Real-Time Feature Extraction:
A Fast Line Finder For
Vision-Guided Robot Navigation

Philip Kahn
Leslie Kitchen
Edward M. Riseman

COINS Technical Report 87-57

July 1987

Real-Time Feature Extraction:
a Fast Line Finder for
Vision-Guided Robot Navigation!

Philip Kahn
Leslie Kitchen
Edward M. Riseman

Computer Vision Research Laboratory
Computer and Information Science Department

University of Massachusetts
Amherst, MA 01003

Abstract:

The sheer amount of data contained within an image can potentially make pixel-based algo-
rithms computationally infeasible. There are two ways to improve the speed of these algorithms:
the amount of effort expended on each pixel can be reduced by careful code optimization, and, the
number of pixels fully processed by the algorithm can be reduced. Reducing the effort expended on
each pixel reduces the time required to process an image by a constant factor. Selective processing,
such as focus of attention, can decrease overall computation by several orders of magnitude by
excluding irrelevant pixels which do not significantly contribute to the final result.

This paper develops a fast pixel-based algorithm which uses these principles to achieve real-
time feature extraction of lines for use in vision-guided mobile robot navigation. It is based upon
a line extraction algorithm first developed by Burns et al. [3], though it differs significantly in the
way pixels are processed, lines are fitted, and its inherent time performance. At the expense of
robustness and reliability, the algorithm is modified and simplified so that it is significantly faster.
The resulting Fast Line Finder (FLF) program allows parametric control of computational resources
required to extract lines with particular characteristics. As a rough comparison, the FLF program
ran in about two seconds for a 256 x 256 image on a DEC VAX-11 /150 versus several minutes
required for the original Burns et al. algorithm. A modified version of the FLF which supports
table-based image segmentation displayed similar speed and parametric control of computation and
image segmentation. The results obtained from an image of an outdoor scene are presented.

' This research was supported by the DARPA Autonomous Land Vehicle Project under contract DACA76-85-C-
0008, monitored by U.S. Army ETL.

I. Introduction
The sheer amount of data contained within an image can potentially make pixel-based algo-
rithms computationally infeasible. As a result, it can often be difficult to implement fast pixel-based
algorithms. The problem is increased by the relative lack of parallelism forced upon algorithms by
conventional sequential machines (upon which the vast majority of computer vision applications are

still implemented). These potential problems require careful consideration of performance issues.

There are two ways to improve the speed of a pixel-based algorithm: the amount of effort
expended on each pixel can be reduced by careful code optimization, and, the number of pixels
fully processed by the algorithm can be reduced.

Reducing the effort expended on each pixel reduces the time required to process an image by a
constant factor. An algorithm is only as efficient as its parts, and efficient processing of pixels is at
the heart of fast programs. Sophisticated code optimization often requires the use of fast languages,
meticulous control-flow analysis, a detailed understanding of the speed of language constructs
generated by the compiler, and a great deal of time for program development. Unfortunately, due
to the limitations of compiler code optimizers, cost of multiplication/division, language overhead
and other factors, extreme attempts to reduce the effort expended on each pixel can often produce
code that is obscure and undecipherable.

Selective processing, such as focus of attention, can be used to dramatically reduce the amount
of overall computation. Pixels which do not significantly contribute to the final result are irrelevant
and can be left unprocessed. If the number of relevant pixels is some small fraction of the image and
the cost of determining the relevance of a given pixel is small compared to the cost of fully processing
that pixel, substantial reductions in computation can be realized. The extent to which this approach
is successful depends upon the cost of determining relevant pixels, the cost of processing pixels
found relevant, and the sparseness of relevant pixels in the image. Many pixel-based algorithms
can simply determine the relevance of pixels, and thus, large increases in speed are possible. For
many applications, this approach can produce far greater speedups than obtained by detailed

optimization of the code which processes each pixel.

This paper develops a fast pixel-based algorithm which uses the principles mentioned above to
achieve “real-time” extraction of lines for use in vision-guided mobile robot navigation [1]. It is
based upon a gradient-based and region-based line extraction algorithm first developed by Burns
et al. [3]. These line extraction algorithms group adjacent pixels which share similar gradient
direction of image intensity into line support regions, and then they fit a line to each region. The

algorithms have the following basic steps:

1. Compute the direction and magnitude of the image intensity gradient at each pixel.

2. Coarsely quantize the gradient direction of the pixel into one of a set of ranges (“buckets”)

which will serve as labels.

3. Apply a connected-components algorithm (CCA) to group pixels into line support regions

(i.e., group adjacent pixels which have identical bucket labels).

4. Fit lines to line support regions.

The first stage in the line extraction algorithm computes the direction and magnitude of the image
intensity gradient at each pixel; figure la shows an intensity surface of a dark corner on a light
background; gradient direction and magnitude at each pixel corresponds to the orientation and
steepness of the intensity surface at that pixel. Once gradients have been computed, pixels are
coarsely quantized into one of a fixed number of “buckets” based upon gradient direction. For
example, figure 1b shows that all pixel gradient directions from 157/8 to = /8 are classified into
bucket 1, gradient directions from 7/8 to 3n/8 are classified into bucket 2, etc. A connected-
components algorithm (CCA) is then used to group adjacent pixels which have identical bucket
labels into line support regions. Figure 1c shows the line support regions (solid white regions) and
the underlying gradient vectors shown as arrows (most of which appear as a dot since the gradient
magnitude is not large at most points in the intensity surface shown in figure 1a); note the similarity
of gradient directions within each line support region. As shown in figure 1d, each resulting line

support region is then fit with a line. A similar algorithm was developed by Peleg in [7].

Our algorithm remains in the spirit of 3], but it differs significantly in the way pixels are
processed, lines are fitted, and its inherent time performance. The algorithm is modified and
simplified so that it runs much faster, although the algorithm will tend to fragment or miss lines
that are extracted in the original algorithm. It restricts processing to pixels considered relevant
to the final result, more efficient methods are used to process each pixel, and it allows parametric
control of computational resources required to extract lines with particular characteristics. The
resulting program, which we call the Fast Line Finder (FLF), is being effectively used by the
UMass AuRA autonomous mobile robot project to extract lines for use in path recognition and
robot localization [1]. As a rough comparison, the FLF program ran in about two seconds for a
256 x 256 image on a DEC VAX-11/750 versus gseveral minutes required for the original Burns et
al. algorithm. A modified version which supports table-based image segmentation, called the Fast
Region Finder (FRF) displayed similar speed and parametric control of computation and image

segmentation.

@»

]
%0

!g

-3
!y
2014

15

|

‘.!ll i

Figure 1: (a) An intensity surface of a corner in which gradient direction and magnitude correspond
to the orientation and steepness of the intensity surface; (b) a coarse quantization of gradient
direction space for assigning bucket labels to pixels; (c) connected components obtained by grouping
adjacent pixels which have identical bucket labels; (d) fitting a line to a line support region. {Figures
provided courtesy of Burns et al. from [3].)

The next section discusses how the order and use of information can reduce the the overall
computation required to extract lines from an image. Efficient algorithms for subcomputations are
then examined. We describe the effect of program parameters upon line extraction and overall
computational effort. Since relatively inexpensive specialized image processing hardware (e-g.,
pipeline processors, look-up tables) is sometimes available to speed up computation, we briefly
discuss processing initial stages of the algorithm on these devices. The results obtained from an

image of an outdoor scene are then presented and a discussion follows.

II. Ordering Computations and Filtering to Reduce Processing

Pixels which do not significantly contribute to the final result are irrelevant and can be filtered
out without deleterious effects. Generally, there are several points in a computation at which filter-
ing may be performed based upon differing criteria. The order of the computation determines when
these filters may be applied, and this order greatly affects the efficiency of the overall computation.

Several important issues affect the ordering of computational steps. Clearly, steps which require
data from other steps impose a partial order. This is usually not a complete order, and there is
quite a bit of flexibility in deciding when to perform computations. There is a tradeoff between
step complexity, the number of pixels which the step may exclude from further processing, and
the cost of further processing. In general, the most dramatic reductions in computational effort
can be realized by first performing less expensive steps which can exclude pixels from later, more
expensive, processing steps.

The four basic line-extraction steps that were described in the last section differ in the amount
of computation required for each pixel and the extent to which they can exclude pixels from further
processing. This section discusses how the order of computational st‘.éps can exclude most pixels

from complete processing.

At the first stage of processing, no information about the “relevance” of pixels is available to the
line extraction process. Image gradients must therefore be computed for every pixel in the image.
These operations are straightforward and they require relatively little computation [2,5,10]. The
gradient direction is used to group pixels into line support regions, and the gradient magnitude is
used to weight the placement of each line in its support region.

Gradients measured in flat areas of the intensity surface are extremely prone to noise, so pixels
with small gradient magnitudes should be excluded from further processing. Most images contain
a large number of pixels with fairly small gradient magnitudes. Figure 2 shows the original image

of an outdoor scene; figure 3 shows a histogram of the gradient magnitudes computed from this

image. It is clear from figure 3 that even a low threshold on gradient magnitude can eliminate a
major portion of an image from subsequent grouping and line fitting. Because grouping and line
fitting occupy most of the computation required to fully process a pixel, avoiding these operations

for a large number of pixels results in dramatic gains in speed.

The use of the FLF for real-time mobile robot path recognition and localization allows the
orientation of desired lines to be constrained [1]. The robot’s last position and a priori knowledge
of path location and geometry can be used to generate ezpectations about the orientation and
position of lines delineating the path in the current input image. The number of lines at expected
orientations is generally far less than the total number of lines available from the image.

Final line orientations can be restricted by classifying pixels into directional buckets only when
their gradient direction falls within a range of desired line orientations; gradient directions outside
the range of desired line orientations should be marked “irrelevant” to exclude them from further
processing. The strong relationship between pixel gradient direction and line orientation makes this
a highly effective way to significantly reduce the number of pixels fully processed by the algorithm.
Figure 4 shows a histogram of gradient directions computed from the image shown in figure 2;
gradient direction was computed as arctan(l,/I;) and the histogram does not distinguish between
gradients with exactly opposite directions (i.e., /2 and 3x/2). The spikes in figure 4 result from
the large relative effect of quantization error on the many small gradients in the image; the low
frequency variation which peaks at +n/4 reflects a predominance of lines in figure 2 at those
orientations. It is clear from figure 4 that restricting the range of allowed gradient directions can

exclude a large portion of an image from further processing.

The third processing step groups adjacent (relevant) pixels which share identical buckets into
line support regions. A connected components algorithm (CCA) is used to group pixels into these
regions (see [9) for a general discussion of CCAs). Each line support region is a two-dimensional,
contiguous group of pixels in the image which will later be fitted with a line that “best” describes
it.

Just as expectations about line orientation can dramatically reduce computational effort, ex-
pectations about line length can also be used to exclude pixels from further processing. Very short
lines are prone to noise, often they are not structurally significant, and they usually occur in large
numbers. (However, in other applications, short lines may be useful for texture description [8].)
Additionally, ezpectation-driven use of a line finder (such as mobile robot path following [1]) can

often constrain the length of desired lines.

Figure 2: Original image of an outdoor scene in which the robol is currently positioned in the
center of the path.

H161.0]
R744.9]
R326_8] |

?912...7_

2OUILLTLIOO0

832 : it
el
l i\\EH;‘\Jiﬂr'U@ll':.'wnumm..m.i..u.i..L,..T LR T
0 0.5 |

gradient magnitude

Figure 3: Histogram of gradient magnitudes computed from the original image shown in figure 2.

P53q .0

P260_R]

027 2]

| 773 _8]

1520._4]

1267 .0

AOUILLTLIOO

10136/

760._2]

506 8]

253.4]

.Jficd

-7 /2

;gnih;hé,.ﬁ}ﬂ

|

bl L L
QW!MHH!LIaﬂ'in”LHh;l!llai;.ﬂl\i:n,%i!\tﬂlliﬂj;p]!}lIln!!h!if

| |

gradient direction

Figure 4: Histogram of gradient directions computed from the original image shown in figure 2.
Gradient direction was computed as arctan(/,/I;); the histogram does not distinguish between

gradients with exactly opposite directions (i.c., 7/2 and 37/2).

For 4-connected neighborhoods, the length of a line (measured in pixel units) can be no greater
than the number of pixels in its line support region; the area of support regions are generally much
larger than the length of the lines fit to them. Hence, a minimum line length can be established by
excluding pixels from further processing when they reside in a line support region which contains
less than a minimum number of pixels. Most line support regions contain a small number of pixels,
so even a small threshold on region size can exclude a large number of pixels from further processing.

Excluding pixels at this stage saves the effort of fitting regions with unwanted small lines.

Fitting lines to line support regions is costly (as will be shown in section IIID). As discussed,
previous stages in the computation can greatly reduce the number of pixels and regions which need
to be fitted with a line. Since line fitting is the last computation in the line extraction process,
overall computation at this stage can be further reduced only by the the use of an efficient line

fitting algorithm.

This section has shown that careful ordering of subcomputations can significantly reduce the
number of pixels processed. Expectation-driven line finding allows more discriminate computation
which wastes no effort on unwanted results; more expensive steps can be deferred until necessary
to take advantage of the decreased number of pixels in later steps. Reducing the number of pixels
processed by each step in the algorithm (i.e., filtering) can result in speedups of several orders of
magnitude.

Efficient implementation of steps in a pixel-based algorithm is critical for real-time applications.
The next section examines techniques used for the Fast Line Finder (FLF) program. It assumes

the order and use of information discussed in this section.

I11. Efficient Algorithms for Processing Relevant Pixels

As discussed in the last section, there are four main steps in a gradient-based and region-based
line extraction algorithm: compute gradients, classify pixels into buckets by gradient direction,
apply a connected components algorithm to form line support regions, and fit lines to the line

support regions. We now discuss some methods for computing these steps.

10

A. Computing Gradient Direction and Magnitude

Gradients can be simply computed using convolution masks to determine the derivatives of the
image intensity in the z and y directions, as is done in the Prewitt, Sobel, or similar edge operators.
Other techniques have certain advantages, but computational cost makes them inappropriate for
most real-time applications. (Discussion of edge operators can be found in [2,5,10].) The size of
the convolution mask affects the noise-immunity and accuracy of measured gradients. Kitchen and
Malin [6] found that 2 X 2 masks produce relatively large errors in computed gradient direction.
The 3 x 3 masks were found to be more accurate (e.g., worst case error of about 7° [6]). We did
not consider larger masks because they require additional computation without yielding justifiably
better results.

The output of the Sobel operator is not significantly better than the Prewitt operator [6]. For
the work described here we used the Prewitt operator, which has an advantage in that it can be com-
puted by two additions and three subtractions; the Sobel mask requires additional multiplications,
shifts, or additions (depending upon how the mask is computed). On a conventional computer, this
small difference saves several operations for every pixel in the image; usually this tangibly decreases
computation. This choice may not be justified for some specialized image processing hardware in
which there may be no difference in computation time between different convolution operators; the

Sobel might then be the better choice due to its slightly greater accuracy.

Gradient magnitude is computed from the derivatives in the = and y directions. That is,
m = ,/I? +73 where m is gradient magnitude, I; and I, are the derivatives of image intensity

in the £ and y directions, respectively. Exactly computing gradient magnitude in this way is
expensive since it requires one addition, two multiplications, and a square root. Moreover, I; and
I,, are themselves only approximations of the true gradient components (6}, and so extreme accuracy
when computing gradient magnitude is a waste of resources. “City block” computation of gradient
magnitude provides a useful approximation: that is, m = |I;| + |I,|. It never underestimates
gradient magnitude, and thus, city block is a conservative measure in that thresholding on the
approximation will not incorrectly exclude pixels from further processing. As will be discussed,
the line fitting stage of our algorithm (as does that of Burns et al. [3]) uses gradient magnitude to
weight the placement of lines in support regions. Inaccuracies caused by city block approximation
are directionally dependent. Because pixels in line support regions are defined by similar gradient
directions, the errors caused by city-block tend to similarly affect pixels in a region; hence these

inaccuracies do not significantly affect the fitting of lines to support regions.

11

B. Coarse Quantization of Gradient Directions Into Buckets

As shown in figure 1, the gradient direction at a pixel is used to classify pixels into one of a

fixed number of directional buckets. These buckets will later be used to form line support regions.

The directional buckets are most conveniently specified by angular measures (e.g., radians);
yet, only the derivatives in the z and y directions are available from the image using the operators
discussed. A straightforward way to classify pixels into buckets is to convert the derivatives into
an angular measure, and then use the angular measure to determine the appropriate bucket. The
conversion to radians is a = arctan(I,/I;) (corrected for quadrant). Unfortunately, the division and
trigonometric function make this a computationally expensive solution. Because many pixels must
be classified into buckets, this approach requires substantial computation. Further, this approach
is excessively expensive because it computes angular direction more precisely than is necessary to
classify pixels into buckets. The gradient directions computed from images are somewhat inaccurate
[6], noisy, and buckets are coarsely quantized; thus, precise methods are not justified.

A simple two-dimensional lookup table may be used to directly map derivatives into buckets.
I, and I, at each relevant pixel can index into the table position which contains the associated
bucket label. The table represents the mapping from the directional derivatives to buckets, and it
only requires a single table access. The coarseness of this mapping is determined by the lookup
table size. A smaller table incurs larger discretization errors, and errors get larger as the origin is
approached. A larger table better approximates the actual computed values, but memory limits
place a practical upper bound on table size. Figure 5 shows the discretization error (one degree
per isocontour) in the positive quadrant for a 65 x 65 bucket lookup table (i.e., a table that covers
the range —32 to +32 in both I; and). Directional derivatives need not directly index into this
table since they can be “folded” until they are small enough to index into the table. For example, if
I, = 255, I, = 102, and the table is 65 x 65, then these directional derivatives can be progressively
halved until both are inclusively within the range —32 to +32 (i.e., they should be halved three
times until I, = 31 and I, = 12). This “folding” preserves the direction of the vector (with some
small rounding error) while allowing significantly smaller tables. Though larger tables reduce the
average error, a 65 x 65 lookup table was found to be sufficiently accurate for the FLF program;

the error caused by the table is less than that caused by the edge operators themselves [6).

The most straightforward way to create the lookup table computes the angular gradient di-
rection for each index into the lookup table, coarsely quantizes that direction using the bucket

specifications, and places the resulting bucket label into that table position. The angular direction

12

(32.0)

AN

(0,32)

10

KAX ARCIAN TABLE ERROR (1 DEGREE PER JSOCONTOUR)

Figure 5: Discretization error (one degree per isocontour) in the positive quadrant for a 65 . 6!

directional derivative to gradient direction bucket lookup table.

13

3

for each table position can be computed once and used to initialize other tables to avoid recomput-
ing them. This approach is simple to implement and fairly efficient. More sophisticated approaches
are possible (e.g., by observing that buckets occupy contiguous positions in the table), but the time
spent on table loading does not often justify the added complexity.

Quantization into buckets introduces problems when line orientations fall on bucket boundaries,
which can sometimes fragment line support regions. Burns et al. [3] overcame this problem by
running the line extraction process twice; lines are extracted for the original buckets and then lines
are extracted for buckets rotated by half the bucket width. Thus, two complete sets of line support
regions are produced; final line selection is based upon the number of pixels “voting” for each line
support region. Though this technique works well, it requires more than double the computation.
Further, since we permit arbitrary bucket specification (not just the uniform quantization shown
in figure 1b and used in [3]), it is sometimes not possible to rotate the buckets in a well defined
way. Empirically, the lines extracted by the FLF program do not suffer greatly from boundary
fragmentation. This is due, in part, to some of our particular applications in the domain of mobile
robotics, which allows expectations to constrain desired lines, so that buckets can be centered at
the expected line orientations to reduce line fragmentation. For applications not allowing this

approach, the voting scheme of Burns et al. [3] can be adopted.

C. Connected Components Algorithm (CCA) to Form Line Support Regions

Connected components algorithrﬁs (CCA) are commonly used in computer vision, image pro-
cessing, and a wide range of other fields. In gradient-based and region-based line extraction al-
gorithms, the CCA groups adjacent pixels with identical bucket labels into line support regions.
When the CCA has completed, each contiguous group of pixels sharing identical bucket labels will
have been assigned a unique region number. Later line fitting will determine what line best fits
each of these regions.

This section provides only the bare details of the connected components algorithm (CCA) used

in the fast line finder (FLF). A more detailed understanding can be obtained from [3,9).

The FLF uses a four-connected neighborhood to define adjacency among pixels. That is, only
the pixels above, below, left, and right of a given pixel are considered that pixel’s neighbors. Other
neighborhood definitions can be used [9] (e.g., eight-connected), but a four-connected neighborhood

provides good results without incurring the additional computation required to evaluate larger

neighborhoods.

The CCA algorithm operates in several stages. The first stage scans over all “relevant” pixels

14

(as previously determined by their gradient), and it groups adjacent pixels that share identical
bucket names into region fragments. Region fragments occur because a raster scan is used. For
example, scanning the upper half of a “U” shaped region would result in grouping the left and
right portions of the region into different fragments. Only when the bottom part of the region
was scanned would it be found that the two fragments are adjacent and share identical buckets,
and thus, they are part of a single region. These fragment equivalence relations are stored in an
adjacency list as they are encountered for later use in forming complete regions. The first stage of
the CCA produces an image containing fragment labels, a fragment equivalence list, and a count
of the number of pixels contained in each fragment.

The second stage of CCA processing combines region fragments by assigning each fragment a
unique region label in which the fragment is contained. This is easily done using the fragment
equivalence list. The index into the adjacency list is a fragment label; each position contains a
linked list of all other fragments in the same region. Regions are formed by merging fragments
which share an equivalence relation. Each fragment is assigned a region label so a single level of
redirection is required to identify a region for each position in the fragment labelled image. This
level of redirection requires the same amount of computation as methods which explicitly create
a region labelled image, yet the redirection significantly reduces space requirements. It is good
practice to have conditionally compiled code that produces a region labelled image for debugging
and other purposes.

As previously discussed, final line lengths can be restricted by fitting lines only to line support
regions containing more than a certain number of pixels. Only pixels contained within these
minimum-sized regions are considered “relevant” to the line fitting process. This can easily be
accomplished in the second stage of the CCA. We know the number of pixels contained within each
fragment (these values were accumulated in the first step). When stage two in the CCA merges
these fragments into regions, the number of pixels contained within the line support region as a
whole can be computed. Any region which contains less than a certain number of pixels can be
eliminated by simply assigning an “irrelevant” region label to its constituent fragments. The line

fitting step will bypass fitting any lines to pixels contained within “irrelevant” regions.

D. Fitting Lines to Line Support Regions

Very generally, a line fitting algorithm should “best” fit a line to the line support regions and
their underlying intensity surfaces. There are many algorithms for fitting lines to a collection of

points, and the required amount of computation can vary widely. Burns et al. [3] fit a plane to

15

the intensity surface underlying each line support region. Lines are determined by intersecting this
plane with a horizontal plane at the mean region intensity value. Though the results obtained
with this technique are good, other methods can fit equally good lines while requiring far less

computation.

Another way to fit lines to support regions views region pixels as a cluster of points to which
a line must be fit. Computing the principal axis does just this, and it requires significantly less
computation than required for plane fitting and intersection. The partial statistics needed from the
region pixels can be computed in a single pass over the image; fitting a line can then be completed
by performing a final computation on these partial statistics. A fuller discussion of the principal
axis computation may be found in [2,5,10]. ‘
Partial sums in the form of a scatter matrix yield eigenvalues which provide the principal axis

of a cluster of points. The scatter matrix for a line support region is

(a b) _ (SwX? ZwXY)
b T\ wXY Y wY?

where w is a weighting factor for each pixel in the region, and (X,Y’) are the region pixel coordinates
whose origin has been relocated to the centroid of the support region. The gradient magnitude is
used as the weighting factor w (as is done by Burns et al. [3]). Because this formulation requires
two passes over the image (one to find the centroids, and one to compute the scatter matrix), we

use the standard alternative form which allows partial sums to be accumulated in a single pass:

a= wa (Ezw:)z

b—way sza::i:wy

c= wy - (2 w!;l)2

where a, b, and ¢ are the elements of the scatter matrix, and (z, y) are the region pixel coordinates.
The line which best describes a group of pixels in a support region is determined by finding the
eigenvalues of the scatter matrix. The characteristic equation of the scatter matrix is

G 2)G)=2()

a-— A b
b c—A =0

16

which can be solved using the quadratic formula

a+cty/(-a-c)? - 4(ac - b?)

A less expensive form to compute is

The solutions to the characteristic equation yield two eigenvalues. The small eigenvalue Vy is
obtained by subtracting the second term, and the large eigenvalue Vj, is obtained by adding the
second term. The ratio of these large and small eigenvalues provides an extremely useful measure
of the straightness and width of the line support region about the fitted line. For Vg/Vy, small
ratios correspond to small region widths (which are more “line-like”) and large ratios correspond
to large region widths (which are more circular).

The orientation of the best fitting line is given by the eigenvector derived from the small

eigenvalue and the scatter matrix

. Ve —
Vs = arctan (sb a)
where Vs is the orientation of the fitted line (corrected for quadrant). This computation does not
encode the sense of the line (i.e., the direction of brightness). If the coordinate system sweeps

counterclockwise from the = axis and the protocol is adopted that the direction of brightness is

Vs + % (i.e., “right is bright”), the sense of Vs is correct when

cos(Vs) Z I+ sin(Vs) Z I,>0

where }° I and Y I, are accumnulated partial statistics for the line support region. If the sense of

Vs is incorrect, it is simply corrected by adding = to it.

Numeric capacity is important when accumulating the partial statistics. Some of these statistics
sum the square of image coordinates, and for large regions, these numbers can sometimes cause
numeric overflow. Though not a serious concern, care should be taken to ensure that partial sums
never exceed the representation. This problem can often be eliminated by moving the origin to the
center of the image, scaling down all coordinates and gradient magnitudes, restricting the number
of pixels sampled within any line support region, or using large numeric representations (though

this can incur excessive computation for numeric operations).

17

It has been assumed that every pixel within a relevant line support region is used in accumnlat-
ing partial statistics. Though this makes sense for small regions, this fine granularity may not be
justified for larger regions. That is, the relative contribution of a single pixel in a region decreases
as the total number of pixels in the region increases. Sampling only a subset of pixels in large sup-
port regions can dramatically reduce the amount of computation devoted to accumulating partial
statistics. The sampling rate within each region should be determined by the number of pixels
contained within that region; large regions are more sparsely sampled than smaller regions. Care
should be taken that aliasing effects do not result from the particular sampling technique; random
sampling using precomputed sampling tables offers an efficient solution. Obviously, for sampling
to be worthwhile, the effort required to determine which pixels to sample must be less than the
time required to sample the pixel. Further, unless a large number of image pixels are contained in
large regions, sampling may not be justified. Though sampling was not incorporated into the FLF

program, it would have likely resulted in a small performance improvement.

The principal axis for each line support region determines the line orientation Vs and the
region centroid anchors the position of that line. The endpoints of the line segment must still be
determined.

Conceptually, it is difficult to define exactly where the endpoints of a line fitted to a region
should be placed. A reasonable definition would place the endpoints where the two region pixels
furthest from the centroid project perpendicularly onto the line. Though intuitive, this solution has
problems with irregularly shaped regions, and it requires an extra pass through the image (since
the projection cannot be done until after the line has been fitted).

A simpler way to determine line endpoints was used by the FLF. The endpoints for each line
were determined by intersecting the principal axis line with an upright box bounding its support
region. The length of lines may be increased by enlarging all bounding boxes by a fixed amount.
The box bounding the line support region can be easily obtained when the partial statistics are
gathered to build the scatter matrix; the bounding box is defined by the smallest and largest (z, y)
pixel coordinates in the region. This method is efficient because defining the bounding box and
intersecting it with the principal axis line is computationally simple. This technique causes some
anomalies (e.g., rotating a noncircular region in the plane changes the endpoints somewhat), but it
works extremely well for elongated support regions. It is not meaningful to fit a line to an irregular

region (as when the ratio of the eigenvalues is large), and so unusual fitting of lines to such regions

is not a serious concern.

18

E. The Two-Pass Line Ertraction Algorithm

The components of the FLF algorithm that have been described fit together to form the full
algorithm:

1.0 PASS 1 over the image

1.1 for each image pixel do

1.1.1 Compute the gradient direction and magnitude
1.1.2 Threshold on gradient magnitude

1.1.3 Use gradient direction to classify suprathreshold pixels into buckets. (Pixels below
threshold and pixels whose gradient is not in a direction of interest are specially
labelled and ignored in all subsequent processing.)

1.1.4 Perform connected components analysis to group adjacent pixels that share iden-
tical bucket labels into region fragments, and build a fragment equivalence list

1.2 for every unprocessed region fragment do

1.2.1 Use the fragment equivalence list to merge fragments into line support regions and
set the region pixel count to the sum of the fragment pixel counts

1.2.2 Eliminate regions whose pixel count is below a certain threshold by tagging their
constituent fragments “insignificant” so they will be ignored in subsequent process-
ing

1.2.3 Assign region labels to fragments which are part of these “significant” regions

2.0 PASS 2 over the fragment labelled image and gradient magnitude image

2.1 for each image pixel in a “significant” region do

2.1.1 For the region within which the pixel is contained, accumulate statistics needed
to compute the scatter matrix and endpoints (for line fitting)

2.1.2 1 desired, build a region labelled image
2.2 for each “significant” region do

2.2.1 Compute the scatter matrix from the accumulated statistics
2.2.2 Compute the best-fit line orientation and centroid anchor position
2.2.3 Compute the line endpoints

2.2.4 Put the fitted line and associated statistics into a line list to be output by the
FLF program

A one-pass algorithm is possible, but it cannot eliminate pixels from complete processing; hence,
the two-pass version is faster. The two-pass FLF algorithm was chosen because the first pass can

exclude the bulk of the image from being processing by the second pass (the line fitting stage).

19

IV. Effect of Parameters on Line Extraction and
Program Performance

A key aspect of the fast line finder (FLF) program is that it has been designed for vision-
guided navigation in the UMASS AuRA mobile robot project [1]. The robot is supposed to move
through its environment using visual information to localize relative object positions. An internal
spatial description of structures in the environment provide ezpectations which limit the position,
length, and orientation of significant lines in the visual field. Visual localization is accomplished by
comparing the expected placement of environmental structures against the lines extracted from the
image. This approach is highly effective in road following, and it appears to be capable of achieving
an advanced level of autonomous mobile robot navigation through the environment.

Extracting unwanted lines from the image wastes computation. This can be avoided by manip-
ulating one or more parameters in the fast line finder (FLF) program which control extracted line
characteristics. Though the results obtained by [3] can be approximated by appropriate parameter
settings (except for the additional set of lines from the rotated buckets), structural image expecta-
tions can provide better performance. This section describes the general effect of these parameters

upon the line extraction process.

A. Effect of Gradient Magnitude Threshold

As shown in figure 3, thresholding small gradient magnitudes can significantly decrease the
number of pixels fully processed by the algorithm. Eliminating pixels at this stage is inexpensive
and it avoids the substantially more expensive computation at later stages in the algorithm. The
gradient magnitude threshold is one of the most important parameters which controls the amount of
overall computation. Without question, at least a small gradient magnitude threshold is essential;
small gradients are noisy, they constitute a large portion of the image, and they rarely yield useful
structural image information.

Increasing a small gradient magnitude threshold usually decreases the number of extracted line
support regions; that is, all regions in which all pixels have gradient magnitudes below threshold
are eliminated. At small thresholds, a large number of these regions usually occur in an image. As
the threshold increases, the number of regions which contain only subthreshold pixels decreases.
As a result, higher thresholds tend to eliminate only a portion of pixels contained within regions
that would have otherwise been formed when using a lower threshold. When the pixels eliminated
by a higher threshold bisect a region, the region fragments into two smaller regions. So in general,

larger gradient magnitude thresholds tend to fragment regions into smaller regions and they tend to

20

decrease the average region size. Smaller line support regions translate into smaller line segments
being extracted from the image. Thus, larger gradient magnitude thresholds tend to produce
shorter line segments.

Sensor noise levels define the smallest meaningful gradient magnitude threshold, though as
discussed above, larger thresholds can substantially reduce the number of pixels processed without
seriously affecting the quality of extracted lines. There is no strict method for determining an
appropriate threshold. When used for the UMASS AuRA project, thresholds were determined
by empirical analysis of outdoor image sequences. A gradient magnitude threshold of about 5%
(threshold/range) excluded a large number of pixels from full processing while avoiding significant
region fragmentation. Another approach initially uses a low threshold to extract lines. The average
gradient magnitude for all extracted lines found to be structurally significant [1] could then be used

to set a larger, more appropriate threshold for processing future frames.

B. Effect of Bucket Width and Direction

The buckets determine how pixels are classified (e.g., figure 1b). Restricting the orientation
of extracted lines can result in substantial savings in computation since eliminating pixels which
contribute to unwanted lines requires only a single table lookup.

As bucket width increases, the size of line support regions tends to increase since the grouping of
pixels is on the basis of gradient direction less restricted. At the extreme, if all gradient directions
were contained within a single bucket, then all contiguous and “relevant” pixels would be grouped
into a single region; then, only the threshold on gradient magnitude would control region formation.
Conversely, decreasing bucket width requires region pixels be more uniform in gradient direction.
Thus, smaller buckets tend to fragment regions and decrease region size.

For any given image, there is a meaningful upper and lower bound on bucket width. A very
small bucket would be susceptible to minor variations in the intensity surface and bucket boundary
fragmentation; typically, resulting lines would be small and less structurally related to the envi-
ronment. Similarly, very large buckets fail to discriminate between unrelated pixels; resulting line
support regions would be large, less straight, and less structurally related to the environment. The
lower bound for bucket sizes is determined by the inherent inaccuracies in determining gradient
direction [6]. Appropriate bucket widths can be determined by empirical investigation or recursive
line extraction/parameter setting. Burns et al. [3] discuss bucket size issues.

Line orientation can be restricted by excluding a bucket definition for undesired orientations.
Since gradient direction is strongly related to line orientation, excluding pixels whose gradient

directions are not within desired line orientations has little effect upon the quality of extracted

21

lines.

C. Effect of Region Pizel Count Threshold

As previously mentioned, a line can be no longer than its line support region (for 4-connected
neighborhoods). Final line lengths may thus be restricted by eliminating regions which contain less
than a certain number of pixels. Eliminating subthreshold regions avoids fitting unwanted lines;
this can substantially increase performance.

The exact relationship between line length and region size depends upon the linearity of the
line support regions about the fitted lines. We assume that line lengths are expressed in pixel
units. At the extreme, when the line exactly fits the line support region, the region contains the
same number of pixels as the length of the fitted line. Such a precise fit is extremely rare. Most
often, even the best of line support regions are a few pixels wide. Therefore, the region pixel count
threshold should be some multiple of the minimum desired line length.

The multiple of line length used to set the region pixel count threshold can be determined in
several ways. A conservative multiple can be chosen by empirical investigation (e.g., region width
of five pixels). This method was successfully used by the UMASS AuRA project.

The region width is related to the ratio of the eigenvalues; small ratios correspond to small
region widths and large ratios correspond to large region widths. This observation facilitates
another approach which initially sets a low region pixel count threshold and it then determines an
appropriate region width threshold from extracted lines whose eigenvalue ratios are small. Similar
approaches which do not use the ratio of eigenvalues can be used (e.g., the ratio of region pixel

counts to fitted lines can be used), although eigenvalue ratios seem particularly appropriate.

VI. Preprocessing on Specialized Image Processing Hardware

Substantial speedups in the FLF algorithm can be realized by preprocessing on specialized image
processing (IP) hardware. Specifically, gradients and perhaps coarse quantization of gradients into
buckets could be computed on these devices. Subsequent processing steps (e.g., the connected
components algorithm, line fitting, etc.) are not pixel oriented and so they are not feasible for most
IP devices. This section discusses initial FLF algorithm steps which may be put on specialized IP
hardware.

Computing gradients is an elementary operation on most image processing hardware. Gener-
ally, this is accomplished by convolving the image with appropriate masks (e.g., Prewitt, Sobel,

etc); convolution hardware is particularly well-suited. The computational concerns on a sequential

22

machine that argued for the Prewitt operator do not apply to IP devices. Instead, a better quality
mask may often be used with no resulting increase in computation. Selection of convolution masks
depends upon the amount of computation required by the specific IP device and the desired level of
accuracy. Computing gradient magnitude from the directional derivatives was discussed in section
IIIA, and this computation is particularly simple on most IP hardware.

For specialized IP hardware to be useful, it must take less time to obtain the preprocessed data
than it would have taken on a conventional sequential machine. The total preprocessing time is
the sum of the IP computing and data transfer times. Most often, the IP hardware is connected
to a host computer. Since we assume IP devices can preprocess faster than a sequential machine,
the feasibility of using these devices depends upon the data transfer rate. Preprocessing on IP
hardware attached to a host computer doubles or triples the number of images to transfer, so care
must be taken to ensure that increased data transfer does not undermine its usefulness. IP devices
with direct memory access (DMA) to the host are usually required to obtain real-time performance;
IP devices are then feasible when the databus has capacity to transfer three or four images without
significant delay.

The UMASS AuRA project is currently downloading the computation of gradients and direc-
tional buckets onto a Gould DeAnza IP8500 image processing device using a DEC VAX-11 /750 as
the host computer with DMA. The video camera on the mobile robot uses a VHF transmitter to
transfer the real-time images to a digitizer on the IP8500. Preprocessing on the IP8500 is desirable
since the images are already on the device. Highly efficient image transfer required significant effort,
but was found to be possible. Timing results are not available at this time, but it appears that a

10 — 20% speedup will be possible over the current version.

VII. Results

This section demonstrates the line extraction algorithm on an outdoor scene which was one of
a sequence of images acquired from a mobile robot moving through the environment; Arkin et al.
[1] describes how these lines can be used to guide a robot through the environment.

Figure 2 shows the original image of an outdoor scene in which the robot is currently positioned
in the center of the path. Executing steps 1.0 — 2.1 of the line extraction algorithm (as shown in
section IIIE) results in the line support regions shown in figure 6; the default eight buckets shown
in figure 1b were used, and a gradient magnitude threshold of about 2% (threshold/range) and a
region pixel count threshold of 10 was used. Figure 7 shows the lines fitted to the line support.

regions shown in figure 6 (as described in sections IIID and IIIE).

23

s %
¢ T
& i) S SN[() N
B dlf 2% 2 A Wl B =
e [g g
1 =) [] &\ 4 c__’::. l-'_‘,_'—\':)’__‘ A 1?,_9,_._ - 3
—— e e, et "
S S
— e = <
B Y EF\ = ~ _] e
= = g i
& T
&2 gy
EE‘ oy
S
SR
==, . -

Figure 6: Line support regions extracted from the image shown in figure 2. The default eight buckets
shown in figure 1b were used; a gradient magnitude threshold of about 2% (threshold/range) and
a region pixel count threshold of 10 was used.

24

Figure 7: Lines fitted to the line support regions shown in figure 6 using the algorithms described
in sections I1ID and IIIE.

25

As discussed in [1], path-following was achieved by directing the robot along the center of the
path; the centerline was determined from the current robot position and the vanishing point of the
path which was found by intersecting the lines fit to the left and right sides of the path. For this
simple method of navigation, only lines which demarcate the path sides provide useful information;
effort spent extracting lines which are not part of the path wastes computational resources. Figure
8 shows the lines extracted when the directional buckets are tuned to the expected orientation of
the path sides. That is, two buckets centered on the expected path edge orientations were used. In
addition to reducing overall computation, this tuning largely avoids bucket boundary fragmentation
as discussed in section IIIB. Thus, as shown in figure 8, longer line segments are obtained than

when bucket tuning is not performed (as shown in figure 7).

VIII. Discussion

This paper has presented a methodology for developing fast pixel-based algorithms for feature
extraction. This methodology was developed in the context of a fast line finder (FLF) which
was effectively used for real-time vision-guided robot navigation (as described in [1]). As a rough
comparison, the FLF program ran in about two seconds for a 256 x 256 image on a DEC VAX-
11/750 versus several minutes required for the original Burns et al. algorithm.

In addition, the line extraction algorithm summarized in section IIIE was modified in a simple
manner to provide a table-based region segmenter that has also been used by the UMass AuRA
project. Instead of computing gradients from an intensity image and then mapping them into
buckets, the modified program allows a user-specified lookup-table to map pixel intensity values
from a general image into corresponding labels. Analogous to thresholding on gradients, this
modified version indicates (via the lookup-table) what pixel values are not relevant to the desired
end result. The resulting labelled image is then processed by a connected components algorithm to
produce the segmented regions. Rather than fit lines to these regions, the modified program outputs
statistics describing each segmented region (e.g., centroid, mean value, dispersion as measured by
the ratio of eigenvalues, etc.). This modified program was thus called a Fast Region Finder (FRF).
Arkin et al. (1] describe how the FRF can be used to support autonomous mobile robot navigation.

The extent to which vision can support robot applications is directly affected by the speed of
visual processing. The availability of a fast line extraction algorithm allowed the UMass AuRA
project to visually guide a mobile robot through the environment in real-time. Similarly, the
methodology presented in this paper can be extended to other feature extraction techniques which

can support robot navigation, industrial robotics, and a host of other applications. Hopefully, this

26

melding of vision and robotics will lead to a far more advanced level at which machines can interact

with their environment.

27

Figure 8: Lines extracted from the image shown in figure 2 when the directional buckets are tuned

to the expected orientation of the path sides.

28

Acknowledgements

We are endebted to J.B. Burns for his assessments of performance issues and solution techniques.
Special thanks are due to R.C. Arkin, M. Boldt, and P. Anandan.

References

(1] R.C. Arkin, “Working Towards Cosmopolitan Robots: Intelligent Navigation In Extended
Man-Made Environments”, Ph.D. dissertation, Computer & Information Science, University
of Massachusetts at Ambherst, September, 1987.

[2] D. Ballard and C.M. Brown, Computer Vision, Prentice-Hall: NJ, 1982.

(3] J.B. Burns, A.R. Hanson, and E.M. Riseman, “Extracting Straight Lines,” IEEE Transactions
on Pattern Analysis & Machine Intelligence, vol. PAMI-8, no. 4, pp. 425-455, July 1986.

[4] J.H. Burrill, “Low Level Vision System,” Technical Report 87-14, Computer and Information
Science Department, University of Massachusetts, Amherst, MA, January 1987.

[5] Duda and Hart, Pattern Classification and Scene Analysis, Wiley: NY, 1973,

[6] L.J. Kitchen and J. Malin, “The Effect of Spatial Discretization on the Magnitude and Di-
rection Response of Simple Differential Edge Operators on a Step Edge, Part 1: Square Pixel

Receptive Fields,” Technical Report 87-34, Computer and Information Science Department,
University of Massachusetts, Ambherst, MA, April 1987.

[7) S. Peleg, “Straight Edge Enhancement and Mapping,” Computer Science Technical Report
694, University of Maryland, College Park, MD, September 1978.

(8] F.M. Vilnrotter, R. Nevatia, and K.E. Price, “Structural Analysis of Natural Textures,” IEEE
Transactions on Pattern Analysis & Machine Intelligence, vol. PAMI-8, no. 1, pp. 76-89,
January 1986.

[9] C. Ronse, Connected Components Algorithms for Binary Images, Research Studies Press: NY,
1984.

[10] A. Rosenfeld and A.C. Kak, Digital Picture Processing, Academic Press: NY, 1976.

29

