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ABSTRACT

In hard real-time systems, tasks have to be performed not only correctly, but also in a timely fashion.
Otherwise, there might be severe consequences. Typically, a hard real-time task is characterized
by its timing constraints, precedence constraints, and resource requirements. In a hard real-time
system, task scheduling is the most important problem, because it is the scheduling algorithm that
ensures that tasks meet their deadlines. In this paper, we survey proposed solutions for scheduling
tasks in hard real-time systems. Our survey includes static and dynamic scheduling algorithms in
the context of both distributed and centralized systems. This study of current literature shows
that except for a few cases, most of the previous static scheduling approaches are inflexible and
cannot be efficiently applied to dynamic scheduling problems. From this study dynamic scheduling
emerges as a challenging new problem especially for distributed hard real-time systems.



1 Introduction

A number of new and sophisticated real-time applications are currently being contemplated by
governments a.nd industries around the world. Space stations, automated factories of the‘ft;t;xre,
and future command and control systems are examples of such systems. There are two types of real-
time systems, namely, soft real-time systems and hard real-time systems. In soft real-time systems,
tasks are performed by the system as fast as possible, bl;t they are not constrained to finish by
specific times. On the other hand, in hard real-time systems, tasks have to be performed not only
correctly, but also in a timely fashion. Otherwise, there might be severe consequences. Typically, a
hard real-time task is characterized by its timing constraints, precedence constraints, and resource
requirements. Flight control, automated manufacturing plants, teleccommunications, and command
and and control systems are examples of such systems. A taxonomy of the scheduling algorithms
for real-time systems is depicted in Figure 1. We also examine some approaches to scheduling soft
real-time tasks that can be potentially applied to hard real-time systems.

Task scheduling in hard real-time systems can be static or dynamic. A static approach calculates
schedules for tasks off-line and it requires the complete prior knowledge of tasks’ characteristics.
A dynamic approach determines schedules for tasks on the fly and allows tasks to be dynarnically
invoked. Although static approaches have low run-time cost, they are inflexible and cannot adapt to
a changing environment or to an environment whose behavior is not completely predictable. When
new tasks are added to a static system, the schedule for the entire system must be recalculated,
which is expensive in terms of time and money. In contrast, dynamic approaches involve higher
run-time costs, but, because of the way they are designed, they are flexible and can easily adapt to
changes in the environment. In this paper, we survey both static and dynamic scheduling algorithms
for hard real-time systems. However, because of the enormous amount ol literature which deals
with hard real-time scheduling problems, it is impossible to discuss all the material. Therefore, we
only present an overview of previous static and dynamic scheduling approaches and discuss their
relationship.

A centralized system is one in which the processors are located at a single point in the sys-
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Figure 1: A taxonomy of the real-time scheduling algorithms.

tem and the inter-processor communication cost is negligible compared to the processor execution
cost. A multiprocessor system with shared memory is an example of such system. In contrast, a
distributed system is one in which the processors are distributed at different points in the system
and the inter-processor communication cost is not negligible compared to the processor execution
cost. A local area computer network is an example of such system. In distributed systems, inter-
processor communication cost is an important factor which must be explicitly taken into account
in scheduling.

The remainder of this survey is organized as follows. Section 2 describes possible forms of the
scheduling problem in hard real-time systems, in terms of the system model, the nature of tasks
to be scheduled, and the objectives of scheduling algorithms. Section 3 surveys static scheduling
algorithms for both centralized and distributed systems. Section 4 discusses dynamic scheduling

algorithms. Finally, section 5 summarizes this survey.
2 Scheduling Problems

A scheduling problem in a hard real-time system is defined by the model of the system, the nature

of tasks to be scheduled, and the objectives of a scheduling algorithm. Each of these is described

below.
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2.1 System Models

A hard real-time system consists of one or more nodes connected by a communication network.
Each node consists of one or more processors along with a set of resources that may be requested
by application tasks. The scheduling algorithm determines the order of execution of tasks on each
processor and resource in such a way that resource and timing requirements of tasks are met. In
many hard real-time systems, resources required by a task are assumed to be available as soon as

the task is invoked. For such systems, processors form the primary resources.

2.2 Nature of Tasks

A task is a software module that can be invoked to perform a particular function. A task is the
scheduling entity in a system. In static systems, the set of tasks to be executed by a system is
prespecified for the system, so the number of tasks to be scheduled in a system is known beforehand.
However, in dynamic systems, new tasks are allowed to arrive (to be invoked) at unpredictable
times so the number of tasks that must be scheduled changes at run-time. In a hard real-time
system, a task is characterized by its timing constraints, precedence constraints, as well as resource
requirements. Except where explicitly stated otherwise, in this survey, we assume that the resource
requirements, except for the processor resources, are always met. !

The timing constraints of a task are specified in terms of one or more of the following parameters:
¢ The arrival time, A: The time at which a task is invoked in the system.

e The ready time, R: The earliest time at which a task can begin execution. The ready time

of a task is equal to or greater than its arrival time.

» The worst case computation time, C: The execution time of a task is always less than this

amount of time.

e The deadline, D: The time by which a task must finish.

1A survey of scheduling algorithms for real-time systems ronstrained by arbitrary types of resources can be found
in [ZRS87c|.



In a static system, all the tasks and their timing constraints are known beforchand. In particular,
the arrival times of tasks are prespecified. However, in a dynamic system, tasks arrive at arbitrary
times so the arrival time of tasks is unpredictable. |

In many conventional hard real-time systems, tasks are assigned with fixed priorities to reflect
critical deadlines, and tasks are executed in an order determined by the priorities. During the testing
period, the priorities are (usually manually) adjusted until the system implementer is convinced
that the system works [LTJ85]. Such an approach can only work for relatively simple systems,
because it is difficult to determine a good priority assignment for a system with a large number of
tasks by such a test-and-adjust method. Also, such fixed-priority assignment approaches suffer the
same problem as other static scheduling approaches. Once the priorities are fized on a system, it
is very expensive to modify the priority assignment. Because of these reasons, we do not discuss
such approaches in this survey.

In many hard real-time systems, tasks can be non-periodic or periodic. A nonperiodic task is
one which when invoked is expected to execute just once, and has an arbitrary arrival time and
deadline. For this survey, a periodic task is defined as one which is invoked exactly once per period
P. The arrival time of an instance of a periodic task specifies the time at which the instance of
the periodic task is invoked. The arrival time and the deadline of instances of a periodic task with

period P are specified as follows:
A(t + 1) = D()
D+1)=A(i+1)+ P

where A(7) and D(5) are the arrival time and the deadline of the i-th instance of the periodic task,
respectively.

The precedence constraints among a set of tasks specify the relations between the tasks. A task
T; is said to precede task T; if T; must finish before T} begins. Interrelated tasks communicate with
each other in real-time to achieve synchronization as well as to exchange data. The precedence

graph of a set of tasks is an acyclic directed graph. A precedence graph may be a chain, a tree, a

series-parallel graph, or an arbitrary one. In static systems, the set of tasks to be scheduled and
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the precedence graph are known in advance. In dynamic systems, new sets of interrelated tasks
dynamically arrive and the precedence graph of a new task set is known only when the task set
arrives.

In hard real-time systems, tasks are also distinguished as preemptable and nonpreemptable. A
task is preemptable if its execution can be interrupted by other tasks at any time and resumed
afterwards. A task is nonpreemptable if it must run to completion once it starts. Whether a task
is preemptable or not is mainly determined by the nature of the application environment.

There are, of course, many other possible types of constraints such as placement constraints.

We do not discuss them here.
2.3 Objectives of Scheduling Algorithms

The function of a scheduling algorithm is to determine, for a given set of tasks, whether a schedule
(the sequence and the time periods) for executing the tasks exists such that the timing, precedence,
and resource constraints of the tasks are satisfied, and to calculate such a schedule if one exists. In
static systems, a scheduling algorithm determines the schedule for a set of tasks off-line. However,
in dynamic systems, because not all the characteristics of tasks are known a priori, a scheduling
algorithm determines the schedule for tasks on-line and progressively. A scheduling algorithm is
said to guarantee a newly arriving task if the algorithm can find a schedule for all the previously
guaranteed tasks and the new task such that each task finishes by its deadline. If a scheduling
algorithm guarantees a task, it ensures that the task finishes by its deadline. A major performance
metric for a dynamic scheduling algorithm is the guarantee ratio, which is the total number of tasks
guaranteed versus the total number of task that arrive.

A static scheduling algorithm is said to be optimal if, for any set of tasks, it always produces
a schedule which satisfies the constraints of the tasks whenever any other algorithm can do so.
A dynamic scheduling algorithm is said to be optimal if it always produces a feasible schedule
whenever a static scheduling algorithm with complete prior knowledge of all the possible tasks can
do so. An optimal dynamic algorithm maximizes the guarantce ratio of tasks that ever arrive in a

system. As we shall explain in Section 4.1, for most variations of the scheduling problem, to find



such an optimal solution is difficult and computationally intractable. Therefore, an approximale
algorithm is necessary. An approximate algorithm with high guarantee ratio is considered to be

better than another with a low guaranteeA ratio.
3 Static Scheduling Algorithms

In this section, we survey static scheduling algorithms for both centralized and distributed systems.
3.1 Static Scheduling in Centralized Systems

This category of scheduling algorithms include scheduling in multiprocessor systems and machine
scheduling as done in operations research. We survey algorithms which can handle tasks with
precedence constraints as well as those which consider only mutually independent tasks. In each

case, both preemptive scheduling and nonpreemptive scheduling are considered.

3.1.1 Scheduling Mutually Independent Tasks

Preemptive Scheduling If preemption is allowed, it is often possible to find a polynomial-time
optimal algorithm for a scheduling problem. For uniprocessor systems, Horn [Hor74] developed an
O(n?) algorithm to schedule tasks with arbitrary ready times and .deadlines, where n is the number
of tasks to be scheduled. His approach is based on the earliest-deadline-first policy: tasks with
earlier deadlines and earlier ready times are chosen to run before tasks with later deadlines and
later ready times. For multiprocessor systems, Horn described an O(n3) algorithm to schedule tasks
with arbitrary ready times and deadlines. His approach is based on the network flow method and
considered only processors with identical processing speed. This approach was recently extended
by Martel [Mar82] to consider processors with different speeds. The extended scheduling problem
is more difficult and the complexity of Martel’s algorithm is O(m?n* + n®), where m is the number
of processors in a system.

The above approaches can also be applied to periodic tasks. For example, for uniprocessor
systems, to determine the schedulability for a set of periodic tasks, we only have to consider the

instances of the periodic tasks within a time interval between zero and the least-common-multiple



of the tasks’ periods. Then, we apply the earliest deadline scheme to determine whether all the
insta.n.ces of the periodic tasks in the interval can be scheduled to meet their deadlines. If they can
be scheduled, then all the other instances of the periodic tasks can also be scheduled. Likewise, Horn
and Martel’s approach can also be applied to multiprocessor systems in the same way. However,
if the periods of the periodic tasks are relatively prime, these approaches may not be practical,
because the number-of instances of the periodic tasks to be considered is large and the cost becomes
high.

Many researchers have developed efficient scheduling algorithms specifically for periodic tasks.
For uniprocessor systems, Liu and Layland [LL73] developed a rate-monotonic priority scheme to
determine the schedulability of a set of periodic tasks. Their approach assigns higher priorities to
tasks with shorter periods. They showed that this scheme is optimal among fixed-priority schemes.
Teixeira |Tei78] presented a fixed-priority assignment scheme for a slightly different problem. He
assumed that the relative deadline of a periodic task can be different from the period of the task.
Sha et. al. [JL86] describe a technique to modify the periods of tasks in such a way that while tasks’
timing constraints continue to be met, better processor utilization is achieved. This modification
consists of breaking up one periodic task into two, each with half the computation time and halfl
the period as the original task. The above approaches are different from the conventional priority-
driven scheduling approaches, because they assign priorities to tasks based on a simple function
of the timing constraints, instead of one that combines timing constraints and criticalness, of the
periodic tasks.

Scheduling periodic tasks on multiprocessor systems is more complicated. Many researchers
adopted a partition approach to solve this problem. The main idea of these approaches is to
partition a set of periodic tasks among a minimum number of processors such that each partition
of the periodic tasks can be scheduled on one processor according to the earliest deadline scheme or
the rate-monotonic priority scheme. Davari and Dhall [DD86] showed that. if the carliest deadline
scheme is used, a bin-packing algorithm can be uscd to determine a suboptimal partition pattern
of periodic tasks among multiple processors. Bannister and Trivedi |[BT83| proposed a simple best-

fit partition scheme. Their approach can be used in conjunction with both the earliest deadline

9



scheme and the rate-monotonic priority scheme. For rate-monotonic priority scheme, Dhall and

Liu [DL78] developed a next-fit scheme and a first-fil partition scheme. Recently, Davari and Dhall

| [DD86] improved these schemes and developed a more efficient nezt-fit partition scheme. The time
complexity of this impréved scheme is O(n). |

As described above, many of the scheduling algorithms designed for periodic tasks are based

on a fixed-priority assignment scheme. The advantage of a fixed-priority assignment scheme is

that they have very small scheduling overheads, because they are designed for prioritized-interrupt

handling systems and the priority mechanism is often supported by hardware. However, as we

explained earlier, in general, these schemes are very inflexible, because it is expensive to change

the priority assignment once it is fized on a system.

Nonpreemptive Scheduling Nonpreemptive scheduling is more difficult than preemptive
scheduling. Many nonpreemptive scheduling problems have been shown to be NP-hard. For exam-
ple, scheduling nonpreemptable tasks with arbitrary ready times is NP-hard even in uniprocessor
systems [LRB77). For multiprocessor systems, a nonpreemptive scheduling problem is NP-hard
even when the ready times and deadlines of tasks are the same |Ull76]. Much work has been done
on more restrictive problems for which eflicient algorithms are available. For uniprocessor systemns,
Moore [Moo68] showed that the earliest deadline algorithm is optimal for scheduling a set of tasks
with the same ready time. Kise [Kis78| developed an O(n?) algorithm for the case in which a task
has an earlier ready time if and only if it has an earlier deadline. For multiprocessor systems, a
polynomial optimal algorithm is available only for scheduling tasks with unit computation time
[Sim80,Sim83,5584,LF76).

Many researchers have attempted to solve the general case of the scheduling problem by develop-
~ ing an efficient enumeration algorithm with strong bounding conditions. For uniprocessor systems,
Bratley, Florian, and Robillard [BFR71] developed an implicit enumeration algorithm to determine
schedule for tasks with arbitrary ready times and deadlines [BFR75|. Baker and Su [BS74] used a
similar approach to minimize the maximum tardiness of tasks. Erschler et al [EFMR83] developed

a necessary condition for scheduling tasks with arbitrary ready times and deadlines. Their theories
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can be used to reduce the search space of an enumeration algorithm. For multiprocessor systems,
Bratley, Florian, and Robillard [BFR75] developed a multi-stage enumeration algorithm to schedule
tasks with arbitrary ready times and deadlines. Because the worst case cost is exponential, the
above approaches are designed to run off-line.

Recently, Blazewicz, Drabowski, and Weglarz [BDW86] investigated an interesting scheduling
problem in which tasks need multiple processors at the same time for processing. They showed that
polynomial-time algorithms exist if the number of processors and the processing times required by
tasks are constant. They presented two such algorithms which run in O(n) time. They also showed
that, for preemptable tasks with arbitrary computation times, a linear algorithm exists if the tasks

require either one or a fixed number of processors.

3.1.2 Scheduling Tasks with Precedence Constraints

For uniprocessor systems, most scheduling problems which consider precedence constraints can be
solved in polynomial time. Lawler [Law73| showed that scheduling nonpreemptable tasks with
deadlines and arbitrary precedence constraints can be solved by the latest deadline first algorithm
in O(n?) time. Each task has a deadline. Tasks are scheduled from last to first one at a time.
Each time, the task with the latest deadline is chosen from among those whose successors have
been scheduled. Blazewicz [Bla76] proved that, for this scheduling problem, a preemptive schedule
exists if and only if a nonpreemptive schedule exists. Therefore, in this case, preemption need not be
considered. He also showed that the earliest deadline algorithm can be used to schedule preemptable
tasks with arbitrary ready. times and precedence constraints. The main idea in his approach is to
modify the ready times and deadlines of tasks such that they comply with the precedence constraints
of the tasks. Therefore, precedence constraints need not be explicitly considered.

Scheduling tasks with arbitrary precedence constraints in multiprocessor systems is a much
more difficult problem than in uniprocessor systems. For example, scheduling tasks with arbritrary
precedence constraints and unit computation time is NP-hard both Tor the preemptive and the
nonpreemptive cases [Ul175,U1176].

Many researchers have attempted to develop cfficient heuristic algorithms to solve the general
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case of the scheduling problem. For example, Kasahara and Narita |KN84] have developed an
implicit heuristic search algorithm to determine the minimum schedule length for a set ol non-
preemptable tasks with arbitrary precedence constraints. They showed that their enumeration
algorithm can provide optimal or suboptimal solutions to large-scale problems within a time limit.
However, because the worst case execution time grows exponentially, their algorithm is practical
only for static scheduling problems. Elsayed [Els82| presented a number of heuristic algorithms for
finding suboptimal solutions to a similar scheduling problem. These heuristic algorithms do not
enumerate over multiple paths in a search space. They are designed based on a straightf;)rward
topological search scheme and the critical path method combined with a heuristic rule. Therefore,
such heuristic algorithms are much more efficient than the implicit enumeration algorithm described
above. These algorithms can be applied to dynamic scheduling problems.

For tasks whose precedence graph is a tree, several efficient algorithms have been found. Chandy
and Reynolds [CR75) showed that, for two-processor systems, the highest-level-first policy is optimal
for nonpreemptive scheduling. The level of a task in a tree is defined to be the length of the longest
path between the task and any leaf task in the tree. The complexity of this policy is O(n). This
policy attempts to choose to run, among the remaining tasks that are ready for processing, any
one of those that are at the highest level in a tree. However, they also showed that this policy is
not optimal for three-processor systems. Hu [Hu61| developed an O(nlogn) algorithm to schedule
nonpreemptable tasks with unit computation time. For preemptable tasks, two efficient optimal
algorithms that can handle tasks with arbitrary computation times have been found. Muntz and
Coffman [MC70] developed a preemptive scheduling algorithm to calculate the minimum schedule
length for tasks in a reverse precedence tree (one with its root at the hottom). Their approach
attempts to assign processing power to tasks from root to leaves in a bottom-up fashion. Unfinished
tasks at levels closer to the leaves are assigned with higher share of processing power; tasks at the
same level are assigned with the same share. Their algorithm requires O( n®) time. Gonzalez and
Johnson [GJ77] considered regular trees and their approach attempts to assign processing power
to tasks from root to leaves in a top-down fashion. The shares of processing power assigned to

tasks are proportional to the total remaining processing times in the subtrees rooted at the tasks.
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Their algorithm runs in O(nlog m) time. The above algorithms are designed only for tree-type
preced'ence graphs and for centralized and static systems.

Manacher [Man67| studies an interesting anomaly found in scheduling tasks with precedence
constraints in multiprocessor systems. When a set of tasks are scheduled to meet their deadlines
according to maximum computation time, they may miss deadlines at run time if the actual com-
putation time is less than the worst case time. This anomaly is due to parallel tasks being executed
in an order different from the original schedule. He proposed an algorithm to solve this problem '
by imposing additional precedence constraints on tasks to preserve the order of tasks which can
run in parallel. The above anomaly is not applicable to a distributed system if the system does
not maintain a central queue of tasks, since tasks scheduled at different nodes are executed only

by those nodes.
3.2 Static Scheduling in Distributed Systems

This category of scheduling problems have been traditionally formulated as task allocation prob-
lems. In a traditional distributed system, the objective of a task allocation algorithm is to assign
tasks to processors in the system so as to balance the loads of processors and to minimize the com-
munication cost for tasks. Task allocation is a difficult problem even without timing constraints.
For example, finding optimal assignment of tasks with an arbitrary communication graph to four
or more processors with different speeds is known to be NP-hard |BS81]. Considerable efforts have
been spent on more restrictive allocation problems or on developing heuristic algorithms to find
suboptimal solutions. Most of the results can be extended and applied to (static) hard real-time
systems to find suboptimal solutions.

Stone [Sto77a,Sto77b| developed network flow algorithms to allocate tasks with arbitrary com-
munication patterns in dual-processor and three-processor systems. Bokhari [BS81] developed a
dynamic programming algorithm to allocate tasks which form a tree to a system with an arbitrary
number of processors. The Lime complexity of his algorithm is O(nmn*). s approach was recently
extended by Towsley |Tow86] to handle tasks with series-parallel precedence graphs. This algorithm

runs in O(nm®) time. The above approaches consider hetcrogencous processors. However, these
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approaches attempt to minimize the total execution cost and the communication cost of tasks.
They do not attempt to balance load of the processors.

Even though the above approaches are not designed for hard real-time scheduling, they can
be extended .and applied to hard real-time systems in the following way. The results obtained by
the abov.e approaches are a task-to-processor allocation pattern which meets certain optimization
criteria without specifing the order of execution of tasks on a processor. We can use such an
allocation pattern, in conjunction with heuristic rules for ordering tasks allocated to each processor,
to determine a schedule length for tasks and determine whether the schedule meets the timing
constraints. Tasks allocated to a processor can be ordered by a heuristic rule such as one that is
based on the length of the critical path for a task. After the order of tasks is determined, we can
calculate the the schedule length of tasks by a depth-first search algorithm in O(n) time.

Efe [Efe82] developed a heuristic allocation algorithm to balance processor load and to minimize
communication cost. His algorithm consists of two phases. First, tasks are clustered with each
other to optimize the communication cost and each cluster of tasks is assigned to a processor.
Then, tasks are shifted from overloaded to underloaded processors in order to meet load-balance
constraints. The algorithm is repeated until a satisfactory degree of load-balancing is achieved. Lo
[Lo84] developed heuristic algorithms which incorporate a cost function to maximize the concurrent
execution of tasl.cs, in addition to minimizing the total execution and communication costs. These
approaches can also be applied to hard real-time systems in the same way as described above.

Many researchers have developed integer programming models to find optimal allocation for
tasks with explicit timing constraints. For example, Ma et al [MLT82] developed such a model
and applied a branch and bound algorithm to solve the allocation model. They showed that
their approach can be used to balance processor loads and to.minimize communication cost. with
an example of air defense application. The precedence graph of the tasks in the applicat,i‘on is
represented by an AND-OR graph and each thread of tasks is constrained by a port-to-port time.
The advantage of such models is that sophisticated constraints, such as allocation preference, task
exclusion, redundancy, time, and resource constraints can be incorporated into a model to describe

an allocation problem. However, the disadvantage is its exponential computational cost. As a
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result, such approaches can not be used on-line.

Le‘inbaugh and Yamini [LY82] developed an analysis algorithm to compute the worst case finish
time for a set of tasks which run on a dedicated network. Each task consists of multiple seg-
ments with series-parallel precedence constraints. By assuming that each task is blocked by every
other possible task due to both resource sharing and inter-task communication, they compute the
maximum blockage time of each task. Their result can also be applied to hard real-time systems.
However, their approach does not attempts to balance load of nodes and to minimize communica-
tion cost.

Recently, Peng and Shin [PS87] developed a generalized stochastic Petri net to model the
behavior of a distributed hard real-time system. They considered periodic tasks with precedence
constraints and nonperiodic tasks without predecence constraints. Tasks are statically allocated
to nodes in the system. The precedence constraints of tasks form an AND-OR graph. They used
the Petri net to build a sequence of homogeneous continuous-time Markov chains to model the
concurrent task execution in the system. Given a task selection policy and the local state of each

node in the system, the Markov-chain model can be used to compute the probability of missing a

hard deadline.

4 Dynamic Scheduling Algorithms

In this section, we survey dynamic scheduling algorithms for both centralized systems and dis-

tributed systems.
4.1 Dynamic Scheduling in Centralized Systems

Theoretically, all the static scheduling algorithm for centralized systems can run on-line to gnarantee
tasks. But, except for a few cases, most of the algorithins which are optimal for stalic scheduling
are not optimal for dynamic scheduling. In particular, Mok and Dertouzos |[MD78] showed that, for
multiprocessor systems, there can be no optimal algorithin for scheduling preemptable tasks if the
arrival time of tasks are not known a priori. Furthermore, because run-time cost is an important

factor for dynamic scheduling, most sophisticated static algorithms, including many multi-stage
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polynomial algorithms, are not appropriate for dynamic scheduling. Because of these reasons,
heuristic algorithms become important to dynamic scheduling problems.

For uniprocessor systems, Dertouzos |Der74] showed that the earliest deadline algorithm is
optimal for scheduling preemptable tasks with arbitrary arrival times. However, the cost of invoking
the algorithm to guarantee tasks at run-time is not addressed. Ramamritham and Stankovic [RS84]
described a gua.fantee scheme which is based on the earliest deadline policy but which takes into
account run-time cost. For scheduling nonpreemptable tasks, Baker and Su [BS74] compared four
simple heuristic algorithms which schedule tasks according to an order determined by ready time,
by deadline, by the average of the ready time and deadline, and by both the ready time and the
deadline, respectively. In a limited number of tests, they showed that the last two algorithms
perform better than the first two.

For scheduling preemptable tasks on multiprocessor systems, Mok and Dertouzos [MD78]|
showed that, if the set of all possible tasks that will ever arrive in a system can be scheduled
initially, then the set of tasks can also be scheduled at run-time. They have also proved that one
successful run-time algorithm is the least laxity algorithm. Obviously, the use of this approach is
limited, because in most dynamic systems, the probability that all possible arriving tasks can be '
scheduled initially is low. Recently, Locke, Tokuda, and Jensen |[LTJ85|, compared a number of
simple dynamic scheduling policies. They found that the least lazity first and the earliest deadline
first are two good heuristic policies. Zhao, Ramamritham, and Stankovic [ZRS87b] developed a
heuristic function and an efficient backtracking scheme for scheduling nonpreemptable tasks with
resource constraints. They found that with 2 limited number of backtracking, the success ratio of
their sea?ch algorithm for scheduling tasks can be as high as 99.5% of that of an exhaustive search

algorithm. Their approach was recently extended to preemptable tasks [ZRS87a|.

4.2 Dynamic Scheduling in Distributed Systems

A dynamic scheduling algorithm for a distributed system should maximize the guarantee ratio
of tasks in the network-wide system. This is a much more complicated problem than that in

a centralized system. In a distributed system, tasks may dynamically arrive at each node in the
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system. Therefore, the status of each node is changing constantly and cannot be decided in advance.
A scheduling algorithm which attempts to work for the good of the entire system will require state
information from more than one node, but that information can only be acquired at run time.
Furthermore, because of the communication delay, no state information of remote nodes is accurate.
A scheduling algorithm must make decisions based on out-of-date state information. Because of
these complications, dynamic scheduling algorithms for distributed systems often consist of two
components, namely, a a local scheduling algorithm and a distributed scheduling algorithm. A local
scheduling algorithm dynamically decides whether tasks which arrived at a node can be scheduled
on that node. A distributed scheduling algorithm dynamically decides where in the network a task
that cannot be scheduled at a node should be transferred to be scheduled. Dynamic scheduling
algorithms for centralized systems can be used for local scheduling in distributed systems. However,
distributed scheduling is a new problem for hard real-time systems. Our following discussion focuses
on distributed scheduling algorithms.

Many distributed scheduling algorithms have been proposed for traditional distributed sys-
tems. The objective of these algorithm is to balance loads among nodes in a system. Thus,
these algorithms are referred as load-balancing algorithms in literature |[Cas81,ELZ86,LM82|,
[Sta84,Sta85a,5ta85b,SM86]. Most of the load balancing algorithms do not consider timing con-
straints ol Lasks and cannot be directly applied to hard real-time systems. Chang and Livny [CL86]
have developed and evaluated scheduling algorithms that are aimed at reducing the tardiness of
tasks. Ramamritham and Stankovic [RS84] developed a heuristic algorithm for scheduling mutually
independent tasks in distributed hard real-time systems. Their goal is to schedule tasks such that
as many tasks as possible can be guarantced to complete before their deadlines. Their approach
consists of a bidding #Igorithm ana a focussed addressing algorithm. In focussed addressing. if a
task cannot be guaranteed at a node, it is sent to a selected remote node that is estimated to have
high surplus processing time. In bidding, a task is sent to a remote node selected based on the bids
that nodes send for the task. Scheduling decision made in focussed addressing is based on inaccu-
rate state information, but it entails low communication delay. The communication delay involved

in bidding is high, but the selection is based on relatively accurate state information of nodes.

17



‘They showed how to combine these two algorithins in a distributed hard real-time system and how
to Lake into account the timing constraints of tasks in the algorithm. Simulation results of this
algorithm are reported in [SRC85,RSZ86). These results show that dynamic and distributed hard
real-time sched'\iling is feasible and a system can benefit substantially from distributed scheduling
_ under a wide range of system conditions and task parameters.

Precedence constraints of tasks add one additional dimension to dynamic scheduling problems
of distributed systems. It is a difficult problem to dynamcially decide how to distribute a group
of tasks with precedence constraints in a network. Most of the static scheduling algorithms which
consider precedence constraints cannot be used in dynamic systems, because these algorithms
require complete knowledge of tasks in the entire system and tend to search for an allocation
pattern among the complete set of tasks. This is not practical in a dynamic system. Cheng,
Stankovic, and Ramamritham [CSR86] developed a novel algorithm to solve this problem when
each group, has a deadline. For a group that must be distributed, their approach attempts to
partition tasks in the group into subgroups and distribute the subgroups in the network to be
scheduled in parallel. Tasks in a group are scheduled to run cither completely or not at all. The
algorithm that combines focussed addressing and bidding is used to determine how to distribute the
subgroups in the network. Their approach provides a solution to a combination of several problems,
i.e., their solution is for dynamic, distributed, hard real-lime systems where tasks have arbitrary

precedence constraints. The simulation results of this approach are reported in

CSR87,Che87|.
The results showed that dynamic scheduling is practical under a wide range of system conditions
and for groups of different characteristics, i.e., different sizes, different precedence constraints, and
different timing constraints. Also, their results showed that a system can benefit substantially from

distributed scheduling.

5 Summary

We have presented a sample of previous scheduling algorithms for hard real-time systems. We first
defined the possible forms of the scheduling problems for such systems. Then, we discussed the

previous approaches to both static and dynamic scheduling problems. In each case, we studied
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both centralized and distributed systems. The survey has shown that, except for a few cases, most,
of the previous static scheduling approaches are inflexible and cannot be efficiently applied to the
dynamic scheduling problems. The survey also showed that dynamic scheduling is a challenging
new problem to distributed hard real-time systems. In dynamic distributed systems, it is necessary
for nodes to interact with each other to determine how to distribute tasks across the network to
meet time constraints and to adapt the decisions to the current state of the network. Based on
the results reported in current literature, dynamic scheduling appears to be feasible for distributed

systems under a wide range of system conditions and for tasks of different characteristics.
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