OVERVIEW OF THE SPRING PROJECT !

COINS Technical Report 87-54

Krithi Ramamritham John A. Stankovic
(413) 545-0196 (413) 545-0720

Department of Computer and Information Science
University of Massachusetts
Ambherst, MA 01003

ABSTRACT

The Spring Project at the University of Massachusetts is a research and development
effort aimed at studying nezt generation time-critical systems. In addition to being fast
and predictable, these systems will have to be flexible, adaptive, and reliable. These
requirements arise from the fact that future systems will be large and complex and will
operate in environments that are dynamic, distributed, and fault-inducing. In order to
achieve its goals, the Spring Project takes a synergistic approach involving the development
of scheduling algorithms, operating system support, distributed system architecture, and
application development tools.

"The Spring‘ Project is funded in part by the Office of Naval Research under contract 048-716/3-22-85
and by the National Science Foundation under grant DCR-8500332.



1 Introduction to the Spring Project

A number of new and sophisticated applications are currently being contemplated by
government and industry. Space stations, automated factories of the future, and future
command and control systems are examples of such systems. These applications exhibit a
set of common features:

They will be large and complex.

They will function in a physically distributed environment.

They will have to be maintainable and extensible due to their evolving nature and
projected long lifetimes.

They will consist of many interacting time-critical components.

They will result in severe consequences if logical and timing correctness are not met.

Predictability allows us to determine if the required timing constraints can be met for a
given system configuration. Such systems in which tasks have deadlines that must be met
are termed distributed time-critical systems or distributed hard real-time systems.

Available tools for the development of such systems are woefully inadequate since they
are primarily aimed at applications that are static, operate in centralized environments,
and either ignore explicit timing constraints or treat them in a very ad hoc manner. Also,
they are founded on the premise that time-critical systems need to be fast, as opposed
to being fast and predictable. Clearly, there is a need for a fresh approach to building
distributed time-critical systems. Hence the Spring Project.

The Spring project began with the aim of developing scheduling algorithms for dis-
tributed time-critical systems and our major thrust so far has been on the development
and evaluation of scheduling algorithms. However, in order to achieve the major goals
of high performance (i.e., the need to be fast) and predictability, the rest of the system,
namely, the remaining functions of the operating system, the hardware architecture, and
the system development tools, must also be designed with these goals in mind. Hence, we
are currently exploring the following four areas in a synergistic fashion:

o Scheduling algorithms for distributed time-critical systems.
e Operating system support for time-critical systems.

* Architectural support for time-critical Systems.



e Tool support for building time-critical systems.

[n the following sections we present an overview of the ongoing rescarch in each of these
areas. It is inportant to remember their interrelationships while purusing these sections.

2 Scheduling Algorithms for Distributed Time-Critical Systems

Good scheduling algorithms form the most essential component of operating systems un-
derlying time-critical applications. Most tasks in time-critical applications have timing
constraints such as deadlines or have a need for periodic execution. In addition, tasks
typically have criticalness, resources requirements, precedence constraints, and placement
or affinity constraints.

Current real-time operating systems use priority-based schedulers. This requires that
actual timing constraints be mapped into priorities to meet these constraints - a time
consuming, expensive, and error-prone task. Typically, one assigns priorities to tasks and
via extensive tests verifies whether this assignment results in tasks’ meeting their timing
constraints. In dynamic systems task priorities have to be changed according to the nature
of tasks in the system at any given time and hence the problem of priority assignment is
further exacerbated in dynamic systems.

Our scheduling algorithms are characterized by the fact that they are decentralized -
scheduling components at individual nodes cooperate to schedule tasks, dynamsc - tasks
are scheduled as they arrive in the system, and adaptive - the algorithm adapts to changes
in the state of the system.

In traditional real-time systems, tasks are scheduled according to some policy, say
based on their priorities, and if a task does not complete before its deadline, an exception
condition is raised. We believe that because of the time-critical nature of the system,
the check for whether or not an arriving task will meet its deadline should be done soon
after task arrival and an exception condition raised if necessary. In this case, the initiator
of the task will have more time to handle the exception condition than in traditional
approaches. The nature of exception handling is dependent on the application; the task
initiator may resubmit the task with a later deadline or greater criticalness, or initiate an
exception-handling task with greater criticalness.

One of the key notions of our scheme is the notion of guarantee. Our scheduling
algorithm is designed so that as soon as a task arrives, the algorithm attempts to guarantee
the task. The guarantee means that barring failures ? and the arrival of higher criticalness

2Failures are handled by various techniques such as guaranteeing multiple instances of a task with proper



tasks, this task will execute by its deadline, and that all previously guaranteed tasks with
equal or higher criticalness will also still meet their deadlines. This notion of guarantee
underlies our approach to scheduling and distinguishes our work from other scheduling
schemes. It is also one of the major ingredients for developing flexible, maintainable,
predictable, and reliable real-time systems - our major goal.

Here is an overview of our scheduling scheme: Soon after a task arrives at a node, the
scheduling component on that node invokes the guarantee routine to determine if that task
can be executed locally and completed before its deadline. If the task is not gyaranteed
locally, then the scheduling component on that node communicates with its counterparts
on other nodes to determine if any other node is in a position to guarantee the task. An
approach combining bidding and focussed addressing is used to determine such a node. If
one such node exists, then the task is sent to that node and a guarantee is attempted on
that node. The guarantee algorithm as well as the scheme used for cooperation ezplicitly
take the timing and resource constraints into account. Thus, ours is a scheduler that is
driven by the timing and resource constraints rather than by priorities which encode the
timing constraints.

The scheduling algorithm separates policy from mechanism and is composed of 4 mod-
ules. At the lowest level there exists a dispatcher. The dispatcher simply removes the
next task from a dynamically changing system task table (STT) that contains all guaran- _
teed tasks already arranged in the proper order. The second module is a local scheduler.
The local scheduler is responsible for locally guaranteeing that a new task can make its
deadline, and for ordering the tasks properly in the STT. The third module is the global
(distributed) scheduler which attempts to find a site for execution for any task that cannot
be locally guaranteed. The final module is a Meta Level Controller which has the respon-
sibility of adapting various parameters by noticing significant changes in the environment
and serving as the user interface.

Due to the real-time constraints on tasks, the scheduling algorithm itself should be
very efficient. That is, we must minimize the scheduling and communication delays. This
implies that the decisions, such as whether a task can be guaranteed on a node as well
as where to send the task when it cannot be guaranteed locally, must be made efficiently.
The problem of determining an optimal schedule even in a multiprocessor system is known
to be NP-hard. A distributed system introduces further problems due to communication
delays. All of these factors necessitate a heuristic approach to scheduling.

We began our explorations into specific scheduling algorithms by developing algorithms
for scheduling simple tasks and then progressively extended our algorithms to deal with
tasks having more complex structures and requirements. Following this approach we have
developed a number of variants of our scheduling algorithms, the differences between the

timing considerations among the instances, other types of task replication, and reallocation of tasks after a
host fails |10].



variants arising from the factors they take into account.

In the basic version of our scheduling algorithm, only timing constraints, i.e., tasks’
computation times and deadlines were taken into account [3|. We considered both pe-
riodic tasks and nonperiodic tasks. After evaluating this algorithm [7] [8]. we extended
it to handle, among other things, resource requirements of tasks. This is a significant
accomplishment because handling resources is a complicated problem ignored by most
researchers. Our work as described in [15] presents a non-preemptive algorithm for guar-
anteeing tasks that have deadlines and need resources in exclusive mode. In [18], we
consider the situation where resources can be used in both shared as well as exclusive
modes. Preemptive scheduling on a node is the subject of [16]. Extensions to the scheme

for cooperation among nodes to explicitly handle the presence of resources are discussed
in (12|, [4], and [13].

In parallel with the extensions involving resource constraints, we considered extensions
to the basic algorithm to include precedence constraints among tasks. In our approach (1],
a task consisting of subtasks related by precedence constraints is scheduled in an atomic
fashion. We assume that the computation costs of subtasks as well as the communication
costs between subtasks are known when a task arrives at a node. Nodes attempt, in
parallel, to schedule subtasks within the constraints imposed by precedence relationships;
thus, once guaranteed, subtasks can be executed in parallel at different nodes. (2] reports
on evaluation of this scheduling strategy as well as its efficacy in different situations.

Our evaluations showed that dynamic and distributed hard real-time scheduling is fea-
sible and that the system can substantially benefit from distributed scheduling. During
the evaluation of the various algorithms, we made the following observation: In a dynamic
system where the system state and task characteristics change dynamically, no single
scheduling algorithm performs well in all situations. We need to select the algorithm(s)
needed for a particular situation depending on the state of the nodes and the communi-
cation network as well as the task characteristics. In one sense, what this amounts to is
the control of scheduling. Since scheduling is the control of task executions, we term this
higher-level control as meta-level control [5]. Such control will enhance the adaptability
of resource allocation schemes and since adaptability is one of our goals, we are currently
studying the problem of meta-level control in time-critical systems. Meta-level control can
be used for the following: Selecting the algorithm(s) used for scheduling tasks on a node
and for cooperation among nodes and Selecting the values of scheduling parameters used
in the chosen algorithm(s). Given the potential uses of meta-level control, a question that
deserves special attention concerns the price. vs. performance of meta-level control tech-
niques. We are currently seeking an answer to this question by investigating various ways
of implementing meta-level control, and the cost and complexity of meta-level control, in
particular, its communication and processing costs.

Even though we believe that we have made a number of substantial contributions in



the area of scheduling in time-critical systems, a number of problems still remain. These
include:

e Integrated scheduling schemes for nonperiodic tasks which have deadlines, resource
requirements, criticalness, precedence constraints, and placement constraints.

* Scheduling such complex nonperiodic tasks in the presence of complex periodic tasks.

¢ Coping with resources other than those on individual nodes, in particular, the com-
munication subnet.

o Scheduling tasks with precedence constraints on multiple nodes; in a complete
scheduling scheme, the scheduling of these tasks will have to be done in conjunc-
tion with the scheduling of messages along the communication subnet.

¢ Stragegies for scheduling tasks with a wide spectrum of timing constraints, i.e., where
tasks have a large range of deadlines.

¢ Scheduling schemes for soft real-time tasks coexisting with hard real-time tasks.

¢ Design of kernel components, in particular, interrupt handlers, resource management
modules, and [/O subsystems, to support our scheduling approach based on the
notion of guarantee.

We are in the process of extending our current scheduling schemes to deal with the first
two issues. Also, we have made a beginning with regard to the issue of dealing with the
communication subnet.

There are two broad ways of dealing with scheduling in the presence of message delays.
The first is based on utilizing information about the maximum delay that a message will
encounter [6]. Thus, if the nodes in a distributed time-critical system are connected by a
local area network and the channel access protocol is designed to guarantee message deliv-
ery within bounded time then communicating tasks can be scheduled assuming bounded
message delivery delays. The second method to deal with scheduling tasks in the presence
of message delays is to compute a deadline for each message delivery from the deadline
requirements of the tasks; use a communication protocol that transmits messages so that
they are delivered before their deadlines. We have developed and evaluated a new class of
protocols that we have termed virtual time CSMA protocols [14], [17] specifically tailored
for communication in time-critical systems.

In summary, our work on scheduling continues, as we seek integrated solutions that take
into account the complex characteristics of tasks in time-critical systems and the nature of
resources that these tasks require. In addition we are exploring the efficacy of meta-level
techniques that will contribute to the flexibility and adaptability of the solutions.



In the following sections we examine how our approach to scheduling leads to a specific
set of requirements with respect to the rest of the operating system. architecture, and
support tools. Recall that our scheduling algorithm is based on the notion of guaranteeing
that a task will complete execution before its deadline. For this guarantee to be useful,
it should be done with respect to a task’s worst-case requirements. For this guarantee
to hold, in a sense, the scheduling algorithm has to reserve the resources needed by a
task with respect to its worst-case behavior. Since a task has resource requirements,
may have complex precedence constraints, and may invoke operating system primitives,
a task's worst-case behavior should be determined with respect to its worst-case resource
requirements, the worst-case communication time between its subtasks, and the worst-case
execution time for the operating system primitives. Needless to say, if a task’s worst-case
parameters are much larger than their average-case parameters, an underutilized system
results. This suggests careful design of the architecture and operating system underlying
time-critical systems and the provision of design rules and constraints for the tasks that
constitute an application. The rules and constraints can then form the basis for the tools
that aid in the development of time-critical applications.

3 Operating System Support for Time-Critical Systems

Just like time-sharing operating systems, operating systems supporting time-critical appli-
cations have to provide facilities for process management, resource management, memory
management, and device management. However, as we observed at the end of the last sec-
tion, the requirements are much more stringent than in time-sharing operating systems.

As was already pointed out, the crucial ingredient of our kernel, called the Spring
kernel is the ability to guarantee a task with respect to its real-time constraints. The
major innovations exhibited in the Spring kernel lie in the scheduling algorithm itself and
in the way in which the rest of the kernel supports the scheduling algorithm. Of course, the
kernel contains features which closely resemble functions found in other real-time kernels.
The difference is that extreme care has been taken to ensure predictability of system
tasks which when coupled with our scheduling algorithm provides predictability for the
application. This predictability of the former implies that we know how long system tasks
take to execute and what their resource requirements are. Predictability of the application
assures us about the timely execution of tasks that form the application as well as their
resource requirements.

The design of the kernel is based on the principle of segmentation as applied to hard
real-time systems [9]. Segmentation is the process of dividing resources of the system
into units where the size of the unit is based on various criteria particular to the resource
under consideration and to the application requirements. The goals of using segmentation
in hard real-time systems are to develop well defined units of each resource, to design



resource units such that fragmentation is minimized and utilization is maximized, and to
allow us to allocate these units via an on line algorithm in such a manner as to provide
predictability with respect to timing constraints.

The Spring kernel contains task management primitives that utilize the notion of pre-
allocation where possible to improve speed and to eliminate unpredictable delays. The
kernel’s memory management scheme adheres to a memory segmentation rule: Divide
physical memory into fixed size partitions that relate to space requirements of executing
tasks and block size requirements of secondary storage. This is so that memory manage-
ment techniques do not introduce erratic delays into the execution time of a task. Since
page faults and page replacements in demand paging schemes create large and unpre-
dictable delays, the current virtual memory management techniques are not suitable for
real-time applications with tight timing constraints.

Let us now tie in memory management with the task primitives, and the scheduling
algorithm. In the Spring kernel, the OS is core resident (possible because the OS is
smaller than a general purpose OS). A set of N task control blocks (TCBs) are CREATED
at system initialization time and thereafter ALLOCATed dynamically to guaranteed tasks.
A control region for each task that includes a user and system stack is maintained by the
OS within the OS region. Stack sizes are capped; if a task attempts to push onto a full
stack, an error occurs (treated similarly as an attempt to divide by zero). Each TCB points
to at most M I/O buffers for this process, and Q dynamic data segments including message
buffers. I/O buffers, data segments and message buffers are all memory objects. When a
task is activated, the guarantee routine determines if it will be able to make its deadline
which includes obtaining the necessary resources such as the TCB, memory blocks, etc.
(Tasks always identify their maximum resource requirements; this is feasible in a real-time
system). If a task is guaranteed, its code segment is filled, the TCB is set up, and it is
placed in the system task table (part of OS memory), and ready for dispatching. Pre-
allocating in a careful way increases the predictability and the speed of the OS at a slight
loss in generality. One of the engineering issues is where to make this tradeoff between
pre-allocating resources and flexibility.

Because of the features of the the Spring kernel including the scheduling algorithm, the
preallocation strategy, and the dedication of resources, we expect the system to be largely
free of blocking. Synchronization is achieved primarily by the scheduler, and if not in this
manner, then by bounded waits. The time for the bounded waits is accounted for in the
guarantee process.

Many of the real-time constraints in a system arise due to [/O devices including sensors.
The set of /O devices that exist for a given application will be quite static in most systems.
Special independent driver processes must be designed to handle the special timing needs
of these devices. In Spring we separate slow and fast /O devices. Slow I/O devices
are multiplexed through a front end dedicated /O processor. System support for this is



preallocated and not part of the dynamic on-line guarantee. However, the slow 1/0 devices
might invoke a task which does have a deadline and is subject to the gnarantee. Fast 1/0O
devices such as sensors are handled with a dedicated processor, or have dedicated cycles on
a given processor or bus. The fast /O devices are critical since they more closely interact
with the real-time application and have tight timing constraints. They might generate
subsequent real-time higher level tasks for the Spring kernel. However, it is precisely
beécause of the tight timing constraints and the relative static nature of the collection of
sensors that we pre-allocate resources needed for processing information obtained from the
fast 1/O sensors. In summary, our strategy suggests that many tasks which have real-time
constraints can be dealt with statically, leaving a smaller number of tasks which typically
have higher levels of functionality and higher laxity for the dynamic, on-line guarantee
routine.

Another important issue is interrupts. Interrupts are an environment consideration
which causes problems because they can create unpredictable delays if treated as a random
process as is done in most timesharing operating systems. Further, in most timesharing
systems, the operating system often gives higher priority to interrupt handling routines
than that given to application tasks, because interrupt handling routines usually deal with
/O devices that have real-time constraints, whereas most application programs in time-
sharing systems don’t. In the context of a real-time system, this assumption is certainly
invalid because the application task delayed by interrupt handling routines could in fact
be more urgent. Therefore, interrupts are a form of event driven scheduling, and, in fact,
the Spring system can be viewed as having two schedulers: one that schedules interrupts
(usually immediately) on the front end processors in the I/O subsystem (as discussed
above), and the other that is part of the Spring kernel proper that schedules all other
tasks. Interrupts in the latter case are treated as initiating a new task which is subject
to the guarantee routine just like any other task. If deadlines are very short on the tasks
invoked via interrupts and to be handled by the Spring kernel scheduler, then time for
these tasks might have to be preallocated.

Overall, the dilemma caused by interrupts is that interrupts are unpredictable, but
we require predictability. Since we are interested in real-time systems which are largely
interrupt driven, we must also keep interrupts turned on as much as possible. To achieve
this we plan to execute system tasks, such as those needed for scheduling, on separate
system processors; this design isolates guaranteed application tasks from the interrupts.
I/O interrupts are handled in the front ends, interrupts from the front ends into the
Spring kernel are handled by the system processors and doesn’t affect the application
tasks. Time for handling interrupts that are task-specific as well as waiting times, say for
communication, are accounted for in the specification of the worst case computation time
of application tasks.

It should be obvious from the discussion in this section that the Spring kernel is cur-
rently in the design stage [11]. We expect to begin implementation by the Summer of



1987. To reduce implementation time and costs, we plan to build the kernel by modifying
the commercially available VTRX (TM) real-time kernel. Modifications will be needed to
substitute our scheduling algorithms for the priority-based algorithm embedded in VRTX
and to implement resources in a way that allows for segmentation and preallocation. In
addition, enhancements will be needed to allow decentralized scheduling and execution in
an environment where each node is a multiprocessor. The slow front end processing can
be supported by the VRTX kernel itself and its [0X package. This is acceptable to us
because the front end is relatively slow, not critical, and need not be very flexible. Since
fast I/O typically requires periodic processing, nodes executing a simple version of the
Spring kernel (in particular, containing the kernel modules that deal with periodic tasks)
can serve the needs of fast I/0.

Clearly, in the design of the Spring Kernel, we have made a number of assumptions,
in particular, those that relate to resource preallocation, handling slow and fast [/O, and
the handling of interrupts. Our design decisions are also based on the assumption that the
possibility of appropriately segmenting resources will give us a means by which to tame
worst-case behavior. Experience with the kernel will help us understand the implications
of these assumptions, as well as indicate whether they are reasonable.

In addition to the above assumptions, with a view to improving predictability, we
have placed some burden on both the underlying architecture (for example, to provide
the 1. O front end and processors for executing system tasks) as well as on the design of
the application tasks (for example, to design tasks which are managable by the scheduling
algorithm and the rest of the kernel). Hence, in the next two sections, we deal with these
two aspects of the Spring project.

4 Architectural Support for Time-Critical Systems

We have already alluded to the various architectural features of time-critical systems. In
this section, we consolidate our ideas on architecture and discuss the outstanding issues.

Given that future time-critical systems are expected to function in physically dis-
tributed environments, it is appropriate for the computing environment also to be dis-
tributed. Since we are interested in high performance and reliability, each node in this
distributed system should contain multiple processors and the nodes themselves connected
by a high-speed subnet. However, several questions still remain, especially those relating
to the architecture of each node and the nature of the subnet.

Hence we are proceeding in two directions. Since we do need a working hardware
configuration to implement, test, and evaluate the kernel, we plan to put together, using
off-the-shelf components, a distributed architecture, called SpringNet that while being rea-



sonable, is also easily modifiable. We discuss such an architecture later in this section.
Concurrently, we will be building a software testhed for experimenting with alternative
distributed architectures. This testbed can thus serve as a tool for designers and imple-
menters of time-critical systems. We discuss such a tool in the next section.

SpringNet consists of a number of nodes for executing application tasks, one or more
nodes for processing slow [/O, and one or more nodes for processing fast [/O. Nodes for
application tasks and for fast 1/O will typically be multiprocessor nodes. As was pointed
out earlier, our design calls for the isolation of application tasks from external interrupts
and from the overheads caused by the execution of kernel modules. Such an isolation
contributes to predictable behavior. To achieve this isolation, we plan to execute all kernel
services on a dedicated processor. External interrupts will be directed to and handled by
this processor.

There are two ways to approach the design of this dedicated processor. The first is
to choose an architecture for the dedicated processor that is tailored to the needs of the
kernel modules. This will contribute to efficiency of the kernel. The remaining processors
on a node can be general-purpose processors for executing application tasks. The second
alternative is to populate a node with processors of one type. One of the processors can be
designated as the dedicated processor. The advantage of this approach is that idle cycles
on this processor may be used for executing application tasks.

Given the simplicity of the latter approach, we will pursue this for our initial implemen-
tation. In this implementation, each node will consist of a number of processors (Motorola
68020’s) and a number of memory modules all on a common bus (VME). We plan to
configure the processors and the memory such that each processor has quick access to
one module of the memory (associated with that processor) while having relatively slower
access to the remaining memory. Thus all the memory is sharable by all the processors.

In the proposed implementation, two types of inter-node connections are possible. One
is a point-to-point interconnection. Since initially our system will consist of a small number
of nodes, this is plausible. An alternative is to connect the nodes via an Ethernet. Of
course, this is not conducive to communication in time-critical systems since the protocols
used are probabilistic in nature.

Given the inadequacies of both these possibilities, in parallel, using the software testbed
mentioned earlier, we will be studying more appropriate alternatives. In this regard,
we should recognize the presence of two types of messages in distributed time-critical
systems. Typically, messages exchanged between scheduling components on nodes are not
time-constrained. However, messages between subtasks of a guaranteed task, where the
subtasks execute on different nodes, will be time-constrained. Also, as was pointed out in
Section 2, in this case, the scheduling of the subtasks will have to be considered along with
the scheduling of transmission of these messages. Thus, having a single subnet or a single



protocol for both types of messages will, in all probability, result in a complex solution.
Hence we will be investigating the possibility of having subnets and protocols targeted for
each type of message.

To summarize, with regard to the choice of architecture for time-critical systems, we
have more open questions than we have answers. Hence our two-pronged attack on this
problem: While experimenting with a prototype implementation consisting of off-the-shelf
hardware components, we will be evaluating alternative architectures using a testbed.

5 Tool Support for Building Time-Critical Systems

Based on the discussions so far, we can classify the tools required as follows:

® A hardware testbed to implement, test, and evaluate the kernel.

A software testbed for evaluating alternative kernel algorithms, specifically, schedul-
ing algorithms.

* A software testbed for evaluating competing architectures for time-critical systems.

* A repertoire of tools for designing time-critical applications.

We discussed the hardware testbed in the previous section. Given the interactions between
the underlying architecture and the kernel algorithms, the two software testbeds could be
built as one. This testbed will help us study the following:

* The effect of different segmentation strategies.

e The effect of using different types and number of processors to construct a multipro-
cessor node.

o The effect of different types of node interconnection structures as well as the protocols
appropriate for them.

¢ The effect of the use of different scheduling algorithms appropriate for the different
system configurations.

The effectiveness of a particular choice will be measured with respect to its impact on
system performance, predictability, reliability, and flexibility. We see the testbed as serving
a number of purposes. We discuss some of these now.



As opposed to a general time-sharing system, architecture and operating system sup-
port for time-critical systems will be closely tied to the applications. Hence the testbed
can be used to choose the appropriate mix of architecture and operating system compo-
nents that is suitable for a particular (set of) application(s). Results of experimentation
with the testbed will also be used to develop rules for segmenting resources, in particular,
memory. secondary storage devices, as well as buses and channels connecting processors
and nodes respectively. Experience with structuring applications using the testbed will
assist us in building a set of rules and constraints that can then be used by the applica-
tion development tools to be discussed next. Finally, observations made in the course of
the experimentation will give us a wealth of information that will be used to produce a
knowledge base to drive the meta-level control component of the Spring kernel.

We have already built a part of this testbed. It allows us to experiment with different
scheduling strategies, both local and global, and study the impact of different parameter
settings on the performance of the scheduling algorithm.

Let us now discuss the tools needed for designing tasks with predictable behavior. These
tools will assist designers in the building of applications based on a set of constraints and
rules that are geared to produce predictable systems with enhanced performance. The rules
and constraints are related to the structuring, i.e., units of segmentation, of resources. They
are designed to minimize the variations in task execution time and minimize the resource
requirements of task components. Thus, the rules and constraints will help a designer to
take a single task that requires different resources at different times during its execution
and has wide variations in its execution times and divide it into a set of subtasks related
by precedence constraints; a subtask will request resources that it needs during most of its
execution; also, each subtask will have minimal variations in its execution time. Clearly,
the rules and constraints are related to the types of resources in a distributed system, their
segmentation properties, and the manner in which the kernel allocates these resources, i.e.,
schedules the tasks.

We have already formulated a set of preliminary rules and constraints which we plan to
refine as we implement and experiment with the Spring kernel. We also envisage further
rules as we apply existing rules to structure simple applications and study their predictabil-
ity and performance properties both by implementing them using the Spring kernel and
by experimenting with the testbed discussed earlier.

References

[1] S. Cheng, J.A. Stankovic, and K. Ramamritham, “Dynamic Scheduling of Groups of
Tasks with Precedence Constraints in Distributed Hard Real-time Systems”, Real-time
Systems Sympostum, Dec 1986.



[2] S. Cheng, “Dynamic Scheduling Algorithms for Distributed Hard Real-time Systems”,
Ph.D. Thests, University of Massachusetts, May 1987.

[3] K. Ramamritham and J.A. Stankovic, “Dynamic Task Scheduling in Hard Real-Time
Distributed Systems,” IEEE Software, pp. 65-75, July 1984.

[4] K. Ramamritham, J.A. Stankovic, and W. Zhao, “Distributed Scheduling of Hard Real
Time Tasks Under Resource Constraints in the Spring System”, submitted to [EEE
Trans. on Computers, Dec 1985.

(5| Ramamritham, K., J. Stankovic, W. Zhao, “Meta-Level Control in Distributed Real-
Time Systems,” (to appear in) Conference on Distributed Computing Systems, Sep
1987.

[6] K. Ramamritham, “Channel Characteristics in Local Area Hard Real-time Systems”,
to appear in Computer Networks, 1987.

[7] J.A. Stankovic, “Stability and Distributed Scheduling Algorithms”, IEEE Trans. on
Software Engineering, Vol SE-11, No. 10, Oct 1985.

8] J.A. Stankovic, K. Ramamritham, and S. Cheng, “Evaluation of a Flexible Task
Scheduling Algorithm for Distributed Hard Real-Time Systems”, Special Issue on Dis-
tributed Computing, IEEE Transactions on Computers, pp. 1130-1143, December 1985.

[9] J.A. Stankovic and L. Sha, “The Principle of Segmentation”, Technical Report, 1987.

[10] J.A. Stankovic, “Decentralized Decision Making for Task Allocation in a Hard Real-
Time System”, submitted for publication, August 1986.

(11] J.A. Stankovic and K. Ramamritham, “The Design of the Spring Kernel”, submitted
for publication, April, 1987.

[12] W. Zhao and K. Ramamritham, “Distributed Scheduling Using Bidding and Focussed
Addressing.” Symp. on Real-Time Systems, pp. 103-111, Dec 1985.

[13] W. Zhao, “A Heuristic Approach to Scheduling with Resource Requirements in Dis-
tributed Systems”, Ph.D. Thesis, Feb 1986.

(14] W. Zhao and K. Ramamritham, “A Virtual-Time CSMA Protocol for Hard Real-Time
Communication”, Real-time Systems Symposium, Dec 1986.

(15] W. Zhao, K. Ramamritham, and J. A. Stankovic, “Scheduling Tasks with Resource
Requirements in Hard Real-Time Systems”, IEEE Transactions on Software Engineer-
ing, May 1987.

[16] W. Zhao, K. Ramamritham, and J.A. Stankovic, “Preemptive Scheduling under Time
and Resource Constraints”, (to appear in) Special Issue on Real- Time Systems, IEEE
Transactions on Computers, Aug 1987.



(17) W. Zhao and K. Ramamritham, “Virtual Time CSMA Protocols for Hard Real-time
Communication”, to appear in IEEE Transactions on Software Engineering, 1987.

(18] W. Zhao and K. Ramamritham, “Simple and Integrated Heuristic Algorithms for
Scheduling Tasks with Time and Resource Constraints”, (to appear in) Journal of
Systems and Software, 1987.

(19] Zlokapa, G., “A Multiprocessor Architecture for Real-time Systems”, unpublished
memo, University of Massachusetts, May 1985.



