\a

Complexity of Connectionist Learning
with Various Node Functions

J. Stephen Judd
COINS Technical Report 87-60

Department of Computer and Information Science
A305, Graduate Research Center
University of Massachusetts
Ambherst, MA 01003
July 1987

This paper (without appendices) was presented at the First LE.E.E.
International Conference on Neural Networks, June 21 — 24, 1987, San Diego,
California.

Abstract

We formalize a notion of learning in connectionist networks that charac-
terizes the training of feed-forward networks. Considering different fam-
ilies of node functions, we prove the learning problem NP-complete and
thus demonstrate that it has no efficient general solution. One family of
node functions studied is the set of logistic-linear functions, as used by the
popular back-propogation algorithm. Several implications of the theorem
are discussed, including why this result is actually helpful for connectionist
learning research.

This research was supported by the Air Force Office of Scientific Research, Bolling
AFB, through grant AFOSR-87-0030. The author was also supported by an NSERC
Canada Post-Graduate Scholarship.

1 Introduction

One goal of researchers studying connectionist models is to develop an ef-
ficient learning algorithm for networks. The published successes in connec-
tionist learning have been for very small networks, typically much less than
100 nodes. To fully exploit the expressive power of networks, we need to be
able to scale them up to much bigger sizes. But it is widely acknowledged
that as the networks get larger and deeper, the amount of time required for
them to absorb the training data grows prohibitively [7,18,2,12]. Some re-
searchers view this scale-up issue as the most important problem for current
connectionist research.

Many researchers have developed algorithms for learning in connectionist
networks. Some notable approaches are the Perceptron [15,11], back-prop-
agation [17,13,5], Boltzmann [1,8], and associative reward-penalty (Ar-p)
[4,3] schemes. The implicit goal of this research is to find a method of learn-
ing associated pairs of given values that will work in an arbitrary network.
Descriptions of these methods have each been published along with demon-
strations of their ability on selected associative learning problems. However,
no proof of their effectiveness has been offered (as it was for the linearly sep-
arable case of the Simple Perceptron [11]), despite the importance of such a
result to connectionist research. Are there feasible algorithms for learning
in large connectionist networks? Or is there some deep reason why there
cannot be? This paper addresses that question.

Here, ‘connectionist learning’ is treated as mere memorization of some
given data by a given network. This problem is formalized in Section 2 and
a theorem in Section 3 indicates that in fact there can not exist an efficient
algorithm for the general case of connectionist learning. The more involved
problem of finding regularities in data and generalizing from them is not
considered because the easier problem of simply remembering the data is
shown to be too difficult to reliably achieve. '

Section 4 explores the nature of the strictures revealed by this result
and reports that the use of different types of node functions does not make
the problem any easier. In Section 5 we explain why the results are not a
death knell for connectionist learning and argue rather that they are a step
forward toward large networks.

2 A Formalization of Network Learning

2.1 The Learning Protocol

The type of learning investigated here is known as supervised learning. In
this paradigm input patterns (called stimuli) are presented to a machine
paired with their desired output patterns (called responses). The object of
the learning machine is to remember all the associations presented during a
training phase so that in future tests the machine will be able to emit the
associated response for any given stimulus.

In what follows, every stimulus ¢ is a fixed-length string of s bits, and
every response p is a string of r bits with “don’t cares”, that is ¢ € {0,1}*
and p € {0,1,*}". The output from a net is an element of {0,1}". The
purpose of a response string is to specify constraints on what a particular
output can be: we say that an output string, 8, agrees with a response
string, p, if each bit, 8;, of the output equals the corresponding bit, p;, of
the response whenever p; € {0, 1}. The notation for such agreement is 8 = p.
Each stimulus/response pair is called an SR item. A taskis a set of SR items
that the machine is required to learn. To be reasonable, every stimulus in
a task should be associated with no more than one response. Equivalently,
a task T should be extendable to some function f : {0,1}° — {0,1}". We
view functions as sets of ordered pairs and use the notation ' C f to mean

T < {(0,p): f(o) b}

2.2 Network Architecture

The model of connectionist machines considered here is that of non-recurrent,
or feed-forward, networks of computing elements. This is a generalized com-
binational circuit; the connections between nodes form a directed acyclic
graph, and the nodes perform some function of their inputs as calculated by
previous nodes in the graph. A

We define an architecture as a 5-tuple A = (P,V, S, R, E) where
P is a set of posts,
V is a set of n nodes: V = {vy,vs,...,v,} C P,
S is a set of s input posts: S=P -V,
R is a set of r output posts: R C P, and
E is a set of directed edges: E C {(vi,v;): v;€P, v;eV, i < j}
The constraints on the edges ensure that no cycles occur in the graph. De-
note the set of tnput posts to node vy as p(vx) = {v; : (v;,v) € E}.

2.3 Node Functions

Each node in a network contributes to the overall computation by taking
signals from its input edges and computing an output signal. In our first
analysis, we consider only binary-valued functions.

fi : {0, l}lp(v-')l - {0,1}

The function f; is a member of a given set 7 of functions. Typically, con-
nectionists have used the set of linearly separable functions (LSFns) for 7.
These functions are characterized by a threshold value and a weight associ-
ated with each input to a node. An ‘activation level’ is calculated from the
weighted sum of the inputs, and the output is one of two values depending
on whether the activation is above or below the threshold.

We consider LSFns as well as a variety of other node function sets. Two
variants that are considered are called SAFns and LUFns. SAFns is the
set of all those functions computable by a single multiple-input AND gate
augmented with any number of inverters placed on the inputs or output (SA
is from Solitary Address, or Single And). LUFns is the set of all Boolean
functions (LU is from Look-Up table). Note LUFns 2 LSFns D SAFns.

We also consider two sets of node functions that have real values. Quasi-
linear functions (QLFns) are functions composed of any bounded, monotonic
function, E, applied to a linear combination of the inputs. (This definition
is essentially the same as that used in [16] and [20].) A special case of QLFns
is the logistic-linear functions (LLFns), for which E(z) = 1/(1 + e™*). The
back-propagation algorithm of [17] is designed to work with LLFns.

A configuration of a network is a set of n functions F = {f, f3,..., fn}
corresponding to the set of nodes, V', meaning that f; is the function that
v; computes.

2.4 The Computational Problem

In a configured network, every node performs a particular function and the
network as a whole performs a particular composite function. An architec-
ture, A, and a configuration, F, together define a mapping from the space
of stimuli to the space of responses:

M3 {0,1}* = {0,1}".

A task, as defined above, can be viewed as a collection of constraints on the
mapping that a network is allowed to perform. Recall that an SR item in a

task is a pair of strings (o, p). When the posts in S are assigned the values of
respective elements of o, the network mapping defines values for each post
in R. It is required that these values agree with respective elements of p.

The process of loading can now be defined. In the learning problem we
are considering, an architecture and a task are given, and loading is the
process of assigning an appropriate response function to every node in the
architecture so that the derived mapping includes the task. It is a search
procedure that accepts a pair (A,T) and returns a solution, which is a
configuration F such that T C M?. In the case where no such configuration
exists, the procedure announces that fact.

3 The Intractability of Network Learning

Our major question regards the intrinsic nature of the learning problem we
have posed: How difficult is it to load a given task into a given architecture?

The loading problem is a search problem, but it is usual to frame com-
plexity questions in terms of decision problems. In the space of all possible
(A, T) pairs, some pairs will have solution configurations and some will not;
that is, for some pairs the architecture can perform the task, and for some
it cannot. The performability decision problem is simply to tell whether a
configuration exists: “Can A perform T7”. Thus the complexity question
posed above is re-phrased as: How difficult is it to decide performability?
Re-phrasing again: How much computation is required to recognize the fol-
lowing (paramaterized) language?

Perfy = {{A,T):3F € ¥* > T C M$#}

(Terminology used here and the related complexity-theoretical concepts of
NP-completeness are explained well in Garey and Johnson [6].)

The measure of how ‘difficult’ a decision problem is must be relative to
the ‘size’ of a particular instance of the problem. The size of an instance of
the performability problem is taken to be the number of bits that it takes
to represent the instance i.e. the architecture and the task. This number is
roughly proportional to n + |T|. As the architecture gets bigger or as the
task gets bigger, one would expect any learning algorithm to take longer to
solve it, but the question we would like to answer is “How much longer?”
What is the minimum expression g(s) for the worst-case amount of time
required to solve an instance of size s? The following theorem is proved in
the appendix:

Theorem 1 Perfgp s ts NP-complete.

Decades of experience have shown that the g function for any NP-complete
problem is an exponential expression that becomes unmanageably large at
quite small values of s. (See [6] chapter 1.) Hence it is not practical to try
to decide large instances of the performability question.

Furthermore, because this decision problem is no harder than the search
problem from which it is distilled, the loading problem per se is also in-
tractable. No single general-purpose algorithm can be developed for use in
arbitrary architectures that is guaranteed to load any given performable task
in polynomial time. (This is true whether ‘the algorithm’ is conceived as a
nodal entity working in a distributed fashion with other nodes, or as a global
entity working in a centralized fashion on the network as a whole.) Hence
it might appear that we cannot hope to build large connectionist networks
that will reliably learn simple supervised learning tasks.

4 Why this is Bad News

We suggested above that a critical current issue for connectionism is to find
a learning algorithm that is useful for large-scale networks. Questions of
scale-up are precisely what complexity theory is intended to answer, and in
the theorem above, complexity theory has declared our learning problem to
be intractable in large networks. There are many (architecture,task) pairs
for which there is no feasible way to find a solution even though solutions
do exist.

There are ways of accommodating this result, but there are several re-
actions that are inappropriate. We consider individually and dlspel each of
the following invalid responses:

o “We will use different learning rules.” The result above is not a measure
of running time for one particular learning algorithm—it is a result about
the intrinsic difficulty of the problem. There is no learning rule that can
always solve this problem in polynomial time.

e “The architecture is not part of the input to our algorithms.” It is true
throughout the current connectionist literature that no description of the
whole network is given to the nodes in the net, but this only implies that
what connectionists are attempting to do is even harder than the formal
problem phrased in this paper—they hope that their distributed algorithms
will operate effectively with very limited local knowledge about the network
surrounding each node.

o “We will exploit massive parallelism.” This response is an attempt to
contain an exponential expression (¢") by dividing it by a linear expression
(cn), but the arithmetic defeats it soundly.

In many connectionist approaches to learning, there is a strong reason
why large numbers of computing elements will not accomplish the loading
problem in feasible time: By doubling the number of nodes available, you
are doubling the computational resources but you may also be doubling (or
squaring!) the amount of computing that has to be done. Naive attempts
to exploit parallelism can actually be counterproductive.

e “We use only very shallow nets.” It has been an empirical observation
that although some algorithms (notably back-propagation) work well in nets
that have only a few levels intervening between input posts and output posts,
they work much slower in deep nets. But one should not believe that the
problem of scaling up derives solely from some phenomenon of depth. The
proof in the appendix shows that NP-completeness appears even in nets of
depth two!

e “We only use the linearly separable functions in our nodes.” The theorem
deals only with SAFns; LSFns includes all of SAFns and, when the number
of inputs to a node is large, it is considerably more powerful. It might seem,
therefore, that this extra power would make loading easier. Unfortunately,
this case (and even LUFns) is just as hard (Corollary 3 and 4 in appendix).
e “We use quasi-linear node functions.” LSFns is a binary-valued special
case of the quasi-linear functions (QLFns). Theorem 1 pertains only to dis-
crete, binary-valued signals and does not apply to real-valued quasi-linear
functions. However, Theorem 5 in the appendix is an extension of Theorem
1 that pertains specifically to the logistic-linear functions (LLFns) used in
back-propagation.. It shows that Perffp,s is NP-complete and, as a corol-
lary, that Perfgy Fps is NP-hard. (NP-hard problems are at least as difficult
as NP-complete problems.)

o “We want our machines to generalize, not just parrot their training task.”
Induction ultimately requires the ability to remember facts. We have not
considered induction in this paper because we have shown that the easier job
of accurately remembering given facts is too difficult to generally achieve.
o “We will relax our standards and accept a certain percentage of accu-
racy.” Our mathematical question has a very exacting criterion of success
in training: either the machine performs perfectly or it doesn’t. One could
speculate that if the criterion was more lenient then the problem might
be much easier. But the result can be proved again for cases where more
than 80% of the items are required to be correct (proof beyond the scope

of this paper), or where only 80% (say) of the defined bits in each response
are required to be correct (proof easy). Lowering standards of performance
slightly does not immediately make the problem easy.
o “We have no “don’t-cares” in the responses.” The proof of the theorem
does use the “don’t-care” symbol but there is an easy repair of the theorem
that avoids the “don’t-care” by using an extra signal for input to each of
the nodes. This detail does not strongly alter the nature of the problem.
None of the retorts in this list will extricate us from the tarpit of NP-
completeness. The difficulties in the problem are deep and to avoid them

the goals of connectionist learning research will have to be more narrowly
defined.

5 Why this is Not Bad News

Essentially, the goal we have formulated is to find one algorithm that is
guaranteed to load any performable task in any conceivable net. Since this
is unachievable, we consider several ways to weaken the formulation so as
to possibly yield an achievable goal.

First, the theorem is a statement about networks and tasks in general,
but there may be large useful classes of networks (defined by some design
restrictions) where loading a task would always be achievable in polynomial
time. One can imagine several ways to constrain the class of networks and/or
tasks and/or other aspects in such a way that the new loading problem would
have some special regularity in it that might facilitate its solution. For most
such sub-cases, our theorem says nothing.

It might be possible that architectural constraints alone may lead to
tractable loading, but one approach that will not work is merely to restrict
the maximum fan-in to each node. Theorem 1 holds even when fan-in is
restricted to be no more than 3. More likely to help is a restriction that
sets a minimum fan-in, because this forces a minimum number of degrees of
freedom everywhere. By a similar line of reasoning, it may also help to set
a minimum on the number of layers that must exist in the net (say perhaps
as a function of the width of the net). This suggestion may contradict
experimental evidence, but it follows from understanding the source of NP-
completeness we have discovered.

The difficulties inherent in connectionist learning may be manageable
through some notion of network modularization. Some researchers have
experimented with such an approach, although it is not yet clear exactly

how best to break up the overall problem.

Our result might be overcome by using probabilistic algorithms. Perhaps
for some class of architectures there is a randomized procedure that will
run in polynomial time and report a solution configuration with a certain
minimum probability. Repeated invocations of the procedure would give
asymptotic certainty regarding performability.

One possible technique that has not been exploited by any connectionist
learning schemes to date is to ‘prepare’ the network prior to seeing the task.
It is conceivable that some amount of preparatory computation regarding
the architecture alone could greatly assist the subsequent loading of the task.
The formulation of Perf has excluded this possibility, (as have all the other
published approaches) but new formulations might include it.

Another avenue of freedom usually not exploited by connectionist learn-
ing schemes is to alter the architecture as learning proceeds. When carried
to extremes, this would amount to an exercise in arbitrary circuit design,
rather than in connectionist learning, but adhering rigidly to the starting
architecture may be just too constrictive; somewhere between these two
extremes there may be a balance that combines the best of both worlds.
(Valiant and others [19,10] have initiated the study of what can be feasi-
bly learned under the free-design extreme; perhaps the two approaches will
eventually find a middle ground.)

It is conceivable that the difficulties in loading stem specifically from the
non-recurrence of the nets and the fact that all their ‘knowledge’ about a
stimulus must be elicited in one single evaluation of each node function. If
so, then a more reasonable model of network memory might involve storing
data as cycles in state-space where the power of attractor dynamics could
be exploited to make loading easier (albeit at the cost of more expensive
retrieval). Such would be a large departure from our model but there are
plenty of pitfalls there too; Porat [14] proves that the problem of deciding
just if a configured network stabilizes or cycles is NP-hard.

Finally, our formulation of the learning problem may be inappropriate
in that it requires a network to be able to load too large a class of tasks. By
using performability as the decision problem, we are in effect defining the
task class in terms of the architecture itself and asking that any architecture
A be able to load any task in the set P4 = {T' : 3F > M# D T}. But it is
not necessary to expect an architecture to be able to load all of these tasks.
From a practical point of view, all that is necessary is that it be able to
perform and load some useful class, T, of tasks. Obviously, it is necessary
that T C P4, and the results herein show that it is too ambitious to have

T = PA for arbitrary A. However, there are many ways to define T so
as to exclude some tasks in P#, thus possibly leading to a loadable class.
For instance, are monotonic tasks always loadable? Can networks always
load tasks with a ‘small’ number of items? Can a network, A, load all tasks
performable by nets ‘half the size’ of A? It would be useful to be able to
characterize just what class of tasks a network could learn, or conversely, to
be able to determine what type of architectures could learn a given class of
tasks.

6 Conclusions

The job of simply remembering associated pairs of strings requires only
linear time in a von Neumann machine, but we have shown that this trivial
problem can become very difficult if it must be achieved in a given non-
recurrent network. Hence there is reason for connectionist research to find
out how to avoid the problem in its full generality. We have also given good
evidence that the difficulty of the problem is independent of the choice of
type of functions that each node can perform.

In their book Perceptrons 11], Minsky and Papert lament the lack of
an effective procedure for loading networks and express a hope that “some
profound reason for the failure to produce an interesting learning theorem
for the multilayered machine will be found.” Our result supplies one such
reason, and the proof of the theorem stands as an opening insight into the
reasons why the loading problem is so difficult.

We have outlined a wide range of questions regarding narrowed or altered
models of the connectionist learning goal. The tool of NP-completeness can
direct the search for achievable goals and often reveals how to solve the
problems as well. Additional answers to some of our questions will assist
connectionist learning research by further narrowing its focus to just those
cases that hold the promise of scaling up.

Acknowledgements

This work derives from the author’s Ph.D. thesis in progress under the
direction of A. G. Barto who inspired the dual topic of networks and learning.
The author thanks D.A.M. Barrington for guidance on complexity issues,
and S. Porat for help in proof-reading.

Appendix

This section is a proof of 2 theorems with corollaries.

First, we introduce some general purpose notation for manipulating
strings. If o and f are strings then « - @ is the concatenation of a and
B, and a" is the concatenation of n copies of a. We use O & to denote
o1 Q2 3. .. Q.

If a is a string, A and B are sets (with distinct elements), B C A, and the
length of o is | A, then the notation a[4] denotes the string of length | B that
is formed by associating successive elements of o with successive members
of A, and then selecting from « only those elements that are associated with
members of B. For example,

if a= 2 -7-4-1-9- 8
and A={d10,d14,d15,d16,d17,d10}
and B={dyo,di7, d1o}
then aff]= 2 -9 - 8

Another notational device is used to select single elements from a string;
(k) represents the k*! element of a. Formally, a{k) = a[&'}z':"'“’“}] where
a is the length of a. \

For precision, we define the semantics of computation in a network as

the unique string that satisfies the inductive expression

Compp(d)=0- é fi(ComP?(“)[ﬁ(u;)])

i=1

Such a string is unique because A is acyclic and the output of each node is
dependent only on the output of previous nodes. The network mapping can
now be stated as

Mg(0) = Compt (o) (E]

Theorem 1 Perfgy ppe t8 NP-complete.

Proof: We reduce the classic satisfiability problem (SAT) to Perfgp .-
(See [6] for an explanation of this process.) Let (U,T') be an arbitrary
instance of SAT, where U is a set of variables and T is a set of clauses; U =
{ur,ug,...uy}, T = {(7;,Gi) : 1 <1 < m}. We use a novel representation
of ', the set of clauses: for each { < m, v; € {0,1}", and G; C U. A string
Q is said to setisfy the instance (U,T) iff Q5] # vi[%,] for all i < m. (This

10

representation of a clause can be obtained from the traditional disjunctive
form by applying de Morgan’s Law once and padding for variables that are
not in the clause.)

We must construct an architecture A and a task T such that T is per-
formable by A iff (U,T) is satisfiable. The set of nodes V' will be composed
of a set Vj of “first-layer nodes” and a set V3 of “second-layer nodes”.

S ={vi:0<17< w}
Vi={n;:1<j<w}
Vo={v;:1<i<m}
P=SuVuV,
R=V=V,uV,
E = {(v00,v1,), (v, v15) : 1 < 7 S wpU {(v15,v2,) : v € Gi}
A=(PV,5,R, E)

The task is composed of 3 kinds of items. The first kind is called the
“truth-value items” and associates a binary value with ‘true’ and ‘false’:

Ty = {(0-0%,0¥-%™),(0-1%,1* - +™)}
The second kind of item is called the “disjunct semantics items”:
Ty = {(0- 7, ** -+ 71-0-4™7) : (7;,Gi) €T}
The third kind of item is called the “conjunct semantics item”:
Ts = {(1-0%,%"-1™)}

T=T1UT,UT;

Figure 1 gives a construction for an example instance of SAT.

Claim: A solution configuration, F, for (A4, T) exists iff a satisfying as-
signment {2, exists for (U, T).
proof (3F < 30): Assume (U,T') € SAT by virtue of the assignment
string (0. With each node v;; € V, associate the node function f;; and

let F={f11,f1,2:--> frw f2.1, f2.2,. -, f2,m} Where

b ifa=0
hate-0) = { Q@) ifa=1

11

Take as an example the following SAT problem expressed in traditional CNF
form: (i V uz Vug)(uz2 Vv u3Viy). In the required form, this is equivalent to

’]’1=1'0
72=0-0

The task for this problem is

The architecture is as follows:

Lvo 0

T1= (
(
T,= (0
(0
T3= (1

e Vo1

o

o
O O = = O

0-0

1-1

O OO =0

O = O = 0O

Gy = {u1,ug, uz}
GZ = {u.z,ll,3,tt4}

-

-

OO~ O

-

o Vp,2

* * ¥ = O

* # ¥ = O

¥ ¥ # s O

* ¥ # O

» V0,3

-k QO ® ¥

.-4;)
.*)
.0)

- 1)

Vo,4

Figure 1: Example Construction for theorem 1

12

.)0 ifa= vil&.

frile) = { 1 otherwise

We must show that .M? D T, which we do by showing M’F‘ 2T, M? 2 Tq,
and M# D T; individually. First, note that since f1;(0-b) = b for all j < w,
we have for any a,

w

Compp(0- @[5 = (O f1,((0-)5,) = O 140+ ali)) = D ali) =
i=1 i=1 i=1
(1)

Equation 1 proves Comp#(c)[V,] = p[gl] for both items (o, p) € T1. Since
responses for V; are undefined, Mf 2 T;.
For each vy ; € V; there is only one item in T which is defined, and to

agree with that response, we must show that M#(0 - v;)[f,](:) = 0.
MEO-w)BIGE) = f2:(Compr(0-)[R,)
= f2:(Compp(0-)}), o)) since p(v2;) € Wi
fz-"(""[:(lvg,.-)]) by (1) above
= f2,i(’1i[g~..]) by definition of £
=0 by definition of f,, as required.

Since this argument holds for every node in V3, and responses for V; are not
defined, M D T,.
The only stimulus in T3 is 1 - 0¥.

Compf(1-0%)]—@fl: (1:0°)5,) = O f1s(1-0) = O 0G) =
j=1 i=1

Compip(1-0)[1,]

=1 veVa

m \
= @fz,i(ﬂ[:('%)]) by the previous equation
c=1 =t

= () f:(98) by definition of E

= 1™ by definition of f2; and Q%] # (%,

13

O o((Compp(1- O NEIY,,) since U p(v) € Va

So Mf(1-0%) = Q- 1™ |= #¥ - 1™ which is to say Mg 2 T3. This completes
the first half of the claim.

proof (3F = 30Q): Assume F = {f1,1, [1.2,-- -, fiw f2.,1, f2.2,-- - fam} IS 2
configuration such that M# D 7. What do we know about F'? By inspecting
Ty, we know :

Compf(0-0*)(£,] = (/1((0-0*) (5, 4D = O f1,5(0+0) = 0"
i=1 ij=1

by the first item. Hence f; j(0-0) = 0. By the second item, we can similarly
show f1;(0-1) = 1, which leads us to conclude what was shown in equation
(1).

By inspecting T and T3, we have for every i, 1 <1 < m
f24(Compp(0- 1)(E,, 5)) = 0 # 1 = f24(Comp(1-0%)(F,,,)))

Comp(0- %)[F,,) # Compp(1-0*)(5,,]

Applying equation (1) and the definition of E on the Lh.s.,

LLh.s. = Compf(0- 7{)[511["302.‘)] = ‘7,-|;’(102_i)] = %lg,

Simplifying the r.h.s. by letting @ = Compg(1-0*)(F],

rhs. = Compd(1-0°)(5][,)] = O,) = O,

Vi v,
p(va.i) p(va.i)

Reassembling, we have 7,[2{] # Q[g] for all 1,1 < i < m which is to say
that Q satisfies (U,T') and the claim is proved.

Thus we have SAT o Perfgy s and it is easy to see that the algorithm
for the transformation runs in polynomial time (in fact linear time and log
space).

Finally, it must be demonstrated that there is a non-deterministic ma-
chine that can decide Perfgy pps in time polynomial in the length of (4, T).
That is, there must be a poly-time method of writing down a valid SAFns
configuration and checking that it is correct. Writing down a function from
SAFns requires one bit for every nodal input (to specify whether it should
be inverted before entering the AND gate), and one bit for the output (to
specify whether the whole function should be inverted). For the complete
configuration, this takes one bit for each edge in A and one bit for each node
in A. That the configuration is correct can be checked by evaluating each

14

node function once for each item in T. This takes time O(|V| x |T'|) under
the assumption that it takes constant time to evaluate any single f;.
This, and SAT « Perfg p,s implies Perfgp ppe is NP-complete. o

Corollary 2 For any node function set ¥ such that all members of F are
binary-valued functions, and ¥ O SAFns, Perfr is NP-hard.

Proof: Both directions of the proof of the claim in theorem 1 require nodes
able, at least, to perform functions from SAFns. The reduction thus follows
for any node function set that includes them. 0O

Corollary 3 Perfl,gpps ts NP-complete.

Proof: NP-hardness follows from corollary 2, but to be in NP, there must
be some poly-time way of guessing a function from LSFns and being sure
that indeed it s from LSFns. If fan-in were bounded in our model, then this
would be easy since we could get the non-deterministic selection to be from
a fixed table of all LSFns up to that input size. Without bounds on fan-in,
this technique will not work. One might attempt to achieve a selection from
LSFns by simply writing down the weights that are used in the linear sum,
but since the weights are assumed to be real (i.e. of a potentially infinite
number of decimal places), this technique also is troubled. However, Hong
[9] has recently proved that approximations to the weights are sufficient to
encode any and all members of LSFns. Specifically, only a polynomial num-
ber of digits are required (polynomial in the fan-in), and hence Perf]gp,s
is NP-complete. a

Corollary 4 Perf[yf,s ts NP-complete.

Proof: Again, NP-hardness follows from corollary 2, but to be in NP, there
must be some poly-time way of writing down an arbitrary member of LUFns.
(Making sure that it 7s a member of LUFns is trivial since all binary-valued
functions are members.) Without a bound on fan-in, writing down an ar-
bitrary member of LUFns takes exponential time since it requires 2lp(vill
bits to fully specify it. However, each node function will be invoked exactly
t = |T| times in the performance of the task; hence we can specify a function
F €LUFns by asserting a default value (1, say) to cover most inputs, and

15

then listing the exceptional inputs « for which F(a) = 0 (of which there are
at most t). Since T has a unary encoding of ¢, there is a representation of
F that is polynomial in the length of (A,T). Hence Perfy € NP even when
¥ = LUFns, and Perf},p,s is NP-complete. a

The next theorem extends the previous one to the case of certain real-
valued node functions. We consider a function set used in {17] wherein every
member of the set is a function composed of two parts. The first part is the
logistic function and the second is a linear weighted sum of its inputs.

where e(a) = wo + Z w; X o),

1
l+e =
We call these functions LLFns (for Logistic Linear Functions). The E func-
tion is fixed for all nodes, so to specify a member of LLFns it is enough to
specify the weights wg, wy,... used in e.

Following [17] again, we say that a value agrees with 1 if it is no smaller
than 0.9, and it agrees with O if it is no larger than 0.1. Note that E(z)
asymptotically approaches 1 as = approaches +o0, and that E(z) asymptot-
ically approaches 0 as r approaches —co. Let d be some scalar value. We
say that o agrees for high d with § (written a }-—‘-‘ B) if there is some value
for d beyond which « always agrees with . This implies that the value of
a or B is a function of d.

and E(z)=

a(d) B A(d) © 3dp such that a(d) = A(d) for all d > do

Such agreement is easy to prove if a is monotonic in d and £ is constant.
Note that if two such agreement statements hold for the same high pa-
rameter then they hold simultaneously for that parameter.

(@ Band§HE) a6 8¢

A new notational device is used to select single elements from a string in
the case where the element’s position in a string is not known except through
its relative position in one of the clause sets, G;, in . For that situation,
we use i to mean the index in U of the k" element of clause i. Formally,
i = (0O])[g' (k). Consequently, this identity holds: a(}) = a:)z[gl~ (k).

16

Theorem 5 Perfyp,s is NP-complete.

Proof: We construct a performability problem (A, T') where the architecture,
A, is the same as it was in the proof of theorem 1 except that R = V; instead
of R =V, and the task, T, is as follows:

T=T1UTuT;

Ty= {(0-%, *710.-+™%):1<i<m}
Ty= {{(0-4{", #1-1-m): 1<k<|G}: 1<i<m)
Ts= {(1-7, *71-1-#77%):1<i<m}

where 7?‘) is 4; with the k*M relevant bit inverted:

(k)() '71(]) if 7 # ‘;;
J 1 — v;{s) otherwise

Claim: There exists a solution configuration F to (A, T) iff there exists
a solution assignment Q to (U,T). For both directions of the proof we shall
use the following definitions (they each stand for the computation performed
by the first layer of nodes when the net is given some stimulus in the task):

G = Compg(0-%)[y,] (from Ty)
ﬂ(j) = Comp#(0- '7,1))[”] (from T3)

= Compp(1-%)[f,] (from T)
proof (3F <= 30): Spec1fy the node functions as follows:

gy = [E(-d+2da+2db) if Q) =1
13589 =\ E(d- 2da+2db) £QU) =

f24(a) = E(ez;(a))

where G4
ez.,’(a) -d+ 2dz W; g X (gl) - a(k))
k=1
o +1 if ’1,’(;;) =1
Wt,k_ { -1 lf’y:(;c) =0

17

The above expression for ey ; is not in standard form but it is straightforward
to rearrange it so that it is.

We shall check that each subtask is performed correctly by this configu-
ration. Observe

/15(0:0) = E(-d+0+0) £ 0
/1;(0-1) = E(~d+0+2d) E 1
Hence Compg(0- a)(f;] K o. Consequently ¢; E v;. Also

F2i(Silplun o)) = E(=d+2d 3 Wir(sil) - (3)) £ 0
k

The agreement holds because the total value of the summation is 0. This
argument applies to each value of 7, and hence for high d, Mg D T}.

Consider a typical item in T%. Note that ﬂ}k) |=d '7,“), and that ﬂfk)(;c)

therefore differs from v;(}) as d increases. The absolute difference converges
monotonically to 1, so we have

F25 (B[,) = B(=d+2d Y War(si(}) - B9(0)) E 1

Here we know the agreement for high d holds because the total value of
the summation tends to 1 as d increases. Since the equation is valid for all
1 < k < |G| for each 7;, M,’} 2 T, for high d.

Next we consider a typical item in T3. For all nodes in layer 1, observe

ifQG) =1, fi;(1-z)=E(-d+2d+2dz) ¢ 1 for z € {0,1}

if Q) =0, fr;(1-z)=E(-d—2d+ 2dz) [0 for z € {0,1}

Hence f; ;(1-z) lg Q(s) and consequently n; }é Q1 for all i. Examining the
second layer, we know

F2i (i,) = B(=d+2d Y Win(si(3) — m(3)) B 1

because as d increases the summation converges to some integer representing
the number of places where g,-[g'_] is not equal to n;[g‘], that is, the number
of places where 7,-[?;',] is not equal to Q[g.] By the initial assumption about
1, this integer is at least 1, so the agreement holds (for high d). This
demonstrates that M# D T5 for high d.

By selecting some value for d which satisfies all the above agreements,
M# 2 T and this completes the proof of one direction of the claim.

18

-

proof (IF = 3Q): Let y; and 2; ; be the weights employed in the node
functions as follows: foralli,j, 1<i<m, 1<j7<w,let

f1.;(a-b) = E(yjo + yj1a + yj,2b)
IG.}

fz'g(a) = E(z,"o + Z z;_ka(k))

k=1
Define the satisfying assignment:

N\ 1 if Y5,1Y5,2 >0
Q) = { 0 otherwise

We must show 2 satisfies (U,T).
By assumption, the configuration F performs T1 and T2, so we know for
eachi,1 <1< mand for any k, 1 < k < |G|

fz,i((i[:,/('.,g_i)]) Eo
F2 B, gD E 1

SO

frilsilyto,) < fz.ﬁ(k)[,,(.,q,)]
E(zip+ Z Zic S’i(%)) < E(zio+ Z Ziye ﬂ:(k)(%))

but ¢;{(7) = ,B,(k) (7) for all j # %, or more specifically (i) # ﬁfk)(:;) only
when ¢ = k. Therefore

zik i} < 7k B ()
Let j = i and expand both sides in terms of f; ;.
zik E(yj0+ vj2 %(5) < zixE(yj0 + yi2(1 — %:(7)))

Zip Uiz (L) < zik yj2 (1 - %)
if 7;(j) =0 then 0 < z;y;2 (2)
if vi(j) =1 then zkyj2<0 (3)

19

Again, by assumption that F configures the net for T} and T,
Vi
fz"(gi[P(vz‘i)] Fo

Fai(milyty,)V E 1

E(zio+ Y zkall)) < Elzio+ Y zigni(}))
p p

Zz;.k 5'.‘(%) < Z 2k ni(i')
k

k

For this to be true for a given ¢, there must be at least one k such that

zik (L) < zie mi()

3

Letting 7 = , and expanding both sides as f ;,

zik E(yi0 + 52 7i(0) < zik E(yj0 + vin + y5.27:{7))
0<ziyjn

From this and (2), we find that
%{7) =0=2>0< zikzik Yj1 ¥j2 = 0 < yj1 y5.2 = Q) = 1

Similarly, 7i{7) = 1 = Q(;) = 0. Summarizing, for all ; there exists a k
such that 7,-(7';-) # Q(%), or rather 7"[3;] # Q[g.] That is, 2 satisfies (U, T)
and the claim is proved.

The claim establishes that the reduction from SAT is valid. Since the
transformation can be performed in polynomial time, Perf} [F, s is NP-hard.

Perf[[ppe 1s in NP if there is a polynomial-time procedure to write
down values for all the weights. For the case where the weights are truly
real-valued (meaning that a weight would have a potentially infinite number
of digits), it has not yet been proven that there is a finite approximation
that is effectively equivalent to the real numbers (as Hong has done for
LSFns). However, for the more realistic case of fixed resolution in each
‘real’ weight, specifying the configuration is easily performed in polynomial
time. With that minor caveat, we have proved Perf |, is NP-complete.

20

Three aspects of LLFns are crucial to the preceding proof: E is mono-
tonic, £ is bounded, and e is linear. Other aspects were convenient but not
necessary; for example, every node had a fixed F function, every node had
the same E function, and that E was onto the unit interval (0, 1]. We proved
the theorem for LLFns only in order to avoid excessive abstraction, but the
theorem is extendable to other node function sets.

If we define the quasi-linear functions (QLFns) as all those functions of
the form E(e(a)) where e is linear and E is a bounded and monotonic, then
for some appropriate definition of agreement we have

Corollary 6 PerfQ g is NP-complete.

The theorem is probably extendable to different manifestations of non-
linearity, but we note that something about E should be non-linear, for if
E (as well as ¢€) is linear, then the net as a whole can implement only linear
mappings. From the point of view of connectionists, this is uninteresting.

21

=

References

1]

2]

3]

(4]

(5]

l6]

7]

(8]

(9]

[10]

[11]

D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learning algorithm
for Boltzmann machines. Cognitive Science, 9:147-169, 1985.

F. Barahona. On the computational complexity of Ising spin glass
models. Journal of Physics A: Math. Gen., 3241-3253, 1982.

A. G. Barto. Learning by statistical cooperation of self-interested
neuron-like computing elements. Human Neurobiology, 4:229-256,
1985.

A. G. Barto and P. Anandan. Pattern recognizing stochastic learn-
ing automata. IEEE Transactions on Systems, Man, and Cybernetics,
15:360-375, 1985.

Y. L. Cun. Une procedure d’apprentissage pour reseau a sequil as-
symetrique. Proceedings of Cognitive, 85:599-604, 1985.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, San Fransisco,
1979.

S. E. Hampson and D. J. Volper. Linear function neurons: Structure
and training. Btological Cybernetics, 53:203-217, 1986.

G. E. Hinton and T. J. Sejnowski. Learning and relearning in Boltz-
mann machines. In D. E. Rumelhart and J. L. McClelland, editors,
Parallel Distributed Processing: Ezplorations in the Microstructure of
Cognition, vol.1: Foundations, chapter 7, Bradford Books/MIT Press,
Cambridge, MA., 1986. '

J. Hong. On Connectionist Models. Technical Report, Dept. Computer
Science, University of Chicago, Chicago, Ill., U.S.A., May 1987.

M. Kearns, M. Li, L. Pitt, and L. Valiant. On the learnability of boolean
formulae. In Proceedings of the Symposium on Theory of Computing,
1987.

M. Minsky and S. Papert. Perceptrons: An Introduction to Compute-
tional Geometry. MIT Press, Cambridge, Mass., 1972.

22

N

Ag'l‘

[12]

[13]

[14)

[15]

[16]

[17]

(18]
[19]

[20]

S. M. Omohundro. Efficient Algorithms with Neural Network Be-
haviour. Technical Report UIUCDCS-R-87-1331, Dept. Computer Sci-
ence, University of Illinois at Urbana-Champaign, 1304 W. Springfield
Ave., Urbana, Il 61801, U.S.A., April 1987.

D. B. Parker. Learning Logic. Technical Report TR-47, Massachusetts
Institute of Technology, 1985.

S. Porat. Stability and Looping in Connectionist Models with Asym-
metric Weights. Technical Report TR 210, Computer Science Dept.,
University of Rochester, Rochester, N.Y. 14627 March 1987.

F. Rosenblatt. Principles of Neurodynamics: Perceptrons and the The-
ory of Brain Mechanisms. Spartan Books, 6411 Chillum Place n.w.,
Washington, D.C., 1961.

D. E. Rumelhart, G. E. Hinton, and J. L. McClelland. A general
framework for parallel distributed processing. In D. E. Rumelhart and
J. L. McClelland, editors, Parallel Distributed Processing: Ezplorations
in the Microstructure of Cognition, vol.2: Psychological and Brological
Models, chapter 2, Bradford Books/MIT Press, Cambridge, MA., 1986.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal
representations by error propagation. In D. E. Rumelhart and J. L. Mc-
Clelland, editors, Parallel Distributed Processing: Ezplorations in the
Microstructure of Cognition, vol.1: Foundations, Bradford Books/MIT
Press, Cambridge, MA., 1986.

G. Tesauro. Scaling relationships in back-propogation learning: De-
pendence on training set size. Complez Systems, 1:367-372, 1987.

L. G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134-1142, November 1984.

R. J. Williams. The logic of activation functions. In D. E. Rumelhart
and J. L. McClelland, editors, Parallel Distributed Processing: Ezplo-
rations in the Microstructure of Cognition, vol.1: Foundations, Brad-
ford Books/MIT Press, Cambridge, MA., 1986.

23

