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Abstract

In this paper we dertve an expression for the mean response time of a
fork-join job in a single server processor-sharing queucing system. We also
derive an expression for the mean response time of a fork-join job conditioned
on the required service time of the largest task. In our approach a fork-join
job s composed of a number of independent. tasks which can be scheduled
independently of each other. The job is considered complete once the last task
completes. Iach task service time is assumed to be an exponentially distributed
random variable. We provide both lower and apper bounds on mean response
time of fork-join jobs. The lower bonnd to the mean response time of the fork-
join problet is very tight when the number of tasks in the job is large ( - 7)
and/or the server utilization is high. Finally, numerical results are developed
that provide varions insights such as that fact that processor-sharing scheduling
at the job level is better than at the task level.
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1 Introduction

With the advent of programming languages that support parallel programming,
(i.e., Concurrent Pascal [Han75|, CSP[Hoa&5], and Ada [Pyl81]) and multiproces-
sors, there is increasing interest in modeling the performance of parallel programs.
In this paper, we evaluate the performance of a simple parallel program, a fork-join
on a single server that uses processor-sharing as its scheduling policy. We derive
an expression for the mean response timne of a fork-join job and both lower and
upper bounds on the mean response time. Our lower bound is very tight when the
number tasks created by a fork-join program is large. In our problem a fork-join
job is composed of a set of tasks cach of which can be scheduled independently of
the others. The job completes when the last task completes.

There are several reasons why this problem is of interest. First, up to now the
literature dealing with the exact performance analysis of parallel programs has
focussed on scheduling policies that serve tasks in a first-come first-serve (FC'FS)
manner. Consequently, this paper is a lirst step toward the analysis of parallel
programs under other scheduling policies. We have chosen the processor-sharing
discipline because of its usefulness in modeling round robin disciplines that are
typically utilized in uniprocessors and multiprocessors.

There is a second practical reason motivating this work. In the luture, a large
fraction of software will be written nsing parallel processing constructs such as forks
and joins. In most cases, the resulting programs will execute on multiprocessors.
However, occasions will occur when the parallel program tnay be transported to a
system containing a single processor. Consequently, it is important to understand
the behavior of these parallel programs on a single processor. We will observe
from our analysis that a fork-join job incurs a higher mean response time if Lhe
basic schedulable entity is a task than if the basic schedulable entity is the job.
Consequently, care must be taken in moving parallel programs from multiprocessors
to uniprocessors.

As stated before, the literature has not addressed the issue of fork-join jobs in a
processor-sharing queueing system. lowever, processor-sharing and FCFS fork-
join job scheduling have been addressed separately.

Bulk arrivals with processor-sharing are examined in [KMR71]. In [KMR7I| a
general result is given for task response time conditioned on service attained when
tasks arrive in bulks. Our approach is an extension of [KMR71| by conside-i=a the



average job response time rather than the average task response time.

The behavior of Tork-join jobs on both uniprocessors and multiprocessors using a
FCRS seheduling policy has been evaluated by modeling the system as bulk
arrival quening system [NTTRT]. The behavior of fork-join jobs exeenting in a
system where cach task is processed on a dedicated processor has been studied
in several papers [FI1I84], |[NT85|. [BM85]. {TY86]. Some of this work has been
extended to parallel programs characterized by arbitrary acyclic precedence graphs
IBMTS&7|. In our approach we extend the uniprocessor work of [NTTR7| from he
FC FS to processor-sharing. In summary, our work may be viewed as an extension
of aspects of both [KMR71| and [NTT8&7| to analyze fork-join jobs under processor-
sharing when only one server is used.

The remainder of the paper is structured in the following manner. The model of
the system is found in Section 2. The analysis leading to anr expression for the
mean response time of a job and the conditional response time of a job given the
service time of the largest task is contained in Section 3. In Section 3 we also
develop both lower and upper bounds for job response time. Section 4 compares
various scheduling disciplines. A study of the behavior of the system as a function
of different parameters is also given in Section 4. Some concluding remarks are
found in Section 5.

2 Model

In our model a job is initially composed ol a set of M tasks which arrive to a single
server system according to a Poisson arrival process with parameter A. Here the
number of tasks, M, is considered to be a random variable with mean a : E(M).
Fach task can be exccuted concurrently with tasks of the same or other jobs. Tasks
are assumed to be scheduled independently of each other according to a processor-
sharing queueing discipline. The service times of the tasks are assumed to be
exponential random variables with mean | /. The server utilization is p = Aa/p.

It is worth observing that if a job containing M tasks is scheduled as a single entity,
its job service time is an M order Erlang random variable. We shall observe that
the variation of processor-sharing where the task is the schedulable entity does not
perform as well as the ones where the job is the schedulable entity.



3 Analysis

In this section we determine the average response time of a job conditioned on the
service requirement of the longest task and the average response time of a job over
all service times. Initially, we shall make no assumptions regarding the task service
time distribution. We introduce the following notation:

e X -istheservice time of a task with cumulative distribution B(z} PV - z]
and mean 1/pu,

e F(z) - is the cumulative distribution of the remaining service time where
F(z) - 1 - B(x),

h Jargest task in a job, i Xy - Xg - oo 0 X,

. i. - the service time of the ¢
e Y - is the service time of Lthe largest task in a job, Y .i’l.

e W - is the mean response time of a task in the job,

e / - is the mean response time of the job such i.hill t F(maxy-m{Wi}),

e w(x) - is the mean response time of a task in the job conditioned on the service
time, \' i, w(r) (WX orx).

e t(x) - is the mean response time of the joby conditioned on the service Lime of
largest task, Y roie d(x)  K(TIY x),

e M(r) - number of incomplete tasks in a job after each task has been entitled
to r units of service, i.e., M(r) miff Xpo -2 - Nmppo - m - M and
-Yl “~ I,

o tu(z) - BE(TIYY =M m).
o w,(r) - EW|Y - M m),
o w'(x) - dw(r)/dzx.
o w! () - dw,(zc)/dr,
o t'(r) di(r)/dr.
We next derive an integro-dillerential equation for the mean job response time,

establish closed form expressions for 1, (r) and t when X is an exponential random

variable, and establish hounds Tor these quantities.

-



3.1 Derivation of the Processor-Sharing Integro-Diﬁ'erential
Equation

Our derivation of the task-sharing integro-dilferential equation follows the develop-
ment ol [KMR7 1} and relies on the feedback approach to processor-sharing presented
in |KC67]. Our system is composed of asingle queue and a processor-sharing server.
Jobs enter at the tail of the queue and are split into tasks. Migure 1 gives a diagram
of the quencing system when a particular job arrives. in the analysis to follow we
will examine the progress of this job through the system. This job is referred to as
the tagged job.

[ach Lask receives a quanta of corvice when it reaches the server. If the attained
sorvice of the task is less than the required service, the task is placed at the end of
the quene. Otherwise, the task exits. In this approach we first analyze the response
time of a fork-join job when the scheduler is a round-robin discipline with a time
slice, g. Then we consider the limiting case of round-robin as the time slice quantum
approaches zero.

First, we will define the following in the conlext of the round-robin discipline :
e n; - the mean number of tasks in the system when the largest task of the job
receives it’s i quantum of service,
o N () - the task density of the system given r units of attained service,

o I, - is the average delay between the (i 1) quantum of service and the
i quantum of service for the largest task including the actual gquantum of
service,

e 0, - the probability that a task which has received ig units of service will
require more than (2 | 1)¢ seconds of service, and

e ¢ - the probability that a task of a job which has received ig scconds of service
will require more than (¢ ¥ 1)g seconds of service given that the largest task
still requires additional service.

The average delay until the largest task of the job receives its first quantum of
service is simply '



h D ngt (m l)gtq. (1)
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We assume here that the largest task enters al the end of the queue. This ordering
is not important since we consider the limit as ¢ - 0. Because of this limit, any
existing tasks share the processor immediately. The first term in the ahove equation
represents the delay due to tasks ahead of the newly arriving job. The second term
models the effect of the delay due the iembers of the newly arriving job in front of
the largest task. The last term gives the delay due to the first quantum of service
of the largest task. '

By induction, the mean time for the largest task to receive its 1* quantum of service
is given as the sum of four terms.
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The first term is associated with tasks found when the job arrived at the site; the
next term is associated with tasks which arrived after the job; the third term is
due to the tasks of the job which remain after receiving ¢ quanta of service; and ¢
is the quantum of service that the largest member receives. Following Kleinrock’s
development we divide by ¢ leaving :
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Figure 1: Process-Sharing Diagram after the Arrival of a Tagged Job

6



[n the limit as 7 -» o0, § * 0 such that

iqg - r,jq - y.and ¢ - 0. weobtain the following limits:

li/g - !'m(.r)‘
ot () dy.
n, - N{y)dy.
I Byt x)

0,0, v 10,0 2 * .

! ) I Bly)
owm.o, 2 oL B ),

I 4 (m I)'l—i(, (M ()Y ).

y N

By taking the limits of both sides of equation (3) as ¢ - » O, we obtain

1. Cow (l “(.’Il.r)
ra(r) /“ N () (1 “(y)) dy |

da [0 Bl )y 1 E(ME)]Y ).

()

By noting that the average density of tasks |K(!67| is

N(w) Al Bly)lw'(y)

we obtain our first main result.

flr) [T ul(e)( By o)y

wa [Ch(0 B W)y
CIS(M ()Y - x).

(4)
(5)
(6)
(7)
(8)
(9)

(10)

(1Y

(12)

(13)

We remind the reader that the above equation makes no assmption regarding the

nature ol the service time distribution,



3.2 TFork-Join Jobs with Exponential Service Times and
Processor-Sharing

Il we assume exponential service times with mean 174 for cach task, then several
simplifications occur. Ifirst, since the cumulative distribution is now exponential,
we have

(1 Blyix) om0, (14)
(U By e (15)

I'rom the results of [KMRT1] we know that

. wll - plu
urh, (y) 0 [ | (@ |)(2_ _p)_e‘_w_ )

) 20 p) (1)

Then by integration we obtain

0.5p(a 1 1)e ™

( ()

,\n./“w:,, y)(v By v ey -
0

Using the exponential assumplion we now have

/\u.ﬁfl.',,,(y)(l Blr  y))dy pﬂ,/:t'm(y)c mr-u) gy, (18)

Let us now focus on E(M(x)|Y  r). By using the definition of the expectation of
a random variable we have

mn

E(M(@@)|Y -x) D kP(M(z) kY 1) (19)
ko1
irom the definition of conditional probability we know that

P(M(z) - kandY - x)

P(M(x) kY - x) P(Y - x)

(20)



Since the event (M(x) - k) event (V' o) b - 1, we have

[0 &0

P(M(r) kandl -r) | P(M(r) - k) .0 k- m. (21)

By observing that M(x) is a binomial random variable, we have
3) "”‘ ' mo kg k )
P(k) " [ Fe)™ ") kL (22)
By direct substitution we have

S k(I R | F )
Py ) '

If we now consider the denominator of the above expression, we see that by the

E(M(r)|Y r) (23)

basic probability axiom and substitution we have

PV cx) U PY o x) (e ), (24)

Then noting that the numerator is the expectation of a binomial random variable
withg - |1 F(@r) and p F(r) and that F(x) ¢ ", we have our desired result:

me

BMENY )

(25)

When we combine these equations together, we form the integro-differential equa-
tion for the job response time for exponential service requirements.

O5p(a 1 1)
(‘

1y
"oy

1 (r)

™m

(1 »n)
oy

¢ ’”"ml/ ! (y)edy i
n

me M

L1 e wrym (26)
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Fquation (26) is our second important result.

To climinate the exponential product in the integral of equation (26) we make the

following substitution

i (r) - R(r)e he,

the above equations into the lollowing linear

By some algebra we may formulate
differential equation,

' ‘ 0.5p ™m
R'(x) puR(r) - peR(0) (1 p)(u‘i 1) + a Q0 ¢ ne)m) (28)

quation (28) may be solved cither analytically or numerically by standard tech-
of the job response time, tm(z) we

niques. To determine the average response time
integrate R'(x)e ™. Therefore.

’m(-"') /“r H’(!j)(' ""(ly . (20)

job by conditioning on Y. The

time ol the
tatistic of

solve for the average response
as the maximum order s

We now
ask is the same

distribution of ¥ for the larpest t
the exponential distribution. 1L is given as

frmlrlm) mp(l e ") Yo B5. (30)

Then the average job response time, ! is simply

! [ I,,,(y)fy|M(yim)dy. (31)

meral analysis for the response time of a fork-join job using

This completes our ge
xponential service requirements.

proccssor-sharing scheduling with ¢
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3.3 Closed Form Solution to the Fork-Join Job Probiem

There are several ways to solve for equation (28). One way is to use numerical
methods to determine R, t] (r). and 1,,(r). We nse a numerical appr... | . the
section 4 because of its simplicity. However, to deline the contributions of various
parameters to the response time of the job, we derive a closed form solution 1o
equalion (28) in this section.

To determine a closed form expression for the response time, we expand my (1
(1= e *)™) in terms of a sum of exponentials such that

o

mf(1 (1 ¢ ™)™ ety le,,,,c: mr (32)
2 u

Appendix A gives i development for equation (32) and deseribes how the param-
oters, €py, 7 - 0,100 may be obtained. This development. is based on a partial
[raction expansion approach in order 1o avoid instability problems. Next, we observe
that equation (28) is a simple first order differential equation. The homogencous

solution is

R(x) e, (33)

where ' is a integration constant. To lind the particular solution we use the ex-
pansion of m/(1 (1 e *7)™) given by equation (32).

The total expansion of the right hand side of equation (28) is

o

. . ~ T .

N Coamr # et i L""u" " (‘;’1)
7 !

where K is the constant term from equation (28) and e,,; are the constants of the
expansion of m/(1 (1 ¢ *)™). The particular solution is given by

. . T N e JNT
I\ | [ '.l - ‘4"']" 4

I,(: .
k) pn o p(t p) Suliop)

(35)

and the complete solution is then



"I y IS

\. - ! ) (36)
i p(t ) el n)

N ey ¢

H(;r) (e

By using the proc odures in the previous section, we obtain the solution for the

response Lime conditioned on the service requirement

r 2 ! IO gem(l € {24 1)p2

bm(®) - p o (1 et )y }J' i %) (37)
R ) e U )

with the initial condition that 1,,(0) _I'he factor pC’ may be determined from

the initial conditions on the equation (Zb) and the derivative of tm(z). The result

is

W

| ~ J"m)
upC' 0.5p(a t 1) 1)1 m 38

We can also determine the average response time of the job over all service times.
This result is given as

/ | | ,, | p(! (0 m! i \ JCm, (1 m! )
R e AR A [ VR A
(39)
where 1, is the harmonic series(H,, X0 1/ m). kquation (39) is valid for p > 0.
An expression can be developed for p 0 vielding

m
l (40)
H
Before continning, we investigate the term
1 m!

(1 l’)(‘ I n))' (41)

in equation (39).

We observe that it can be expressed as
\\m l , ]
dyp

=3

VA
m ‘(l | ’ ’,) \ )
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where the d; terms are the result of svnthetic division by 7) into (1 o M)
3] g A y (' /) ( I']:' !“F"..‘,))

This implies that our result depends on 1/(1 p) and not 1/(1 p)*,

We also observe that equation (-12) converges to I, as p approaches one. With
these facts in mind we may make the following observations:

. - . . 5 '
L. the mean response time of a job grows in o with slope ! "6 (] w )
: nil p)? HY g

and

2. the mean response Lime of a job grows nonlinearly in 2 as a function of p.

3.4 Bounds on Job Mean Response Time

In this section we develop bounds on the average response time of fork-join jobs.
These bounds are important since the evaluation of the exact mean response time
hecomes computationally complex as m grows.

We obtain a lower bound. 1#™*(.r), by hounding the m/(1 (1 e "*)™) term of the
right hand side of equation (28) by m. The proof of this may be found in [Rom&7|.
This bound becomes tight when either me > oc,or ¢ - 0. The resulting differential

equation

0.5p(a ¢ 1)

e "ye ’”pu./ ' (y)e"dy + m (43)
(r p) 0

e
,I" (‘r))
can be easily solved using the methods of section 3.3 1o yield

T P L (
lo(r (! ) 14
(r) (1 ) )

Removal of the conditioning on V' r vields

b ll()..".p(u bl m m!

T TR TR LTI TR N L (45)

Bquation (45) gives similar insights into processor-sharing job response time as does
cquation(39). We see similar dependence of the response time on a, p, and m.



An upper hound may be derived in a similar fashion to the lower bound. The
bound itsell results from hounding the me "0 (L ¢ mry) germ of the right
Lane side of equation (26) by . This upper hound hecomes Light when either the
task size.m > borp 00 The results for the conditioned mean response time and

nnconditional mean response Lime are given without prool :

o L0 orins .
(e )" ; [16)
wle) ) Lo
where
| P
pul! (0.5p(a 1 1)) ; (47)
1 p 1 p
and
. 1. mlil,, O05p(a 2 1) pn m!
o ) e

P T R (Y AN | HETURI A

This completes our treatment of the job response time.

4 Numerical Results

In this section we give numerical results for the scheduling algorithm we have
just analyzed - the |)rn('.vsmr-:-:lmring(I’H) discipline in which the task is the ba-
sie schedulable entity. The average response time of the job for this algorithm is
given by equation (31). We refer Lo this model as the M/G/1 PS TASK
model. Our analysis will be hased on a numerical solutions of equation(31). In
soction 1.1 we define the details of the solution technigue in solving equation (31).
Section 4.2 compares the average response time of two algorithms: task schedul-
ing using processor-sharing to job scheduling using processor-sharing. Section 4.3
provides a comparison of task scheduling with processor-sharing 1o job scheduling
using FCFS. Section 4.1 examines the lower bound given in equation (45) and the
upper bound given by equation(48). Finally, Section 4.5 describes results for task
scheduling under processor-sharing in which average number tasks per job at the
server is not equal to the number of tasks in a part icular job, i.e. a #m.

14



4.1 Numerical Details

To investigate the issues in sections 1.2 through 1.5 inclusive we examine response
time given by equation (28) for jobs from | to R tasks under utilizatic: =7 -2 0.1
to 0.9 with a average service time ol 10000 milliseconds. We obtain the mean
response time of the M/ 1 'S TASK system using a fourth order Runge-
Kutta method for solving equation (31). We use a increment size of 200 milliseconds
and 4000 points. When we consider processor-sharing with job scheduling, FC'FS
with job scheduling. and average task response time under A/G [V PS TASK,
we also assume that all jobs consist of exactly the same number of tasks, t.e.a  m.
This is done for case of comparison only. In section 1.5 we consider the case when
a # m using the same parameters above with « varying independently of m.

4.2 Task Scheduling and Job Scheduling under Processor-
Sharing

The first. scheduling algorithm, which we compare to the MG/ PS TASK,
is the IS discipline where the job is the sinallest sehedulable entity. The fact that
the job might be composed of tasks is innnaterial to the scheduler. We refer to this
as the M/GIU PSS JOB model. The response time of the job is given by

m |

/ ( ). (19)
e toop

Figure 2 plots the ratio of the average response time of the M/G /L PSS TASK
system scheduling to the M;¢/'1 S JOB system for jobs of 1, 3, 5, and
7 tasks. Several observations can be made lrom our data. First, we see that as
the utilization, p. approaches zero the performance of the M/G /1 PS  TASK
system approaches the performance of the M/G /1 PS JOB system independent
of the number of tasks in a job. This is expected since no quencing occurs in both
conditions. In addition. the curve representing a job with only 1 task ( m -
1) in Figure 2 shows that the ratio of the MG/ PSS JOB system to the
MG PSS TASK system equals 1 independent ol the number of lasks. In
general, we conclude that the performance of the two systems approach cach other
as m -~ 1. This result is also expected.  However, as the number of tasks in a
job increases and the utilization increases, then the M/¢ /1 PS JOI3 system
gives better performance than the AL/G/E PS TASK system. This leads to

15



an important observation that processor-sharing seheduling at the job lovets beiler
than that at the task level. Vhisis can he explained since the amount of service given
to a job in the M/G/1PS TASK system is a linear function ol the number
of tasks. Consequently, large jobs get preferential treatment. As an examnle, when
m 7 and p 9. we see the job response time is nearly 50% higher for the
MjG/Y PS TASK than the M/GJU PSS JOB system. Morcover, we see an
increase in Lhe ratio of response times with the utilization, p. This is also expected
since as p increases small tasks must share the processor with a larger number of
tasks over a longer period of time. Thus. a job composed of small tasks are delayed
longer in the task scheduling approach than the job scheduling approach.

4.3 Task Scheduling under Processor-Sharing and J ob Schedul-
ing under FCFS

‘The second numerical study we perform is Lo compare task scheduling under processor-
sharing to job scheduling under FCEFS. Although the tasks are scheduled sequen-
tially, cach task service time is exponential. In this model the service time is Frlan-
gian. We refer to this as the A/ /1 FOIS model. The expected delay is given
in |AN78] as
0.5(1 1 1/m)

1 p )

TR (50)
I

Figure 3 displays the ratio between the job response time under task scheduling
nnder processor-sharing Lo the job response time ander FOFS. We see that even
for low utilization, the AI/G/1 FCES system performs better than processor-
sharing approach. Only when the utilization approaches zero do both algorithms
have the same performance. We see that ratios are greater than for the simple task
and job scheduling algorithms. This is expeeted since the coeflicient of variation
of the service time of the M/G/1 FC 'S system is less than the corresponding,
M/ PSS JOB system. ‘Therelore, it is expected to be less than the M/G/1-
PS- T AS K system. To continue the example from section 4.2, we see thatatm =7
and p .9 the job response time is nearly 200% more for the M/G[1-PS— TASK
than the M/G[1 FCEFS system.

16



4.4 Lower and Upper Bounds on Job Response Time

Now we want to compare our bounds to the exact solution. Figure 4a shows the
tightness of the lower bound equation (45) developed in the previous section. This
figure gives the difference between the lower bound and the exact solutions as a
percentage of the latter. We give curves for the task number, m, of 1, 3. 5, and
7. We see that the lower bound approaches the exact solution as p - 1. We also
observe that the bound as p - 1 is independent of the task count. This is expected
since the dominant factor is the utilization of the server. In addition, we observe
that for tasks counts of 5 or greater our bound is within 15% of the exact solution.
For task counts of 7. our bound is nearly within 10% of the exact solution where
the ntilization is low (p - 0.7) and within 5% for high utilization (p -07). It
appears that the bound is close enough for m - 7 to be used as an approximate
solution. Figures b, ‘e and Ad plot the response time of the job using the lower
bound, the exact solution and the upper bound. In 4b we use e 2. In 4¢ we
use m o= 5. Finally, in 4d we use o 7. We observe that both bounds are good
for m 2. However, the upper bound becomes worst, as we increase m whereas
the lower bound becomes tighter as we increase m. As an example observe the
difference between the lower hound and exact solutions for mn 7 and p . 0.8.
There is clearly little difference.

4.5 Job Response Time with a #

The next experiment considers the effect of Lhe overall average number of tasks, a.
on the response time of the tageed job. "The reader should recall from section 3.1
that a tagged job is simply a particular job with a given m. The number of tasks in
this job may be different from the average number of tasks for all jobs at a server
since a need not equal m. In this experiment we consider the number of tasks of the
tagged job to take on values of 1. 3.5, and 7 tasks per job while varying the value
of the overall average number of tasks per job to | to 7. Figures 5a, 5b, 5¢. and 5d
give the response times in milliseconds for values of p 0.1, 0.5, 0.7 and 0.9 with
a as the independent parameter. As observed in Seetion 3.3, we see that o plays
lincar role in response time for a give value of p. In fact, we can determine the slope
of the response time curve from cquation(39). Itis given as :' “" :f;(l " .;':!U ',,)-
Figures Ga, 6b, Ge and Gd plot the response Lime as a function of m instead of a. We
see a clear nonlinear dependence on mas expected from equation(39). If we observe
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Nigure 6d, we see the most nonlinear dependence. Towever, after about p - 0.5,
wo observe that the increase in response Lime is approximately a linear function of
m. This is expected sinee our lower bound becomes hoth tight and lincar as p - 1.

5 Conclusions

[n summary, we have developed an exact solution for solving the [ork-join processor-
<haring with a single server queue. We have a solution for the rate of the response
time conditioned on service time requirements. We also have a numerical solution
for the response time for fork-join johs with exponential service times. We have
developed both lower and upper hounds for the fork-join processor-sharing model.

Our results demonstrate that scheduling fork=join jobs under processor-sharing
should be done at the job level and not at the task level. This consideration is
clearly important for single server applications. It is also important for multi-server
systems applications when these systems degrade to single server systems. In these
applications, jobs may be split for scheduling at different. servers.  However, the
tasks of a job may be forced to remain together at a particular site due to possible
faults in a communication network, network seheduling problems, or remote server
overloading. From our observations. in such circumstances the job should not be
split at the site. In fact, il the tasks of the job are grouped together, the overall
system performance is improved. In conclusion, fork-join jobs should be carefully
scheduled when moved from o multiprocessor system to a single processor system
when processor-sharing is used.

Acknowledgments: We would liked to acknowledge Professor Gerald Giessert’s as-
sistance is obtaining equation (25).



Appendix A Exponential Series For Equation(25)

We consider a special approach to the expansion of cquation(25) Lo prevent stability
problems which arise when using the standard geometric expansion. Our expansion
hegins by noting that

m ™m

(51)

( | ( I - ur)m) m |
where = | ¢ (52)

We also know Lhat.
m " l )
, m H (53)
NIYAY -
( | ( | ' ) ) ;0 I’!

wherer, 57 00002 m Land (51)
/ \/ l. (55)

By partial fraction expansion and substitulion we hive

Yi |
H

m . (

AN b (56)
. irym et . t
(r (1 e rm 1 [
m I
where g, m ” v, o (57)
kowksy - I

The values for g, are complex mumbers in general. “To expand the above equation

in terms of exponentials we formulate the term associated with the 7 rool term as

g (0 by )

b, e )i b, ) (58)

The value of b, must be inserted so that the following series CXPANSION CONVETEes as
a geometric series. L can be shown that convergence occurs when cos(2nj/m) -
0.5/(h, +1). We may now find the ¢, terms. To do this now formulate algorithm,
Algorithm 1.

Algorithin t: Determination of Coellicients. c,
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1. Initialize all coollicients. Set ey, O

9 Seleet the first root. Let 3 L

3. Determine the proper value of b, Let b, 1.

1. Lot by by 0l cos(2mg/m) 0.5/(h, + 1) then Stepd olse Stepd.
5. Modify the coollicients. First, et & O

6. Forl Otoklet cm Ok | y,(':)b)"' Lighy v 1 r,)“l.

If the absolute value of 1/(by t 1 r,)¥ s less than an acceptable error then

proceed to StepR else let k k1 1 and proceed to Stepb.

Q. Select the next root. fot g g b 00 (m 1) then Stop else goto Step3.

For values of m - 6 the value of b is zero. I'hus, the alporithin 1s simplified under
this constraint since the sum in step 6 invokes only the term when k = L.
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