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ABSTRACT

Objects do not randomly appear and disappear from images. Rather, they appear,
move, and then disappear from view. This paper introduces two related measures of tem-
poral continuity in images: temporal persistence and consistent. edge motion. Temporal
persistence is the period of time over which a spatial feature has stably persisted in the
image plane. Consistent edge motion occurs when an edge moves in a manner which is
consistent with its previous trajectory. These new temporal features are important to
object recognition because spatial structure which persist in a stable manner over time
are more likely to be structurally related to objects. This paper describes how these new
features can be computed from natural imagery. An event-driven method for determining
edges and their normal motion extends previously reported work. As in all low-level vision
models, the computation places constraints on the variation of the intensity surface. [3e-
cause natural images conform to the less restrictive laws of physics, they inevitably contain
intensity variations which violate model assumptions. Fortunatcly, previous image motion
provides low-level context that can determine whether current motion measurements are
the result of modelled intensity variations. This observation is used to develop a technique
for determining temporal persistence and consistent edge motion using past motion and
local neighbor communication. The approach is demonstrated on natural imagery.
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" Abstract:

Objects do not randomly appear and disappear from images. Rather, they appear, move, and
then disappear from view. This paper introduces two related measures of temporal continuity in
images: temporal persistence and consistent edge motion. Temporal persistence is the period of
time over which a spatial feature has stably persisted in the image plane. Consistent edge motion
occurs when an edge moves in a manner which is consistent with its previous trajectory. These
new temporal features are important to object recognition because spatial structures which persist
in a stable manner over time are more likely to be structurally related to objects. This paper
describes how these new features can be computed from natural imagery. An event-driven method
for determining edges and their normal motion extends previously reported work. As in all low-level
vision models, the computation places constraints on the variation of the intensity surface. Because
natural images conform to the less restrictive laws of physics, they inevitably contain intensity
variations which violate model assumptions. Fortunately, previous image motion provides low-
level context that can determine whether current motion measurements are the result of modelled
intensity variations. This observation is used to develop a technique for determining temporal
persistence and consistent edge motion using past motion and local neighbor communication. The
approach is demonstrated on natural imagery.
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I. Introduction

The world around us has remarkable continuity. A car moving down a street cannot instantly
reverse direction. A ball dropped from a building can be expected to fall to the ground. A moving
object occupies a space and moves into an adjacent space. Without this inherent continuity, our
world would be a jumbled collage of images.

The inherent continuity of environmental motion provides strong expectations about the struc-
ture of time-varying imagery. Objects do not randomly appear and disappear from images. Rather,
they appear, move, and then disappear from view. This paper introduces two related measures of

temporal continuity in images: temporal persistence and consistent edge motion.

Temporal persistence is the period of time over which a spatial feature has stably persisted in
the image plane. For example, consider an edge which appears, moves and then disappears from
the image plane. The temporal persistence of the edge at any moment is the amount of elapsed
time since the edge first appeared in the image.

Temporal (dis)occlusion is related to temporal persistence. Temporal disocclusion occurs when
a spatial feature newly appears in the image (i.e., the feature has no previous temporal persistence).
Conversely, temporal occlusion occurs when a spatial feature disappears from the image (i.e., the
feature ceases to temporally persist). Thus, the detection of temporal (dis)occlusion is implicitly
required to determine temporal persistence.

The way spatial features change over time suggests their importance to the object recognition
task. Spatial structures which persist in a stable manner over time are more likely to be structurally
related to objects. Conversely, temporally transient spatial features are more subject to noise and

other factors which are not related to object structure.

Consistent edge motion occurs when an edge moves in a manner which is consistent with its
previous trajectory. For example, a newly disoccluded edge does not have a previous trajectory, and
thus it cannot be consistent with previous image motion. Conversely, an edge constantly translating
across the image is always consistent with its previous trajectory.

Because edges describe a small local portion of a spatial image, edge detectors are somewhat
noise sensitive. Put another way, edge detectors extract edges which may or may not have a
structural relationship to physical objects in the environment. Though this point is somewhat.
apparent, it deserves discussion. Metaphorically, intensity surfaces are much like the surface of the
ocean. Some changes in the surface are due to waves. Other changes may be due to wind, chop,

etc. If we are measuring waves (which are much like lines in images), then other factors such as



wind and chop constitute noise for the “wave extraction process.” Statistically, the noise factors
can spatially and locally appear “wavelike,” though these factors lack the coherence in time of the
wave. It is the coherent and consistent movement of a wave in time which clearly distinguishes
it from other unrelated factors. Similarly, it is the coherent and smooth movement of lines (and
constituent edges) in time-varying imagery which distinguishes meaningful edges from noise; this

coherent and smooth motion of edges is called consistent edge motion.

The next section overviews the event-driven computation of temporal persistence and consistent
edge motion. Event-driven edge detection in natural images is then discussed. The subsequent sec-
tion describes the low level tracking of edges used to ascertain temporal persistence and consistent

edge motion. Results on a natural image sequence and a general discussion follows.

II. Computational Overview

A. Computational models of time-varying smagery

Time-varying imagery (TVI) may be described by a three dimensional spatiotemporal cube [4]
in which all points are defined by (z,y,t) where (z,y) defines a point in the bounded image plane
and t is a point in time. The time domain is defined by the variations along the “column” of this
spatiotemporal cube (i.e., variations at a pixel over time). Similarly, the space domain is defined
by the variations of intensity on the image plane at an instant of time.

Computational models for time-varying imagery (TVI) may be categorized by noting whether
they discretize the space and time domains®. A domain which has a discrete formulation should be
considered continuous if either formulation is plausible. Since each domain can be either discrete
or continuous, there are four possible ways to distinguish among TVI models: implementational
models (discrete space and time), physics models (continuous space and time), frame-based models

(continuous space and discrete time), and time-based models (discrete space and continuous time).

Implementational models assume in their formulation that both space and time are discrete.
Since physical devices limit changes in space and time, actual algorithm implementation occurs at
this level. Although many engineering models fall into this category, we know of no computational

models which require both discrete space and discrete time.

Physics models describe physical phenomena independent of the sensor by relying upon prin-

ciples from physics (e.g., fluid mechanics [40], optics [17], and signal theory [12]). These models

2P. Anandan of Yale University contributed to the development of this taxonomy.



examine the continuous formulas governing variations of the image in both space and time. Since
they tend to be analytically rigorous, these models often allow definite statements to be made
about the inherent nature of the visual task. Additionally, the physics analogy allows many estah-
lished tools to be used in model formulation (e.g., Fourier analysis, ray-tracing, and regularization).
Though a powerful analytic technique, mapping a physics model into a computation can be difficult.

and the resulting computation is often combinatoric and/or noise sensitive.

Frame-based models consider time-varying imagery as a sequence of frames in time; the
frames can be viewed as “slices” in the spatiotemporal cube. These models are by far the most
prevalent in the literature (e.g., (3,6,23,27,28]) since current video and film technology captures
images as a sequence of frames. It is thus the best understood of the computational frameworks.

Frame-based techniques sample the spatiotemporal cube at discrete points in time. Since objects
move continuously in space and the velocity at which they move can assume a wide range of
values, a feature in one frame can in principle move anywhere in the continuous space of the
next frame (including off the bounded space of the image frame). Determining where a feature
has moved between two frames has been termed the correspondence problem |37). Determining
the correspondence of features over the “gap” of time between frames is made difficult because
no inherent constraint on the spatial displacement exists, though weak heuristics usually provide
unique and efficient solutions [27). A more general extension of the correspondence problem is the
maultiple frame tntegration problem which seeks to track image features over multiple frames in order

to attain greater accuracy [6,28|.

Time-based models use the fixed spatial relationships among image positions to interpret the
order of temporal image events. The earliest versions were presented as models of biological retinas
(e.g., [29]), but recently there has been a renewed interest with a focus towards computer vision
(e-g., [1,19,32,33,38,39]).

Time-based models have asynchronous flow of information and they naturally allow parallel
computation. These models are generally defined by local automata which are data driven and
respond asynchronously to image events. This approach to computation is analogous to biological

information processing, which accounts for its early use as a model of retinal motion detection.

B. Review of time-based models

When discussing image velocities, it is important to explicitly specify the type of velocity. Figure
1 illustrates a moving edge. The real motion of the edge is represented by Vg. Due to the aperture

problem, a straight edge viewed in a small local region will always appear to move in a direction



perpendicular to itself [37]. Vv in figure 1 represents the observed motion which is always normal
to the brightness gradient (also called normal motion). The aggregate of real velocities within
an image is often called the optical flow [15,37], and its determination requires the integration of

locally observed velocities (3,17].

Time-based models of imagery were first advanced as models of biological motion perception.
Reichardt first proposed a class of motion detection models which this paper refers to as opponent
correlation models [29]. As shown in figure 2a, Reichardt’s motion detector contains two subunits
that are attuned to opposite directions. Each subunit multiplies the input from two point receptors
(one of which is passed through a linear temporal filter (TF) to approximate a delay) which is then
temporally averaged. Leftward motion is indicated when the output of the right subunit exceeds
that of the left subunit; similarly, rightward motion is indicated when left subunit output exceeds
right subunit output. As shown by van Santen and Sperling (33}, the original Reichardt model can
suffer from a form of aliasing that causes incorrect output. Their elaborated Reichardt detector
(ERD) avoids this potential problem by adding additional spatial filters (SF in figure 2b) and
incorporating a few simple assumptions; [32] notes that the ERD is fully equivalent to the detector
proposed by Adelson and Bergen [1], and for suitably chosen filters it is equivalent to the detector
proposed by Watson and Ahumada (39].

A somewhat related approach to motion perception has defined spatiotemporal filters which
respond optimally to a range of velocities [12]. These approaches are inspired by the velocily-
tuning found in biological vision pathways [13] and this class of motion detectors can be referred
to as velocity-tuned filter models. These models observe that the temporal frequency 7r, the
spatial frequency 75, and real image velocity Vg are related by 7r = 7sVg. The space and time
frequency domains are then bandpass filtered in order to obtain a velocity-tuned filter. This can
be demonstrated using figure 3, which shows a contour plot of temporal frequency expressed as
a function of spatial frequency and real velocity (the isoclines indicate temporal frequency). The
spatial bandpass is indicated with a heavy dashed line, and the temporal bandpass is indicated with
a heavy solid line; the resulting spatiotemporal filter only passes input which is within the hatched
area shown in figure 3. This spatiotemporal filter is velocity-tuned in that it does not pass input.
which has real velocity outside the range indicated with a dotted line in figure 3; though the shaded
area in figure 3 is within this velocity range, it is not passed by the filter (hence, velocity-tuning

vs. bandpass).

The approach proposed by the author in [19] explicitly detects and tracks continuously moving
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Figure 1: Geometry of a moving edge and the aperture problem.
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Figure 2: (a) Reichardt’s original motion detector ‘29]; (b) elaborated Reichardt detector [32]. TF
denotes a linear temporal filter, x indicates a multiplication, TA denotes time averaging, and +
indicates an algebraic addition.
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Figure 3: A contour plot of temporal frequency 7 expressed as a function of spatial frequency 7
and real velocity Vp: Fr = FgVp. The isoclines indicate temporal frequency.



edges. An edge was defined as a locally straight contrast boundary. As an edge moves relative
to the detector array, portions of the edge traverse pixels; a pixel “event” occurs the moment a
portion of the edge traverses the pixel. A locally straight edge causes these events to occur in a

fixed and precise order in time which allows edge orientation and normal motion to be determined.

The velocity-tuned filter models constrain the time domain by operating within a localized time
window. Though significant events may occur at many temporal scales, spatiotemporal filters are
velocity-tuned precisely because they are localized in space and time. Reichardt’s original opponent
correlation model approximated a delay and compare, and thus the delay period defined a fixed
time window; more recent work has examined how this restriction may be overcome (1,32]. The
event-driven computation proposed in [19] does not require a time window.

The model in [19] is most similar to the opponent correlation models. They both explicitly
use the fixed spatial relationships between detector cells to determine motion. Because opponent
correlation models discriminate between left and right, section IIID will show how these models

can be incorporated into the technique developed by [19].

C. Computational stages: events, edges, consistency

This paper develops a time-based, event-driven method for computing temporal persistence and
consistent edge motion from natural images. Figure 4 illustrates the three main computational
stages: event detection, edge and normal motion determination, and context-dependent model

enforcement.

The order in which image events occur over time can determine the orientation and normal
motion of spatial edges; there is a direct relationship between changes in the spatial location of a
moving straight edge and the order of temporal edges in time [19]. In order to develop an intuition,
figure 5 shows a local edge from a small patch in a natural image. An edge in the three dimensional
projection is marked by a line labelled E. The real motion (Vg) is known from subsequent images.
Taking the vantage point of a pizel on the detector array, we then look at the variation of intensity
at this pixel over time caused by the movement of the local edge. As a first approximation, let
us assume the intensity surface in figure 5 maintains its form and simply translates with constant
velocity. The intensity at a pixel over time is thus a “track” in the direction of real motion which
has the width of a single pixel. Three such tracks are shown in figure 5. In this restricted case.
it is apparent that the moving spatial edge FE results in a one-dimensional edge measured in the
time domain which occurs when the spatial edge is centercd over the target pixel (i.e., where the

edge E intersects a pixel “track”); this can be clearly seen in figures 5 and 8. Note that temporal
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edges detected from different pixels retain the spatial structure of the two-dimensional edge F.
Temporal edges are detected in time, they are thus extracted using an cvent detector (the first
stage of processing in figure 4). Determination of edge direction and motion is the second stage in

figure 4.

To simplify the discussion, it was initially assumed that the intensity surface in figure 5 rigidly
translated with constant velocity. This allowed the spatial edge £ and the pixel intensity values over
time (i.e., pixel “tracks”) to be intermingled in figure 5. This assumption need not be retained.
Nonconstant velocity compresses and expands the temporal signal relative to the spatial signal
(i.e., real velocity and temporal frequency are directly related), so temporal edges can retain their
structural relationship to spatial edges. Intensity variations due to sensor bias and fluctuation,
aliasing, and other effects can undermine the structural relationship between temporal and spatial

edges; section IV discusses how these effects can be overcome.

This section has provided a very general overview. The next section describes how moving edges
can be extracted from natural, time-varying imagery. Section IV shows how consistency among
adjacent edge/motion detectors can determine temporal persistence and consistent edge motion.

This is followed by a presentation of results and a discussion.

III. Event-Driven Edge Detection

Figure 6 shows the steps that can be used to determine the orientation and normal motion of
edges in natural, time-varying imagery as proposed in [19]. Acquisition, initial filtering, and detec-
tion of temporal edges (i.e., event detection) are first discussed. The detector geometry described

in [19] is then extended to arbitrary tessellations.

A. Low-pass spatial filtering

Camera lenses generally pass spatial frequencies significantly higher than the maximum sam-
pling rate which is justified by the resolution of the detector array [42]. To avoid sensor aliasing, a
spatial low-pass filter (LPF) can be used to ensure that no frequencies are passed which are higher
than that justified by the size of the pixel [38]. To be most effective, sensor sampling should occur
after the spatial LPF (as shown in figure 6).

The edge detection model proposed in [19] which is discussed in this paper assumes that no more
than one locally straight edge may simultaneously traverse an edge motion unit; this may be called

the singularity assumption. Thus, if w is the maximum distance between any two pixels contained
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Figure 6: Steps that can be used to determine orientation and normal motion of edges in natural
imagery (per [19]).
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within a single motion unit, the singularity assumption requires that the minimum distance between
any two edges be no less than w. This may be accomplished by low-pass spatial filtering, though
the required cutoff frequency depends upon the adopted definition of a locally straight edge. For
example, if edges are defined by local maxima, then w = 1/B where B is the spatial cutoff frequency
of the low-pass filter [22].

Due to the central limit tendency of natural phenomena [21,31], defocusing, Lambertian re-
flectors, objects out of the depth of field, and a great many other optical effects result in gaussian
smoothing [42]. Because gaussian smoothing attenuates higher frequencies, it serves as a reasonable
low-pass filter [8]; static optical elements can thus provide inexpensive, reasonable quality low-pass
spatial filters that can operate before sensor sampling. Alternative spatial low-pass filters which

better approximate the ideal are discussed in [22,26,31,42].

B. Low-pass temporal filtering

Image sensors are an aggregate of discrete spatial detectors which individually sample intensity
over time. The pixels in a spatial image must be sampled over the same time interval in order to
preserve temporal coherence. Not all image sensors preserve this property. For example, raster-
scanned video tube cameras sample each pixel at a different time; because the pixels imaged from
a moving object will not all be measured at the same time, the sensor does not preserve tempo-
ral coherence. Conversely, motion pictures and many CCD cameras preserve temporal coherence
because the elements in each frame are exposed over the same time interval.

An imaging device only approximates the optical time-varying image because the response of
phototransducers is affected by cell composition, load and pre-historic conditioning, light level, etc.
[2]; these effects acts as a low-pass filter in the time domain [2,35]. Sampling the spatiotemporal
cube in discrete slices of time (i.e., frames) usually results in temporal aliasing because the temporal
LPF cutoff determined by phototransducer response characteristics is generally significantly higher
than the temporal frequency cutoff dictated by the frame sampling rate (e.g., 30 frames per second).
As a result, additional low-pass temporal filtering to match frame rate is usually needed to reduce

the effect of temporal aliasing.

The implementation of a low-pass temporal filter differs somewhat from that of a spatial filter.
Specifically, low-pass spatial filters are generally implemented by some symmetric smoothing func-
tion (e.g., a gaussian). A symmetric smoothing function in the time domain seems to present a
problem, since one cannot smooth into the future (as implied by a symmetric gaussian with mean

at the current point in time). This paradox can be resolved by setting limits on the smoothing
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function and moving the origin to the upper limit (which delays the output by half the range of the
bounded function). Because a temporal smoothing function can only be applied to signals mea-
sured in the past, asymmetric functions scem more appropriate than symmetric functions; they also
require less delay than their symmetric counterparts. Figure 7 shows some asymmetric functions
which were considered; the experiments presented in this paper used a normalized half gaussian as

a temporal low-pass filter.

As noted before, 7 = FsVg. One interesting consequence of this equation is that a family of
spatial frequencies and real velocities can result in the same temporal frequency (as shown by the
isocontours in figure 3). This temporal equivalency effect is discussed by Watson and Ahumada in
their derivation of the critical sampling frequency [39).

Closer examination of figure 3 shows that filtering in one dimension (i.e., temporal frequency,
spatial frequency, or real velocity) may be indirectly achieved by filtering another dimension (e.g., as
done in the velocity-tuned filter models). For example, increasing real velocity for a fixed temporal
LPF is equivalent to decreasing the cutoff of a spatial LPF by a constant factor (i.e., as Vg increases
for fixed 77, Fs decreases); this explains motion blurring caused by excessive movement of the
camera relative to the environment [5,23]. Conversely, increasing the cutoff of the temporal LPF
for a fixed real velocity is equivalent to increasing the maximum spatial frequency by a constant
factor (i.e., as Fr increases for fixed Vg, so does 7). In this sense, low-pass spatial filtering can
be equivalently accomplished by appropriate temporal low-pass filtering. When real velocity Vg
and the temporal LPF cutoff are known, the highest passed spatial frequency is known. In general,
only the temporal LPF cutoff is known when filtering occurs; real velocity is computed by later
stages. In this case, increasing the temporal LPF cutoff is equivalent to increasing the highest
passed spatial frequency, though the precise relationship is not known. This can be useful when a
shift in spatial frequency is desired, since there are practical limits to the dynamic modifiability of

the low-pass spatial filter and sampling rate.

C. Detecting events from natural time-varying tmagery

As shown in figure 5, there is a relationship between spatial edges and temporal edges (i.e.,
events). This subsection examines how these events can be detected in a one-dimensional temporal
signal (i.e., pixel intensity over time).

Any technique for detecting an “event” over the temporal signal is valid as long as it tends o
detect events that are part of a larger, locally straight contrast edge. There are many signal events

that can be defined by simple variations in the low-order derivatives of a signal; this section will
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Figure 7: Some temporal low-pass filter functions: a) Poisson function, b) neural model (Tyler in
[36]), c) half gaussian, d) neural physiology (Adelson and Bergen in [1], e) exponential decay.



discuss the use of minima, maxima, and inflection points for temporal edge extraction.

The extrema of a one-dimensional signal can be simply detected by noting when a change in
sign occurs in the first derivative of the signal. When the sign of the first derivative goes from
positive to negative, a maximum in the signal has occured. Conversely, when the sign of the first
derivative changes from negative to positive, a minimum in the signal has occured. Inflection points
are simply detected by noting when the second derivative changes sign.

Figure 8 shows the intensity at a pixel over time. This is analogous to the pixel “track” shown in
figure 5. Temporal filtering has been done to avoid aliasing due to frame-based image acquisition.
Minima (N), maxima (M), and inflection points (I) are indicated.

When an image moves with nonconstant velocity, there is no longer a direct correspondence
between units of time and space (i.e., the temporal signal is not a scaled version of the spatial signal
in the direction of real motion). Rather, portions of the spatial signal are relatively expanded and
compressed in the temporal signal by changes in velocity. This compression/expansion does not
affect the number of detected minima/maxima. Because extrema which form a contour generally
have similar velocity, nonconstant velocity tends to uniformly displace them so that the local two-
dimensional structure of the edge is preserved.

Though extrema provide a useful definition of a temporal edge, inflection points are generally
considered to be the most common definition of an edge; edges are usually thought to separate
regions of relative lightness and darkness. This more accepted definition may be incorporated
by defining temporal edges as inflection points in the temporal signal. With constant velocity,
temporal inflection points structurally relate to spatial edges much the same as temporal extrema.
Nonconstant velocity causes the temporal signal to expand or compress relative to the spatial signal;
this can introduce or eliminate inflection points in the temporal signal. That is, nonconstant velocity
undermines the structural relationship between inflection points in the temporal and spatial signals.
When the assumption of locally constant velocity is incorporated, the correspondence of temporal
inflection points to spatial inflection points is ensured.

The model of a translating locally straight edge does not depend upon a particular event
definition. Multiple event definitions (e.g., minima and maxima) can provide denser edge and
normal motion fields, though only one event type may be used at any one time due to the singularity

assumption.

It is important to note that event detectors are defined by whether they tend to detect portions of
a translating straight edge. This section has only examined minima, maxima, and inflection points

as potential events; other techniques may prove superior by demonstrating a higher correlation
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between detected events and their membership in a moving locally straight edge.

D. Event-driven edge detection

A time-based computational model for determining the spatial orientation and normal velocity
of a moving edge was presented in [19]. The technique is based upon the model of a two-dimensional
straight edge continuously translating over a fixed tesseral unit. Because a minimum of three
noncollinear points are required to determine the general motion of a line on a plane, this fixed
tesseral unit is called a triad. Each cell in the triad is an event detector (as described in the
previous subsection) which responds when a portion of a locally straight edge traverses it. The
fixed geometry of the cells in a detector unit and the well-defined model of a moving edge allows
space-time relationships to be determined analytically. In short, these relationships allow the
orientation and normal motion of a moving edge to be determined by the order and relative timing
in which the triad cells are traversed in time. This section extends the analysis in {19] to arbitrary

detector tessellations; see [19] for a more complete discussion of the technique.

Because most sensors used for computer vision use a square detector tessellation, the three-
celled unit described in [19] cannot be directly used for this imagery. Instead, the technique can be
generalized to arbitrary event detector tessellations by observing the order in which the detectors
are traversed by a moving edge. For example, figure 9a shows nine arbitrarily placed event detectors
labelled A through I. Changing the direction of a moving edge can change the order in which these
event detectors are traversed in time. Thus, in figure 9b, the edge moving downward and slightly
to the right traverses A then B; in figure 9c, a slight change in edge direction to downward and left
reverses the traversed order of event detectors.

Suppose that each event detector (e.g., A through I in figure 9a) is a node in a fully connected
graph where each arc corresponds to a possible traversal order of two event detectors in time, and
every possible order of event detectors in time can be represented by a path in this graph. Only
a subset of these paths can be generated by a continuously translating straight edge; it always
traverses the cell(s) closest to it in the direction of real motion. This natural constraint prunes
the fully connected graph into a tree, and this tree is equivalent to a finite automaton which can

determine edge direction based upon the traversal order of event detectors [19].

We now derive a finite automaton for square event detector tessellations which determines
edge direction from the order of detected temporal edges in time (i.e., events). Figure 10a shows
four event detectors arranged in a square tesseral unit (as exists in most image sensors) and the

possible directions of a moving edge (in radians). Enumerating the order of event detectors for all
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translating edge directions yields the eight equal sectors with size 7 /4 radians shown in figure 10a.
Each section has an order of passage which constrains edge direction to that sector (e.g., sector 1
has order of passage ACBD). When an edge traverses the first cell in a passage, six sectors are
eliminated and edge direction is limited to two adjacent sectors. When the second cell is traversed
by the edge, another sector is eliminated and the edge direction is limited to a single sector. Exact
edge direction may be determined in a manner analogous to that in [19] when the assumption of

constant velocity is incorporated.

Figure 10b shows a finite automaton representation of figure 10a which uses the traversal order
of event detectors in time to determine edge direction. The initial state assumes that no event
detectors have been traversed. The circles, triangles, squares, and hexagons indicate whether one,
two, three, or four event detectors, respectively, have already been traversed. Arcs between nodes
indicate the event detector(s) traversed at an instant in time. Figure 10b is essentially a time

ordered representation of the spatial relationships shown in figure 10a.

Opponent correlation models, since they determine left /right motion (analogous to the left /right
motion detection shown in figures 9b and 9c), can replace the event detection technique presented in
subsection C while still preserving the ability to determine the general motion of a line (as presented
in this section). That is, the technique employed in this section and in [19] simply incorporates the

opponent correlation models described in section IIB.

IV. Context Dependent Model Enforcement: Low-Level Tracking

The previous section presented an event-driven edge detection technique which is based upon
the model of a locally translating straight edge. As in all low-level vision models, the computation
places constraints on the variation of the intensity surface. When image variations occur which do
not conform to a computational model, the resulting output may not have a known or correct in-
terpretation. Because natural images conform to the less restrictive laws of physics, they inevitably
contain intensity variations which violate model assumptions.

There are factors inherent to physical devices (e.g., transient noise, sensor fluctuation and
response limits, optical defects, etc.) which undermine the direct correspondence between the
environment and its projection onto the image plane. Figure 11 shows some other image variations
which do not conform to the triad model. A translating edge that occludes (e.g., figure 11a) never
fully completes traversing the triad. A disoccluding edge (e.g., figure 11b) does not fully traverse

the triad unit, hence, the order of passage is not indicative of edge direction and motion. The
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order of traversal created by a nonstraight local image (e.g., figure 11c) is also not indicative of
edge direction/motion. In animal vision, where saccades generate motion which is a prerequisite
for visual perception [ﬁO], there are often edge direction reversals whose order of passage violates
the triad model (e.g., figure 11d). Though these model violations cannot be detected by local triad
edge/motion detectors, they can be detected and corrected by enforcing consistency at a scale larger

than single edge/motion units.

Figure 12 shows how the triad model may be enforced. Event-driven edge detection, presented
in the previous section, uses detected temporal events (see section IIIC) and the current triad state
and finite automaton (see section IIID) to determine the hypothetical edge direction and motion
(as shown in figure 12). When the local intensity variation conforms to the model of a translating
straight edge, the hypothetical edge correctly describes the underlying intensity variation. Con-
versely, when the local intensity variation does not conform to the triad model (e.g., see figure 11),
the hypothetical edge is not meaningful. Determining the validity of the hypothetical edge is called
model enforcement.

The validity of the edge hypothesis can be determined by examining its consistency with pre-
vious image motion. As shown in figure 12, previous image motion provides expectations and a
current measure of temporal persistence which which can be used to determine whether the current
edge hypothesis arose from modelled local intensity variation (i.e., a locally translating straight
edge). Previous image motion provides low-level context that can determine the validity of the

edge hypothesis; hence, the approach is called contezt-dependent model enforement (CDME).

The next subsections describe how expectations and local neighbor communication can be
used to determine the validity of the current edge hypothesis, determine temporal persistence and

consistent edge motion, and provide virtually noise-free feature extraction from general imagery.

A. Propagating expectations among adjacent neighbors

Time-based models need not “lose” track of image features since there is no gap of time in which
the position of the feature cannot be monitored. This introduces the inherent constraint that a
moving edge which does not disappear from the image is constrained to move through adjacent
edge/motion detectors.

Figure 13 shows a locally translating straight edge. The trajectory of the edge is shown. Previous
positions of the edge along the trajectory are upstream in time; conversely, positions that the
edge will occupy in the future are downstream in time. The boxes marked 1 - 8 in figure 13

are edge/motion detectors. Thus, the edge shown in figure 13 is currently traversing the center
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Figure 11: Image variations which do not conform to the triad model: a) occluding edge. b)
disoccluding edge, c) nonstraight edge, d) edge direction change.
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edge/motion unit, it traversed unit 7 upstrean in time, and it will traverse unit 3 downstream in
time.

As an edge moves, information about its motion, direction, etc., may be propagated to other
edge/motion units along the trajectory. For example, in figure 13 the information available to the
center edge/motion unit can be propagated downstream in time to unit 3; when the edge reaches
unit 3, the expectations provided by upstream detector units can be used to determine whether
the edge hypothesis is consistent with the computational model (i.e., consistent with a translating
locally straight contrast edge). Similarly, the center unit may propagate its current information
upstream in time to units that have already been traversed by the edge.

In general, propagating information downstream in time provides predictive expectations; these
expectations can be used to determine the validity of the current edge hypothesis. Propagating
information upstream in time allows more accurate feature tracking by allowing the resetting of the
edge/motion state to be affected by downstream data (i.e., resetting to the zero hit state shown in
figure 10b). This paper concentrates on the downstream propagation of feature information; current,

work is examining the use of upstream propagation for better synchronization and tracking.

If time-based image acquisition is assumed, then only communication between adjacent units is
required; section IVE will show how this easily extends to frame-based image acquisition paradigms.
Regardless of whether image acquisition is synchronous or fully parallel, the communication chan-
nels between edge/motion units is always fixed and localized; hence, there is no search, and com-
munication is particularly well-suited for VLSI implementation.

Two techniques for propagating expectations along the edge trajectory were explored. In the
first approach, edge information was only propagated to the single downstream unit closest to
the trajectory; for example, in figure 13 the edge traversing the center unit would only propagate
information to unit 3. Because inaccuracies in local edge direction often occur in natural imagery.,
this approach sometimes results in a failure to correctly communicate expectations along the edge
trajectory. For reasons that will become apparent’in subscction C, it is better to be less restrictive
when communicating edge traversal expectations.

Alternatively, a group of adjacent units can be notified of an approaching edge. For example.
in figure 13, information about the edge currently at the center unit can be propagated to units
2, 3, and 4. This additional “slop factor” allows for small local inaccuracies in edge direction that
are endemic to natural imagery. It virtually ensures that consistently moving edges will correctly
communicate expectations of edge characteristics to units along the trajectory. As shown in the next.

subsection, these expectations can be used to determine the validity of the current edge hypothesis.
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B. Local conststency determines edge hypothests validity

The requirement that current image motion be consistent with previous image motion is a
simple, yet powerful, way to determine the validity of the current edge hypothesis (as shown in
figure 12). To provide a more intuitive sense of motion coherence, figure 14 shows the normal motion
field computed from natural imagery using an event-driven edge detector as previously discussed. A
six frame sequence was used® and the local normals for all frames have been compressed into a single
image. Intuitively, consistent motion in figure 14 occurs where there seems to be common motion
over time. For example, vectors which go head to tail indicate consistent motion. Conversely,
there are edge vectors in figure 14 which appear almost random; these local normals do not display

temporal persistence or agreement with previous image motion.

Some violations of the triad model (e.g., direction reversal as shown in figure 11d) are locally
detectable by the edge/motion unit, but many others cannot be detected using only local informa-
tion. When an edge traverses an edge/motion unit (e.g., the center unit in figure 13), the unit forms
a hypothesis describing edge direction, motion, and perhaps other information. As discussed, this
hypotbhesis is only valid when the variation in image intensity conforms to the computational model.
The validity of an edge hypothesis can be largely determined by verifying its consistency with the
model of a translating straight edge and the expectations provided by adjacent edge/motion units.
The key idea is that when an edge hypothesis is found inconsistent, it is not incorporated as the

new edge/motion detector state (in the sense of figure 10b).

The triad model of a translating locally straight edge implies the simultancous existence of
certain local and neighbor information. For example, to be consistent with the model, a local
edge/motion unit must be notified by an upstream neighbor of an approaching edge before it. is
locally detected. Thus, the disoccluding edge shown in figure 11b is not consistent with the model
because the edge newly appeared in the image, hence, therc are no upstream units that could have
warned of an approaching edge; the edge hypothesis for that detector is thus inconsistent with the
triad model, therefore, the edge hypothesis should not be incorporated as the new detector state.
Similarly, nonstraight local image patches (as in figure 11c) tend to create edge directions that vary
along the trajectory of real motion; this tends to cause breaks in neighbor communication along

the trajectory.

Other than notifying of approaching edges, neighbors can provide more detailed information
about the moving edge to downstream neighbors (e.g., the amount of time required to completely

3The office pan sequence was provided conrtesy of R.C. Bolles of SRI International and it is reported by Delles
and Baker in [4].
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Figure 14: Local normals computed from a six-frame natural image sequence using an event-driven
edge detector and compressed into a single frame.
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traverse the upstream neighbor). It is important that the state of edge/motion detectors accuratel y
reflect the structure of the underlying intensity surface. For example, the occluding edge shown
in figure 11a leaves the edge/motion automaton in a state that indicates that two out of threc
detectors have been traversed. It is best to reset the state of the detector as soon as possible to
reflect the disappearance of the moving edge from the image plane. If neighbor information is not.
employed, the only solution is to reset the detector state after a fixed time period starting from the
first event detector traversal. Yet, the local edge/motion unit could take advantage of information
available from upstream units to more quickly reset its state. For example, if the time required to
traverse a unit were propagated downstream, that time period could be used in place of a fixed
time period; this would result in a tighter relationship between the state of local detectors and the

underlying intensity image.

The local consistency checking presented here was found sufficient to process natural images (as
shown in section V); current work is exploring other dimensions of local and neighbor consistency
checking. The next section ties the ideas of neighbor communication and local consistency checking

together in order to describe how they can combine to yield virtually noise-free feature extraction.

C. Virtually noise-free feature extraction

The previous subsections have described how neighbor communication and local consistency
checking can be used to enforce the triad model. Though these two alone are not sufficient to
always detect and correct errors caused by unmodelled intensity variations, they have a simple
extension which can virtually guarantee that extracted features are error-free.

Figure 15 deﬁneg some useful nomenclature. The communication between two edge/motion
units is a link. As an edge moves along a trajectory, a chain of links is formed; for example, a chain

of length three is shown in figure 15.

Assume that p is the probability that a link has no structural relationship to the environment.:
the exact value of p can be empirically estimated, though a particular value is not nceded for this
discussion. The key idea is that the cumulative probability that a chain is not structurally significant
18 p" where n is the chain length. Because this cumulative probability is an exponentially decreasing
function, even a relatively small chain length can virtually assure that the chain is due to modelled
image variations. Thus, virtually noise-free feature extraction can be obtained by requiring that
“visible” features have a minimum associated chain length.

Subsection A discussed how expectations may be propagated among adjacent neighbors. In

particular, it was stated that it is better to be less restrictive when communicating edge traversal
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Figure 15: Chains of links along the edge trajectory.
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expectations. This is directly related to the concept: of chain length. When a restrictive commu-
nication scheme is used, there is a greater probability that structurally meaningful expectations
will fail to propagate along the traversal trajectory; this tends to fragment structurally meaningful
chains which makes them less distinguishable from chains caused by unmodelled image variations.
Converseiy, a less restrictive communication scheme (such as notifying a group of neighbors) vir-
tually ensures that modelled edges will form unbroken chains along the trajectory. Less restrictive
neighbor communication increases the probability (p) that a link is due to nonstructural causes,

but this can be corrected by a commensurate increase in the minimal feature chain length.

D. Measuring temporal persistence

The previous sections have described how consistent edge motion and virtually noise-free fea-
tures may be extracted. Using this framework, this section describes how temporal persistence may
be determined using neighbor communication along the trajectory.

Remember that temporal persistence was defined as the period of time over which a spatial
feature has stably persisted in the image plane. This interval may be determined in several ways.

One way to compute temporal persistence assumes that each edge/motion unit has an indepen-
dent counter to measure elapsed time. When an edge is locally detected and no upstream neighbor
has indicated its approach (i.e., the edge is newly appearing), or when the state of the edge/motion
unit is reset, the local counter for that edge/motion unit can be reset to 0. This counter measures
elapsed time while the edge is traversing it. As the edge moves along the trajectory, the counter
value at the current edge position is then used to reset the counter of the downstream neighbor.
Thusly, the total elapsed time since the edge first appeared is maintained by the edge/motion
units along the edge trajectory. Though this technique is conceptually intuitive, it requires a local
counter and externalﬂ clock, and the maximum counter value places a limit on the ability to measure
temporal persistence. These effects can be partially offset by more coarsely quantizing time and
careful design of local counters.

A similar approach assigns a time stamp to a spatial feature (e.g., an edge) when it first
appears on the image plane. That time stamp may then be propagated (without modification) to
downstream neighbors. This approach eliminates the need for local counters, though it requires a
final computation to determine the temporal persistence interval; that is, for a time stamp ; and
current time ¢, the current temporal persistence interval is then ¢ f;.

Temporal persistence was defined as the period of time over which a spatial feature has persisted.

Alternatively, it may be approximated by measuring the traversed distance over the space of the
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image plane. That is, chain length can be used to approximate the temporal persistence interval.
Chain length is related to the temporal persistence interval by the real velocity at which the feature
traverses the image plane. For example, within the same time interval, a slowly moving edge will
have a smaller chain length than a faster moving edge. Because immediately adjacent features on
a single object tend to have similar velocities, the relative chain lengths among adjacent features
tends to be the same as the relative temporal persistence intervals for those adjacent features.
Conversely, relative chain lengths among features moving at different velocities will differ from the
relative temporal persistence intervals for those features.

As usual, the extent to which approximations may be used depends upon the way in which
the information will be used. For the purpose of extracting virtually noise-free moving edges
and roughly determining their persistence interval, the chain length approximation was sufficient..
Alternatively, other applications (e.g., object segmentation based upon the temporal persistence

interval) may justify more exact computation.

E. Time-based versus frame-based image acquisition

So far, it has been implicitly assumed that a time-besed image acquisition paradigm is used.
Conversely, most current image acquisition hardware was developed for television using a frame-
based paradigm. Though imaging devices specially designed for computer vision may be more
appropriate [34], the prevalence of frame-based devices justifies its discussion.“This subsection dis-
cusses enhancements useful for frame-based imagery. It is important to note that omitting these
enhancements will not result in incorrect or noisy extraction of edges. Rather, discontinuously mov-
ing edges caused by frame-based imagery will be eliminated by the time-based contezt-dependent
model enforcement presented in previous subsections. These enhancements are only intended to
increase the number of features extracted from frame-based imagery.

As mentioned in section 11A, frame-based techniques allow a feature in one frame to move, in
principle, anywhere in the continuous space of the next frame; this introduces the correspondence
problem. Conversely, time-based models do not discretely sample in time, hence, they need not
“loge” track of image features since there is no gap of time in which the position of a feature cannot
be monitored. As a result, each of the steps shown in figure 12 is affected by the use of frame-based

imagery.

Temporal edges (i.e., events) identify portions of a locally straight moving edge. As discussed in
section IIIB, frame-based imagery usually suffers from some temporal aliasing; this can introduce

temporal edges that are not structurally related to moving edges. Appropriate temporal low-pass
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filtering can largely eliminate the effects of temporal aliasing.

The techniques presented here and in [19] relied upon a time-based model in which a translating
edge that does not disappear from the image is constrained to move through adjacent image posi-
tions. Because imagery is sampled continuously in time, a feature is detected when it traverses an
event detector. Frame-based image acquisition introduces the potential problem that an event at a
pixel may not occur during a temporal sampling period, hence, it may not be detected. This form
of temporal aliasing undermines the determination of edge direction based upon order of passagr
and the propagation of edge information along the trajectory. For example, a moving edge might
create the order of passage ABC, but if detector B was not traversed during a temporal sampling
period, the detected order of passage would reduce to AC; thus, failure to detect an edge while it
traverses detector B results in an incorrect order of passage.

The failure to detect events when they occur (due to frame-based image acquisition) can be
partially offset by modifying the triad finite automaton (shown in figure 10b). Specifically, the effect
of discrete temporal sampling which is inherent to frame-based imagery may be incorporated into
the automaton. For example, any order of passage which is consistent with an edge with direction
a = 7 /8 can be incorporated into the automaton (e.g., if brackets indicate simultaneous traversal
of cells: [AC|[BD], C|AD|B, [ACD|B, etc.). Put another way, frame-based imagery introduces
additional possible arcs in the triad automaton. As such, additional arcs may be added to partially

offset the effect of frame-based imagery.

Though the triad finite automaton may be modified to deal with small discontinuities caused by
frame-based imagery, larger discontinuities cannot. be overcome in this way. Time-based imagery
allowed communication among adjacent neighbors along the trajectory. Conversely, frame-based
imagery can result in discontinuous detection of an edge along the trajectory; hence, restricting
communication to immediate neighbors can fragment a chain along the trajectory. To deal with
this, a larger neighborhood can be used to communicate expectations across discontinnities along
the edge trajectory.

Figure 16 shows a moving edge. Because frame-based imagery allows for discontinuous detection
of the moving edge ‘along the trajectory, current edge information must be communicated to all
downstream neighbors that can next detect the moving edge. For example, the moving edge shown
in figure 16 could communicate its edge information to all units that lay along the trajectory within
a fixed radius.

There is a fixed relationship between the maximum linking radius required for frame-based

imagery and the maximum allowable velocity at which a detectable feature may move across Lhe
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Figure 16: Increasing fixed communication radius for frame-based imagery.
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image. Using a 256 x 256 image sampled at 30 frames per second as an example, features tha,
can smoothly translate across the bounded image in no more than two seconds require a maximum
linking radius of about 4. Doubling the maximum detectable feature velocity doubles the size of the
linking radius. Thus, an effective way to deal with discontinuities created by frame-based imagery
is to communicate to a larger neighborhood based upon the maximum detectable image velocity.
Features moving faster than this maximum detectable velocity break links along the trajectory, and
hence, they fail to create sizeable chains along the trajectory; thus, they virtually never introduce
errors when a minimum chain length is enforced.

Several other factors affect the size of the linking radius. A larger linking radius increases
the chance that nonstructural links will occur. As shown in subsection C, a greater probability
of nonstructural links p can be offset by increasing the minimum chain length n. Increasing the
neighborhood communication radius increases the number of communications lines; thus, physical
realizability places an upper limit on the radjus.

Communication within the neighborhood radius need not be indiscriminate. Instead, only a
subset of neighbors within a fixed radius may be linked based upon local edge characteristics (c.g..
velocity, local event density, etc.). This reduces the probability of nonstructural links (i.e., reduces

p), hence, shorter minimum chain lengths would be required.

V. Results on a Natural Image Sequence

Previous sections discussed the determination of temporal persistence and consistent cdge direc-
tion/motion. This section demonstrates the approach on an office scene sequence provided to the
author by R.C. Bolles; the imagery was originally described by Bolles and Baker in [4]. In this dense
sequence (no more than about one pixel motion per frame), the camera translated orthogonally to
the optical axis (as when one looks directly out of the side window of a moving car).

Figure 17 shows a frame in the sequence before any processing has been done. Some spalial
aliasing exists in the imagery because explicit low-pass spatial filtering was not done prior to image
acquisition (as discussed in section I11A). Because there was only a small amount of aliasing anc
the preservation of image sharpness was considered important, no steps were taken to alleviate
spatial aliasing (i.e., each frame was not put through a spatial LPF).

Figure 18 shows the result of temporally filtering the original frame shown in fignre 17. The
temporal signal (i.e., pixel intensity over time) was convolved with a normalized half gaussian with
o = 2 to temporally filter the imagery. Notice the motion blurring caused by temporal filtering (as

discussed in section IIIB).
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Figure 17: Office scene image (courtesy of R.C. Bolles).
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Figure 18: Office scene image after low-pass temporal filtering.



In order to develop an intuition for the motion in this sequence, figure 19 shows the motion over
sixteen frames which occured in the small patch marked by a box in the upper left-hand corner of

figure 18.

Figure 20 shows the temporal edges (events) detected in the image patch during the sixth frame;
pixels at which an event has been detected appear as black spots. Temporal edges were arbitrarily
defined as maxima in the temporal signal. Note the correspondence between the temporal maxima
and the spatial maxima which occur in figure 19. That is, the slanted pole, the leaves on the plant,
and the wires hanging from the ceiling contain spatial maxima that were detected using temporal
maxima. Events detected in figure 20 deemned consistent with previous image motion are marked

with a vector indicating the direction of consistent motion.

Figure 21 shows the consistent edge motion computed from the local image patch; the placement.
of edges is due to the use of temporal maxima as image events. In previous sections, it was stated
that spatial structures which persist in a stable manner over time are more likely to be structurally
related to objects. This can be seen by the absence of false positives in figure 21. That is, no edges
are detected where an environmental structure does not occur; all the moving edges extracted
from the sequence correspond to significant environmental structures. As discussed in section 11IC,
greater edge density can be obtained by using multiple definitions of temporal events.

Rather than exactly compute the temporal persistence interval, the chain length approximation
was used (as discussed in section 1VD). Figure 22 shows chain lengths after fourteen frames; chain
length is encoded as intensity, thus, longer chains are brighter than shorter chains. Chain lengths
from previous time frames have been retained in order to show that chain length increases as
consistently moving contours traverse edge/motion units along its trajectory. That is, temporal
persistence increases over time for a consistently moving contour. Note that even though the wires
do not markedly contrast with the background, portions of wire tend to persist over time (see upper

left in figures 21 and 22).

V1. Discussion

A time-based computational model has been presented for determining temporal persistence and
consistent edge motion. Previous work reported in [19] was expanded upon in order to demonstrate
how edge motion may be determined {rom natural imagery. Propagation of information along the
edge trajectory was found capable of virtually noiselree determination of Lemporal persistence and

consistent edge motion. The overall technigue was demonstrated on natural imagery.



Figure 19: Motion over sixteen frames in the small patch marked by a box in the upper left-hand
corner of figure 18.
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Figure 20: Temporal edges (cvents) detected in the image pateh shown in ligure 19 during the sixth
frame; pixels at which an event has been detected appear as black spots.
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Figure 21: Consistent edge motion computed from the local image patch.
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Figure 22: Temporal persistence approximated by chain length that was computed from the local
image patch; chain length is encoded as intensity.
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In computer vision, most object recognition work has mapped spatial characteristics of the
image to idealized internal models [7,24,41). Because spatial structures which persist in a stable
manner over time are more likely to be structurally related to objects, it follows that the temporal
characteristics of spatial features developed in this paper can assist in the object recognition process.
These and other temporal features are important to the object recognition task [10,15,16,30]; further
study is thus warranted.

Current image acquisition and processing hardware was designed for purposes other than com-
puter vision (e.g., television, sequential program execution). As discussed in this paper and in
[15,34], this conventional hardware is not well-suited for the task of acquiring and processing natu-
ral imagery. Though the model developed in this paper can work within the constraints of current| ¥
available hardware, it is especially well-suited for fully parallel implementation. In particular, the
processing elements are uniform throughout the image plane, only local adjacent communication
is required, and the processing may be simply implemented using standard digital logic or analog
circuits. VLSI techniques can be used to create devices far better suited for the task of computer
vision [34].

Because there are common vision problems faced by both man-made computers and biological
organisms, one would expect there to be similarities between their solutions. This paper has
developed a model for computer vision, though there is evidence that this time-based model has
biological correlates. As previously discussed, the event-driven edge/motion technique developed in
[19] and extended in this paper is most related Lo the opponent correlation models which have been
advanced primarily as models of biological motion processing [1,29,32,33,38,39]. Other biological
correlates are given in [19]. In addition, the use of past motion measurements to constrain current.
motion interbretation has been found to occur in natural vision systems [35]. Though not conclusive,
it is plausible that a form of the model presented in this paper underlies a description of biological
visual processing.

Most of the unresolved issues cited in [19] have been addressed by this paper. As is usunally
the case, new issues have been identified. Since temporal persistence and consistent edge motion
are newly defined features, a fuller understanding of their potential use for image understanding
is needed. Further, it appears that other temporal features may be extracted in an analogous
fashion. For example, optical flow may be locally determined at very sparse points in the image
by noting that the aperture problem does not occur at places where contours terminate; since
most line segments terminate in the bounded space of the image, sparse real velocities may be

simply determined by tracking the termination points of moving line segments. Current work is
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also developing a fuller understanding of methods for propagating information along the trajectory,
determining local consistency, and measuring temporal persistence. Future work will examine the
effect and use of temporal features for perceptual organization and object recognition. It is hoped
that this approach to computer vision and motion analysis will provide a much better understanding

of the complexities of our visual world.
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