, scalar multiplication of
vector by number. * has zero 0 and identity 1, so

XsY =YX, X+s(Y+2)=X+Y+X+2, X+(Y +Z) — (X+Y)sZ

X*0—0,0xX—0 X*x1 —X, 1xX — X

The division operator is eliminated (except in the special representation of rational func-
tions discussed below).
XY — XxY 1 (-1).

X 1Y means X to the powerY. X 10 — 1.

X@Y means the associative, non-commutative multiplication of z by y, for example
of locations, permutations, matrices, and the concatenation of sequences. Thus @ plays
the same role as the “.” operator in Macsyma. @ is also used for locating any entity eg.
block(1,2,3)@rot(i¢,0.1) means “a block of dimensions 1 2 3 rotated by 0.1 radian about
the x-axis”.

tnv is the inverse of @ X@inv(X) — X, 1@X — X. X@1 — X.

2.3 Polynomials and rationals

Terms of the form poly(X, Ao, A;......A,) (ie. terms of n+2 arguments whose functor is poly
and whose first argument is X) represent the polynomial Ao+ A; X + A; X2+ - -+ A, X").
A rational function is represented as the formal quotient of two polynomials. Note that,
except for the case of a polynomial of the above form where X is a constant, conversion to
and from these forms is not performed by the := predicate, but is invoked by predicates
poly and rational.

2.4 Sequences and iterations.

M..N denotes the finite sequence [M, M + 1...N], ie. the Prolog list.
sigma(S, F) sums the function F over the sequence S, eg.

sigma(1.3,i—>i12) —112+212+312— 14.

pi(S, F) similarly takes the product of the function F over the sequence S.



2.5 General operations.

mod(X) is a numeric measure of the size of any entity. Eg. mod(V) is the modulus of
the vector V. mod obeys over an abelian group the laws mod(0) — 0, mod(X +Y) =<
mod(X) + mod(Y).

mod(M, N) is the remainder when the integer M is divided by the integer N.

unit(X) is a version of the entity X which is of unit modulus. Eg. unit(vec(3, 4,0)) —
vec(0.6,0.8,0)

2.6 Locations.

trans(X,Y, Z) denotes a translation by the vector vec(X,Y, Z). trans(V) denotes a trans-
lation by the vector V.
rot(V,T) denotes a rotation by an amount T about a vector V.

2.7 Equations

Terms involving equality are simplified depending upon the entities being equated. In
particular, any equation over the reals which involves only on e symbolic quantity is given
to Minipress to solve, and simplifies to the form V ariable = Constant. Equalities on terms
which have a functor known to be free may give rise to equations of the arguments of the
terms.

2.8 Ordering relations.

The symbols <, =< etc. are used to mean a total ordering over the reals, following Prolog
conventions. Terms involving them are simplified by collecting constants to the right, non-
constants to the left. Any inequality involving just constants is evaluated to the Pop-11
true or false.

The following conventions are used for partial orderings:- <:= Less than or equal to in
a partial ordering, so that it is reflexive, symmetric and transitive.

X<=X. X<=YandY <=: Ximplies X =Y. X <<=V and Y <:= Z implies
X<=12Z.

2.9 Lattices and boolean algebras.

A lattice is an algebra with operators \/ and /\, which are associative an commutative
and obey the axioms:-

A/\(A\/B) = A. and A\/(A/\B) = A.

Boolean algebras are special cases of lattices, and in particular the point sets defined by
Constructive Solid Geomeiry form a Boolean Algebra. Boolean algebras are distributive
over both \/ and /\, and admit a subtraction operation \, for which

(A\B)\/B = A.



It can be shown that iattices are partially ordered unter the relation

X<=YifA/\Y =X

It should be noted that lattices do not in general obey the distributive laws of boolean
algebra, so that these cannot be built into the Algebra Engine.

2.10 Shapes

Constructive Solid Geometry is used to represent shapes using the following primitives:-
block(X,Y,Z) denotes a cuboid, centroid at the origin, with the stated dimensions
along the coordinate axes.

cyl(L, R) denotes a finite cylinder of length L and radius R, centroid at the origin, axis
along the Z-axis, and

cone(H, R) denotes a cone of height H and radius R, base centre at the origin, axis
along the Z-axis.

sph(R) denotes a sphere of radius R, centre at the origin.

tor(R1, R2) denotes a torus of minor radius R1 and major radius R2, centroid at the
origin, axis of radial symmetry along the z-axis.

These primitives are combined with the boolean operations \/ and /\ for union and
intersection, and with \ denoting set subtraction. The term Shape@Loc denotes a Shape
relocated by the location Loc.

It is a convenience to allow Shape@V ec to denote the Shape translated by the vector
Vec.

A block has faces calied top, bottom, left, right, front and back, named under the
convention that the X axis is forward, the Y axis is left and the Z axis is upward. These
names are preserved under rotation. The lower, upper and curved faces of a cylinder are
called the prozimal, distal and curved faces.

It should be noted that there are some difficulties with the treatment of shape outlined
above. A desirable property of any formalism is referential transparency, which means that
we can always substitute one term for another if the two are equal without changing the
sense of what is said. If we regard the CSG primitives as just denoting subsets of 3-space,
then the face naming conventions, which are needed for specifying spatial relationships,
imply a lack of referential transparency. For example if b1 = block(1,2,3) and b2 =
block(1,2,3)@rot(ii, pi) then, as sets, b1 = b2, but the bottom of bl is the top of b2. A
potential resolution of this difficulty would be to treat shapes not as subsets of space, but
as functions from 3-space to a set of labels. It is possible to ensure that such labelled sets
form a boolean algebra by requiring the labels themselves to form a boolean algebra.

3 Bodies

An important property of a module is that of being a rigid body, which implies that the
nominal relative positions of any sub-modules are determined at design time. The shape
of a body module m is determined from the shape of the modules listed in the parameter



parts$M, but the way that this shape is computed may depend upon the module-class to
which M belongs. In what follows, I shall use “body” to mean a module which happens to
be a rigid body, and use “features” loosely to mean a sub-module, or geometric features
of the shape of the body.

It should be noted that, during the course of design, the existence of many modules
may be established long before their membership of bodies is established, and indeed body
membership may change during the course of design. For example, it may be seen to be
necessary to make a module such as a valve seat, which requires fine grinding, as an insert
rather than be machined as an interior feature of a larger body.

3.1 Group Theory

Many modules will have symmetry, either actual or functional. It is important to extend
the EDS to have an explicit representation of these symmetries. In Popplestone (1984a)
it is shown that the capabilities of RAPT inference engine could be generalised if a group
theoretic representation were used, and in particular an exploitation of finite symmetries
would be possible.

The basic idea is that any spatial relationship between features determines the relative
positions of bodies possessing these features modulo the symmetry group(s) of these fea-
tures. Suppose body B1 has feature F1, and body B2 has feature F'2, then one possible
implication of the statement that F1 fits F'2 (or F1 fits F2 exactly) is that they have the
same symmetry group (up to automorphism), and that the relative location of B2 with
respect to Bl is a coset of that symmetry group. For example, if the socket of a socket
wrench has a six fold symmetry (some do, others have twelve-fold symmetry), then its
symmetry group is the cyclic group we shall denote by cy(6). To be more precise, in our
context cy(6) denotes a particular cyclic subgroup of the euclidean group. If the socket
fits a bolt head with six fold symmetry, then the position of the wrench with respect to
the bolt is determined to be a member of a coset of the common symmetry group, that
is T1@cy(6)@T2 where T1 and T2 are constant transformations. (eg. if the axes are
centrally embedded in the bodies, then perhaps T = trans(0,0,6)) and T2 = 1).

From Popplestone (1984a) we see that a basic operation which needs to be performed on
groups is the simplification of expressions involving intersections of cosets of the Euclidean
group. It is also possible that a representation of groups of permutations could be desirable
in treating sets of identical entities.

A suitable notation for these groups needs to be chosen, and a suitable representation
for performing the necessary computations. A classification of the infinite groups can be
found in Hervé (1978). Many of the finite or finitely generated sub-groups of interest are
crystallographic groups (Shokichi, Iyanaga, and Yukiyosi, 1968). A uniform representation
of the finitely generated sub-groups is possible simply by listing their generators, preferably
in a canonical order. The infinitely generated groups can be specified by defining their
generators parametrically. A suitable convention would be to denote groups by gp(List),
where List is a list of functions or constants. eg gp({{— > rot(kk,t)]) would denote the



group of rotations about a single axis.

Calculating the intersections of cosets of such sub-groups from first principles involves
the solution of equations, which will either be non-linear equations in real variables, or
diophantine equations, or both. The implementation of RAPT described in Corner et al
(1983) does in fact deal with the former type of equations, in the form of location equations.
However, solving such problems from first principles is not efficient — it is better to have
a catalog of the solutions to commonly occurring ones eg.

cy(N)/\cy(M) — cy(hcf(N, M)).

ie. the intersection of two cyclic sub-groups is the cyclic sub-group whose order is the hcf
of the orders of the two sub-groups. Following Knuth, Bendix, Huet (Huet, 1978), it is
possible to check such rewrite rules for confluence, and add new rules, depending upon the
existence of “critical pairs”. Thus if we say:

gp([rot(kk, pi/N)])/\gp([t— > rot(kk,t]) — gp([rot(kk,pi/N)))

ie. the intersection of a cyclic subgroup with the sub-group of rotations about the z-axis is
the cyclic subgroup, we are creating a need for rewrite rules to convert from the form cy(N)
to gp([rot(kk,pi/N)]). It is important when producing a final form of a coset expression
to choose a standard member of the automorphism class of any sub-group occurring — for
example, where a single axis of rotation is involved, that should be about the z-axis.

4 Exploring Design Space

The EDS is not intended to perform fully automatic design: it is a Designer’s Apprentice,
which is capable of performing some Design functions automatically, but is dependent
upon human guidance for the more strategic decisions. The EDS is also seen as a vehicle
upon which more fully automatic design specsalists can be built. It will play this role also
in Plan Formation.

The process of design is the construction of a design description document (DDD),
which is held as consequences within the ATMS. The DDD contains a set of assumptions,
and a set of consequences (called values by de Kleer). Each assumption corresponds to
a design decision. For example, the assumption gl : gear says that gl is a gear, and
the assumption r$g1 = 10 says that the parameter r$gl1 has the value 10. There is no
requirement for assumptions to be consistent. For example, the assumption r$g1 = 20
might coexist with the assumption that r$g1 = 10. However, a final design is characterised
by a set of assumptions which must not be known by the system to be inconsistent. So
the two values for r§g1 quoted above can only form part of alternative possible designs.

Consequences are held as Pop-11 records of the form conseq(N, B, As, J, P) where B
is a term with a truth functional value (eg. r$g1 = 10) and As is the set of assumptions
that the consequence depends on. P, the parents, is the set of consequences that the



consequence was derived from. J is the justification - the name of the rule used to derive
the consequence.

While a small design exercise could be essayed with no additional structure on the
ATMS, serious design requires us to provide the concept of focus, whereby a limited set of
consequences is in use for forward chaining, corresponding to a particular part of the design
that is being considered. For example, in the case of a gearbox design, the initial focus will
be on the gear teeth, followed by the location of the bearings on the shafts, the loading of
these bearings, the analysis of the shafts for stiffness and strength, the detailing of bearings,
housings and gear wheels, etc. An experimental focussing capability is available in the
EDS, which allows the user to select particular consequences, or consequences containing
particular variables, or which depend on particular assumptions.

The Prolog goal assume(Term) is used to enter assumptions into the ATMS. For
example, : —assume(gl : spur_gear) states that the module g1 is a spur gear.

Let us now discuss the interaction between the ATMS and Prolog. When a new fact is
entered in the ATMS it can give rise to forward chaining. Possible forward chainings are
defined by the prolog predicate implies, and by separately encoded equality propagation.
The result of a forward chaining is always given to the Algebra Engine to simplify before
it is entered in the DDD.

4.1 Equality propagation.

Only consequences of the form Variable = Constant give rise automatically to forward
chaining. Any consequence of which contains Vartable spawns another consequence with
Constant substituted for it. If the new consequence has the same assumption base as the
old one, the old consequence is said to be subsumed by the new one, and is deleted. New
consequences are simplified by the Algebra Engine, and may give rise to yet more equality
substitutions. Recall that the Algebra Engine may invoke Minipress to solve equations
during this simplification process, which will thus treat systems of linear equations if their
matrix is triangular. A separate engine is being provided to solve non-triangular systems
of linear equations.

4.2 Propagation of other consequences

Propagation of other consequences is determined by the predicate implies. Implies is
defined both for single consequences and for pairs of consequences. Every new consequence
is given to ¢mplies, and is paired up with old consequences and the pair is given to tmplies.
For example consequences of the form M : Mec state that M is a member of the module
class Mc. Thus g1 : gear states that gl is a gear. implies deals with this by consulting a
file containing the definition of the module class (if necessary) and instantiating all of the
constraint clauses. This forward chaining can proceed quite far, since a module may have
parts each of which is stated to be a member of some other module class. However the
chaining is normally terminated before the whole design is automatically expanded into
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the DDD by the fact that some modules will be at too abstract a level in the taxonomy
to have parts specified.

5 The Taxonomy -

Module class definitions are held in an external form in the taxonomy, and translated by a
program called Dracula into prolog clauses which are held textually in files. The external
form contains parameter and variable declarations, tagged pieces of English intended for
appropriate regurgitation to the user, constraint and table definitions. One view of the
taxonomy is that it constitutes something like a generative grammar for designs.

All properties of modules (eg. names and types of variables and parameters) are strictly
inherited down the taxonomy, which puts significant consistency constraints upon that
structure. Thus we should be in no danger of finding off-white elephants in our trees
(Brachman, 1985).

Currently the structure of the taxonomy is implemented by textual references in header
files associated with each module class. This structure is very cumbersome to modify
interactively, making it difficult to install new modules, and it is intended to change it.

5.1 Constraints and Tables.

Constraints are relationships between the mathematical entities which characterise a mod-
ule or modules. The general form of a constraint as a Prolog clause is:-

constraint(Mc, M, B, Id).

where Mec is the module class to which the constraint applies, B is a boolean term ex-
pressing the relationship, and Id is an identifier used to refer to the constraint, so that
it can be identified and used by the appropriate inference engines. (Note the EDS has at
present an extra place in the constraint predicate associated with the implementation of
ports, which was at first essayed). M is a prolog variable which occurs in B and which is
bound to give an instance of the constraint which will be entered into the DDD.
For example
constraint(spur_gear, G, ft3G = tor$G/r$G, 1)

says that the tangential force on a spur gear is equal to the torque divided by the pitch
radius. If we say, for example, g1 : spur_gear, then the equation ft$g1 = tor$g1/r$G1 is
loaded into the DDD as a consequence.

Shapes are defined by means of shape constraints, which have the same form as any
other equations. The shapes associated with modules may be positive, that is indicating the
presence of material, or negative, that is indicating its absence. The parameter shape$M
is used to denote the nominal positive shape of any module. A module such as an oil-way
will have a negative shape, indicating material that must not be present, and a positive
shape, indicating material that must be present to provide adequate walls.
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In engincering, as well as relationships between parameters an variables being expressed
as equations, a tabular or graphical form is often used, either because the mathematical
form is felt to be too complex for hand computation, or because the relationship has been
established empirically, or to express some arbitary convention. For example, the factor by
which the power capacity of a pair of gears is reduced with increasing speed is expressed
in the form of a graph, and is input to the EDS as a table.

Thus the EDS is capable of handling constraints in tabular form, which requires a
descriptive apparatus for defining what the entries in a table mean. We have used the
work of Codd (1970) (see also Popplestone, 1979) as a guide to this, although there is a
need to extend the concepts of relational databases because they are dependent on the idea
of an exact match between components of tuples, whereas some engineering tables require
an interpolation to be done. While a detailed account of the treatment of tables is outwith
the scope of this paper, suffice it to say that tables are similar to Codd relations with
module parameters or variables as column headers, and that they undergo manipulations
corresponding to those undergone by constraints, with the relational join operation playing
a similar role to the elimination of a variable or parameter between two constraints.

6 Invoking the Inference Engines

Many inference engines will have been written with representation conventions other than
those used in the EDS, or indeed may be completely separate programs. Thus their use
will in general involve a measure of data conversion.

6.1 Invoking Press

Press (Bundy, Byrd, Luger, Mellish, and Palmer, 1979) is a system which is able to solve
symbolic equations, and is used to allow the equations arising in design to be solved for an
appropriate variable or parameter, for example to allow it to be eliminated between two
equations. Press is written in Prolog, with a compatible representation of terms to that
used in the EDS, so that the interfacing task is straightforward. Press itself is however
a very large and cumbersome program. The purposes of the EDS are adequately met by
Minipress, which makes use of Bundy’s methods, and some of the axioms, but is a new
program written by the author.

The simplifier automatically makes use of Minipress if it discovers an equation with
only one symbolic quantity — the equation is solved and the result substituted for.

Press will be available to the user of the EDS to allow him to solve a named equation
(occurring as a consequence) for a named variable or parameter. More complex use is
envisaged to allow other inference engines, or specialists, which will trace through relational
paths, to eliminate variables of a certain class from equations of a certain class at each
step. For example, the input torque to a drive train can be deduced from the output
torque by equating the input and output torques of successive stages and applying the
torque conversion laws appropriate to each stage.
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6.2 Invoking the RAPT inference engine

In the EDS, rigid modules are the conterpart to bodies in RAPT. In any focus of the ATMS,
certain spatial relations ¥ill be known to hold between features of modules. The RAPT
inference engine can be used to derive explicitly more constraining relations from these,
and in some cases to infer fixed relative locations for the modules. Features are named by
reference to the conventional names of features of the primitives of module shapes.

RAPT is written in POP-2 (Burstall, Collins, and Popplestone, 1971) and so is readily
available within the EDS, its invocation requires the building of data structures encoding
the relationships known tc the EDS, and expressing the locations of module features. These
latter are inferred by examining the CSG definition of the module shapes.

6.3 Invoking the Modeller

The modeller exists as a separate process, and communication with it is via some form
of Inter Process Communication. The elementary interface which has at present been
implemented simply makes use of a printing routine which prints CSG data structures in
the syntax required for input to the modeller, and sends the resulting character stream
to the modeller through a Unix pipe, and listens through another pipe for the modellers’s
response. This interface is used both to request the modeller to draw shapes and to query
the modeller about matters such as the volume of shapes and whether they intersect.
The CSG trees thus transmitted are variable free, so than no attempt is made to use the
modeller’s capability to handle symbolic descriptions.

More efficient use of tke modeller would allow the EDS to to feed variable-containing
shape expressions to it and to keep a tally of the values the variables are bound to. Also
a procedural interface rather than a textual one may be used.

7 Plan Formation

The approach to plan-formation which I am advocating in this paper is to construct plans
as behaviour modules in the EDS. The kernel of any element of behaviour arises from the
existence of modules in the design itself. If a shaft module sh1 exists in the design, then
the activity acquire$shl can be generated. Whether the acquisition involves buying or
manufacturing is not immediately manifest: choosing the acquisition method is a matter
of descending the taxonomy. If the “buy” choice is made, the acquisition module will have
parameters like supplier$shl and cost$shl, whereas if the “make” choice is made, the
acquisition module will become a complex structure where decisions about the formation
of various sub-modules are made, for example bearing seatings and gear hub seatings.
Potential strategies for forming these will themselves be found in the taxonomy, and will
be taxonomically structured as in (Tenenberg, 1986).

Likewise the existence of an interface module in which a gear drives a shaft implies (if
they are separate bodies) the existence of an activity of assembling the gear to the shaft.
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However, the representation of activities does require an extension of the symbolism of
the present EDS. For example, we need to be able to say that one activity occurs before
another, or during another (Allen, 1983).

The temporal ordering of activities in assembly is strongly dependent upon geometry. It
is, of course, important to avoid considering in detail all of the possible assembly sequences,
and it is certainly worthwhile analysing any activity module both for its feasibility in
isolation, and to examine the temporal dependencies of activities taken pairwise. Koutsou
(1986) has shown how it is possible to plan trajectories for isolated bodies using two key
components of the EDS, the Spatial Relation Engine, RAPT, and the Modeller. This
approach can be used to answer questions such as “Suppose I insert shaft sh2 in bearing
bl before I insert bearing 62 in bearing housing bh2, can I plan a suitable trajectory
for this latter insertion?”, thereby obtaining facts about the possible ordering of assembly
operations, even if these are not necessarily completely adequate for determining the order.
Developing an ordering in this way offers the possibility of treating what the planning
literature refers to as “goal interaction”, which is particularly difficult in robotics if we are
dealing with bodies having a realistic range of shapes because it is not possible to codify
the interactions as can be done in the “blocks world”.

It is also necessary to treat what are referred to in the planning literature as “pre-
conditions” and “postconditions” (or “effects”). The most important post-condition of an
activity module acquire$M, where M is a module which is present in the final design, is
simply that M exists, and normally this will be, from the point of view of the EDS, a per-
manent state of the world, although of course trial assemblies are not unknown. However
it will also be necessary to design jigs and fixtures for manufacture, and it is possible that
some of these will have to be assembled and disassembled during the course of manufacture.
It will be natural to treat the design of a jig or fixture with the same EDS mechanisms as
any other design: hence it will be necessary to admit that the main effect of an activity
may have a finite future.

The preconditions of an activity can be treated as a requirement for the existence
of certain interface modules. For example, suppose bearing bgl is to be inserted in a
bearing-housing bk1 belonging to an end-plate framel by-an activity acquire$[bgl, bh1).
Let framel_jigged be an interface module in which framel is mounted in a jig. Let
bgl_gripped be an interface module in which bgl is gripped by a robot gripper. Then

acquire$(bgl, bh1] during framel_jigged

holds, as does
bg-gripped overlaps acquire$|bgl, bh1]

It should be noted that in the realm of assembly planning and machining planning
the concept of module identification (qv.) plays an important role. For example if we
are going to perform another insertion into a feature of framel the interface module
framel_jigged_1 to exist, then it is probably more efficient to make the identification
framel_jigged = framel_jigged.1 if possible, ie. to use just the one jigging operation.
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Of course, the result of this identification is that conditions upon the two jigged states are
conjoined, and may become unsatisfiable. The automatic generation of such identifications
will be the task of assembly specialists which will cluster operations for similarity in such
properties as direction of approach, so that there will be a strong expectation of satisfiablity
of conjoined preconditions over these clusters.

8 User Interface

The present implementation of the EDS has a minimal user interface, requiring the user to
input assumptions into the ATMS with the assume predicate. Some work has been done
in displaying the taxonomy as a visible tree. It is anticipated that a more user friendly
system will make use of modern interactive graphical capabilities, where for example an
assumption about the existence of a module will be generated by pointing to a token for
the module class presented on the display. Alphanumeric input will still be required for
other purposes, for example to override the default name assigned by the system to a new
module, or to assume a value for a parameter, but we would use the technique familiar in
the Mackintosh, where the significance of such input is determined by its location in a box
on the screen.

Considerable thought will have to be given to the presentation to the user of the current
design state, since an undifferentiated mess of equations and drawings will be of little value
to him. This will almost certainly have to make use of a windowing structure in the work
station, with data that is in some sense related grouped together in the same window.
Some preliminary work to these ends has already been done.

While the Prolog form of input and output of mathematical expressions is considerably
more user friendly that that of Lisp, we expect to implement further improvements in
typography by providint for the display of greed letters and subscripts and superscripts.

9 Implementation

The EDS has been implemented in a demonstrable form, and has been mounted on Sun
workstations at various industrial and academic sites of the Design to Product Demonstra-
tor, and at UMass. Throughout this paper I have distinguished between what has been
done and what might be done or is planned to be done by using suitable modal verbs for
the latter.

10 Discussion

It should not be assumed that the definition of a design in terms of modules will result in a
modular design, since the modules referred to in this paper are basic engineering entities,
which can be freely combined. In order to permit the system to contain definitions of
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fairly complex high level modules, while not coercing a modular form of design, a specific
capability, that of modular identification needs to be introduced. This allows the designer
to decide that two modules which were originally considered to be distinct are in fact
identical. For example, an electric motor always has a frame, which supports the working
parts, and a transmission likewise always has a frame. Howeverin an optimised design the
frame of the motor and of the transmission may be identified.

A number of important issues have not been discussed in this paper. All of the loca-
tions and shapes of bodies have been treated as though knowledge of the nomsnal location
and nominal shape were adequate. Some excellent work has been done on reasoning with
uncertainty, for example Brooks (1982) has adopted an algebraic approach to treating the
problem of errors in robot planning. Requicha (1983) provides an interpretation of engi-
neers’ tolerancing of shape in a CSG context. Fleming (1985) has treated the accumulation
of location tolerance arising from loose fits, and is studying the accumulation arising from
toleranced bodies. Lozano-Perez, Mason and Taylor (1984) have studied how a goal can be
achieved despite position uncertainty provided the uncertainty envelope lies in a pre-image
of the goal.

Providing a treatment of tolerance in the EDS promises to be a formidable activity.
However I would suggest the following guide-lines.

1. The development of a formalism for specifying tolerance on scalar parameters, and
the provision of a tolerance inference engine to propagate tolerances through con-
straints.

2. The examination of Fleming’s techniques for representing location tolerances, with
a view to their possible adoption. Fleming uses location tolerance zones which are
intervals of the angles, but have a linear relationship between angular tolerance
and linear dimensions. These structures, while they may not give as tight a hold on
tolerance as is obtainable in theory by Brooks’ approach, can be manipulated readily
without heavily taxing the symbolic computational capabilities of a system.

3. The adoption of Requicha’s scheme for tolerancing shapes. This is likely to mean
that the block primitive falls out of use, since its sides will need to be independently
toleranced. It will be replaced by half spaces.

4. Much knowledge about tolerances will be encoded in modules, rather than derived
from first principles, in line with the philosophy of the EDS.

Within the framework of the EDS, simple sensors can be treated as modules which bind
the values of certain variables. Dealing with complex sensors, such as an image acquisition
system with its associated image segmenting software, could be done by a spacialist, since

the EDS does contain constraints upon the scene, and in the ATMS a system for supporting
alternative interpretations.
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