Computation of Optic Flow
by Multilevel Relaxation

Frank C. Glazer

COINS Technical Report 87-64

Computer and Information Science Dept.
University of Massachusetts ‘
Ambherst, Massachusetts 01003

Abstract

Multslevel relazation algorithms for the computation of optic
flow are developed and experiments show the expected increased
convergence rate over single level relaxation, although some exper-
iments present a problem of divergence at coarse levels. A local
mode analysis of the relaxation equations shows that convergence
is at least as fast as simple smoothing, and that, with strong gra-
dients, convergence is accelerated towards the constraint line. The
local mode analysis does not account for coarse level divergence.
Divergence is then shown to be dye to spatial variation in the im-
age data. Fixed up/down cycling schemes are used to overcome
the divergence problem.
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1 Introduction

In a dynamic imaging situation, the motion of objects, viewers, or light sources induce
the corresponding motions of their projections on the imaging plane. Optic flow is the
apparent motion of image features in the imaging plane and can be represented as a vector
field in that plane. This field specifies the instantaneous velocity of the corresponding image
component at points in the image plane. In a vision system, the low field provides a source
of information about the structure and motions of objects in the viewed scene.

One mayjor class of algorithms for computing optic flow is composed of gradient-based
techniques which use the information contained in spatial and temporal derivatives of
the image function F(z,y,t) [Fennema & Thompson 79, Horn & Schunck 81, Glazer 81,
Haralick & Lee 83, Nagel 83|. These techniques are most often characterized by a two
stage approach: first, the image gradients at individual image locations are used to esti-
mate the component of image motion parallel to the spatial gradient at that point; then,

constraints from multiple locations are combined. giving the complete flow vectors.

Horn and Schunck’s method of computing of flow from local flow constraints involves the
formulation of a variational problem in which the solugion optimally satisfies.the gradient-
based constraints in conjunction with a smoothness constraint [Horn & Schunck 81]. Many
other problems in low-level computer vision can be formulated as variational problems and
equivalently as partial differential equations [Glazer 82, Terzopolous 84, Poggio et al. 85|.
These problems are characterized by (1) variational formulations of global measures of
constraint satisfaction; (2) discrete formulations of the continuous problem, e.g., finite
difference approximations; and (3) relaxation algorithms involving the iterative application
of local neighborhood operators. An important feature of such formulations is. that they can
be solved by discrete algorithms which are uniform, local, and parallel when implemented
on 2D grids of simple locally connected processors.

A major limitation of variational methods is the large number of iterations that may
be necessary in the relaxation process. Relaxation is used as a local update process that
ultimately enforces a particular global optimization. Many iterations may be needed due to
slow propagation of global information by the local update processes. Multilevel relaxation
techniques, introduced in the general field of numerical analysis, overcome this problem of
asymptotically slow convergence [Brandt 77a, Brandt 77b, McCormick & Trottenberg 83).
Operating on a set of grids of varying spatial resolution, these techniques essentially solve for
coarse components (low frequencies) of the solution at coarse grid levels and fine components
(high frequencies) at fine levels. In general, low-level vision algorithms based on variational
formulations with relaxation processes are amenable to multilevel methods [Glazer 82,

Terzopolous 84]. In particular, multilevel methods have been applied to the computation
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of optic flow in variational schemes |Glazer 82, Enkelmann 86, Terzopolous 86).

Just as single level relaxation algorithms fit naturally and efficiently into 2D cellular
architectures, in a corresponding way, multilevel relaxation algorithms are well suited to
hierarchcial multigrid processing architectures. Specifically the processing cone architec-
ture (Hanson & Riseman 74, Hanson & Riseman 80| provides the interlevel and intralevel
interconnections needed.

The computational cost of using relaxation to compute optic flow is very dependent on
the number of iterations needed. This number is in turn dependent on the image data, a
fact which has not been noted in the cited prior work. We will demonstrate how the lack
of fine details in an image necessitates more iterations to compute optic flow. In this paper
we show how a multigrid relaxation scheme can be used to reduce this cost and make it
relatively independent of the image data.

In Section 2, we review the gradient-based approach to optic flow computation including
a basic variational method used to compute optic flow. In Section 3, multilevel relaxation
is reviewed. The remainder of this paper is then devoted to the application of multilevel
relaxation to the computation of optic low. The multilevel optic flow relaxation algorithm is
presented in Section 4. In Section 5, the single-level and multilevel aigorithms are compared.
Some multilevel cases are seen to diverge at coarse levels. The next two sections contain a
further analysis of the multilevel optic flow equations. In Section 6, a local mode analysis
is performed to provide insight into the convergence properties of multilevel optic flow
relaxation. In Section 7, the relationship between spatial variation in the image data and
convergence/divergence of relaxation is shown. Finally in Section 8, a fixed cycling scheme
1s employed to successfully avoid the problem of divergent relaxation.

2 Gradient-Based Optic Flow Computation

Gradient-based techniques are used to compute optic flow from image sequences using the
structural information contained in spatial and temporal derivatives of the image “function”
F(z,y,t). Various formulations for this exist. including: (a) looking for “edges” in the
three-dimensional zyt space [Glazer 81, Haralick & Lee 83|, (b) computing gradients of the
image in the three-dimensional space [Fennema & Thompson 79, Horn & Schunck 81|, and
(c) solving a variational problem in which the disparity field is chosen to minimize some
measure of dissimilarity [Nagel 83]. We will use a first order gradient-based technique in
which only first order derivatives of the image function are used. Various developments
of the equations exist (see for example [Fennema & Thompson 79, Horn & Schunck 81| or
[Glazer 87, Section II1.4.3]) all of which lead to a formulation of the problem in which the
optic flow (u,v) at a point in the image plane is related to the first partial derivatives of
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Figure 1: The velocity constraint line

The velocity constraint line is shown in wv “velocity space”. It is the locus of velocities
(v, v) satisfying the equation F,u + F,v + F, = 0. The corresponding edge flow vector
is also shown along with the equations for its components,

the image function F as follows:

' dF
Frut Fyu+ Fr=— =0 (1)

Generally speaking, the total derivative dF/dt is defined with respect to some path
(z(t), y(t),t) through zyt space. If this path is defined to be successive instances of a
moving image feature, then the derivatives v = dz/dt and v = dy/dt represent the optic
flow. Setting the total derivative to 0 represents the assumption that the image value at
the moving point maintains a constant intensity.

Equation 1 specifies a line in u, v velocity space called the velocity constraint line
(see Figure 1). This line is perpendicular to the spatial gradient (F;, F,). This line can be
represented by the point on it which lies closest to the origin (in velocity space):

“F::Ff "FyFt
F?+ F?' FI+F?

(2)

This point defines the edge flow vector. It is perpendicular to the constraint line and
has a length equal to the distance hetween the line and the origin. Figure 1 shows a
velocity constraint line and the corresponding cdge flow vector. For any (u,v) on the
velocity constraint line, this edge flow is its component parallel to the spatial gradient
(perpendicular to an edge).
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Velocity constraint lines—or the equivalent edge flow vectors—can be computed at all
points in the image that have non-zero gradient. However, due to the local ambiguity
of image/ motion, they do not determine an optic low field. Other information must be
brought to bear to constrain further our choice of a flow field.

Horn and Schunck used a variational principle to accomplish the computation of optic
flow from edge flow. They included two constraints: minimum deviation from the constraint
line; and smoothness of the flow field. The resulting variational problem is to find the optic

flow field (u,v) = (u(z,y), v(z, y)) that minimizes the following functional
/ (Fzu+ Fyv + Fi)? + &*(|Vul? + | Vv|?) dzdy (3)

The first term in the functional is the square of the rate of change of image brightness as
expressed in Equation 1. The second term is a roughness measure of u and v, where V is
the gradient operator. « is a relative weighting factor between the two constraints. The
equivalent PDE system (Euler’s equations, [Courant & Hilbert 53, Section IV.3.4]) is

o*Au—- Fiu - F,F,v = F,F (4a)
alAv ~ FyFyu - Fiv F,F, (4b)

4

These equations can be represented on a discrete z-y grid using finite difference approx-
imations for the partial derivatives. A set of equations results, one pair per grid point, in
which the variables are the components (u.v) of the optic flow vector at each grid point.
These equations can be solved using relaxation algorithms that are local—only neighboring
grid points combine data values; uniform—the computation is the same at each grid point;
and parallel—computations can be performed simultaneously at all grid points. Discrete

representation and relaxation equations for Equation 4 are given in Section 4.

The derivation of Equation 1 involves the assumption that local image structure can be
adequately approximated by a first order equation. There are cases in which this assumption
does not hold, namely, when the image contains high frequency detail or when the optic flow
has high magnitude. In these cases, the computed optic flow is not correct. A hierarchical
method has been developed which overcomes these limitations [Glazer 87, Chapter V| while
retaining the simplicity of first order approximations. It involves a coarse-to-fine control
strategy in which early approximate estimates of low computed at coarse grid levels are
later subsequently refined at successively finer grid levels. This extension of single level
optic flow computation algorithms is independent of the use of multilevel algorithms to
improve the efficiency of relaxation described in this paper.



3 Multilevel Relaxation

Multilevel relaxation is an algorithmic extension of iterative relaxation. By representing
the spatial domain at multiple levels of resolution these algorithms apply the basic local
iterative update to a range of neighborhood sizes. Local updates on coarser grids introduce
a more global propagation of information.

The variational approach to various problems in low-level computer vision leads to
iterative relaxation algorithms. Unfortunately the number of iterations necessary for con-
vergence can be very high—on the order of O(d"). where d is the distance (in nodes) that
information has to travel and n is the order of the PDE’s being solved [Brandt 77b, p.281).
For example, Grimson’s surface interpolation algorithm [Grimson 81}, requiring second or-
der smoothness, takes thousands of iterations to approach final solutions. (This number is
based on our unreported experiments. See also [ Terzopolous 82].) In the problem domain
of elliptic PDE’s this slowness has been overcome by using multilevel relaxation algorithms
[Brandt 77a, Brandt 77b|. In this approach. a standard iterative algorithm is applied on
grids of different resolution. Each grid covers the entire data domain and they are orga-
nized in a hierarchical structure. At each level the problem is solved in a different spatial
bandwidth. Thus, the various processing levels caoperate to compute the final result. which
is represented at the highest resolution level. The number of iterations required is of order
O(d) |Brandt 77b, p.278).

3.1 The Multilevel Method

The slow convergence of relaxation algorithms is cdue to the fact that solutions which must
satisfy a global condition (the variational problem) are arrived at by the local propagation
of information. The greater the range over which information must be sent, the slower the
smoothing will be.

A longstanding technique used to overcome this problem is to initialize relaxation with
a coarsely computed estimate of the solution. Coarse approximations can be projected
down to a finer level to serve as the initial estimate for relaxation at the fine level. Such
an approach can be applied at multiple levels of resolution in a coarse-to-fine strategy.

While significantly speeding up the early stages of relaxation, ultimate convergence is
still slow. Projection of coarse solutions for use as initial fine estimates does provide a
“head start” over single-level methods. However. after a few iterations of relaxation at
the finer level, error components remain that are attenuated only very slowly in subse-
quent iterations. Brandt [Brandt 77a, Brandt 77b] significantly extended the multilevel
approach by showing how the coarser grid can be used in the process of improving the

first approximation. His algorithms attack the problem of error removal by creating coarse
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level approximate problems which can be solved more quickly on coarser grids. Brandt
combined the techniques of projecting estimates and coarsening “residual equations” to

develop iterative schemes that move up and down a set of varying resolution grids.

The extent to which one pass of relaxation computes a new approximation closer to
the actual solution is dependent on the spatial frequency content of the error. Sharp (high
frequency) changes or errors are quickly smoothed. This is due to the local nature of
the smoothing. It is the slow (low frequency) error components that resist elimination.
These ideas can be formalized in a local modc analysis of the particular update equation
[Brandt 77a, Brandt 77b] whereby the error reduction is considered as a function of spatial

frequency.

After a few iterations on a given grid, high frequency error is considerably reduced while
low frequency error remains. At this point we can approximate the remaining problem on
a coarser grid. The remaining error is a higher frequency on the coarse grid, hence further
relaxation at this level can reduce it effectively. When convergence is attained at the coarse
level, that solution can be interpolated back to the fine level. This interpolation introduces

some high frequency error which is easily reduced by a few more iterations.

These processes easily generalize to multilevel cyclic algorithms. Approximate solutions
are sent down to finer levels after they have converged. When convergence slows at finer
levels they are sent up for coarser processing. The role of relaxation in such a system is
not to completely reduce the error, but to smooth it out; that is, to reduce high frequency
components of the error. Lower frequency components are reduced on coarser grids. What
is essentially happening in such a system is that different grid levels solve the problem in
different spatial frequency bands.

The basic operators that are involved in a multilevel relaxation scheme are:

relax : Reduce error components at a given level.
This step is defined by the discrete approximation to the PDE to be solved and the
particular iterative update scheme chosen.

project : Send coarse solutions down.

The essential step here is the projection of corrections by interpolation from coarse
to fine grids.

reduce : Send problems to be solved up.
Coarse equations whose solution is the correction at a fine level are created by this
process. )



3.2 Formal Development

3.2.1 Basic Method

In the basic multilevel method the domain of definition 4 of the problem is repre-
sented discretely by a set of uniform square grids G”....,G*,... GM with mesh-sizes
ho,...,hk,..., hps. Each grid covers the full domain and we assume that the interlevel mesh
size ratiois p £ h; /hi+1 = 2. Brandt advises that this ratio always be used, since it provides
close to optimal convergence rates, and the simplest intergrid architecture [Brandt 77a,
p.353].

Suppose we have a PDE with suitable boundary conditions which we wish to solve over
4, such as AU(z,y) = 0. We represent this as:

LU(x) = F(x) forallx< 4 (5)

where L is a general differential operator and I/ and F are vector valued functions over R™.
U is the solution we seek. At each level k we can form the finite difference approximation
to the PDE’s;

L*U*(x*) = F(x*)  for all x* = g* (8)

If L is a linear operator, then Equation 6 is a matrix equation relating values at neighboring
grid points.

Following Brandt’s development [Brandt 77al. let u™ be an approximate solution of
the GM problem with LMyM = fM. The error is UM — yM and we define the residual
to be rtM 2 pM _ JM. The residual is the difference between the desired and the actual
right-hand-side. Then

LMUM _ LArIuM = FM _ fM é ™ (7)

If L is linear and if we let VM 2 UM _ yM then VM satisfies the residual equation:
LMVM — rM (é FM _ fM) (8)

and the exact discrete solution is UM = yM 4 "M [f ,M ig computed by some relaxation
iterations on GM then rM has little high frequency content (relative to the grid size hpy).
This allows the residual equation to be accurately approximated on a coarser grid. The
optimal time to perform this switch to a coarser grid occurs when the residual rM is
smoothed out and convergence has slowed down.

The coarsened residual equation is

LAVE = 1M (9)
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where I%; is a reduction operator which computes a coarse (level k) version of ™. Relax-
ation on the coarse grid produces an approximation v* of the correction VM. An improved
level M solution is then obtained by projecting v* to level M and adding this interpolated

correction to uM:

uM oM g Mk (10)

In the basic multilevel relaxation algorithm each v* (the function defined on the grid
G* k=0,....M- 1) serves as a correction for the approximate v**! previously obtained
on the next finer grid G¥*!. The equation to be (approximately) satisfied by v* is

Lvk = o* (11)
where r* approximates the residual left by v**!. that is
rk — I],cc+](rk+l o Lk+lvk+|) (12)

The equation on G* is thus defined in terms of the approximate solution on G¥*!. On the
finest grid, the equation is the original one (LMUM = ;M . [MpyM FM) so we have:

Mo pMo MM (13)

k

When a correction v* is arrived at, it is projected down to the finer level and added to

the current estimate v**!. The projection is:

vk+l - Uk+l + [,,:+ll’k (14)

3.2.2 Full Approximation Storage

In the basic method described in the previous section. an approximate solution only exists
on the fine-level grid. All coarser levels deal only in correction surfaces which approximate
solutions for changing residual equations. Brandt also developed FAS (Full Approxima-
tion Storage) algorithms in which each grid level stores the full current approximation
[Brandt 77a, Brandt 77b|. These functions. at rarying levels of resolution, provide a hi-
erarchy of descriptions of the solution. This makes the FAS-type methods particularly
appealing to problems in computer vision where structures of interest in the image can
occur at many sizes. For this reason, we have chosen to work with FAS methods.
The approximation u* at level k is the sum of the correction v* and its base approxi-
mation u*+!:
uf = If, uktl 4ok k=0,1,...,M -1 (15)

We can rearrange the general residual equation (Equation 7), in which L may be non-

linear, to get LFU* = L*uk++*. If we set u* in this equation to an initial estimate computed



from the finer level, ie. uf, = If ,u**! and use the expression for r* in Equation 12,
then substituting in we get
L*U* = LRk, 4
= Lk(lllc:+luk+l) + ['I:+l(rk+l _ Lk+lvk+l) (16)
This is a new equation L*U* = R*_ with the right hand side R¥ = Lkyk

k¥ i+ In this form
R* depends on r* which in turn is computed from the residual r*+! and correction v*+!
from level k+ 1. To complete the transformation to the FAS method, we must represent R*
in terms of R¥*1 and u*+! alone. This is done as follows. First, note that at level k + 1 we
have uk+! = y¥t1 4 k41 qng e+t = pler ket | ke Apply L¥*! to the first equation

tng intt

and then subtract the result from the latter equation. This gives

Rk+l _ Lk+lulr+| - rll'J-l _ Lk+lvk+l (17)

Substituting Equation 17 into Equation 16. the correction equations can be rewritten

as
L*U* = R* (18)
where
R* = LRI, (ub Yy 4 I, (RE*Y - phetgesyy 0,....M -1 (19)
and
RI\I - FA\«! (20)

When a correction u* is arrived at, it is projected down to the finer level, updating the
current estimate u*¥*!. The projection of the correction can be thought of as the addition
of a correction term, i.e. uk*! — yk+1 4 IF*'v* . This is done explicitly in the non-FAS
algorithm. For the FAS algorithm v* is given implicitly as u* - If, | uF+! (see Equation 15).
Thus, the projection is:

uk+l — uk+l + [t'ﬂ(uk '_ I:+luk+l) (21)

— LR (- UL et (22)

This is the FAS version of Equation 14. In the second form of the right hand side, the
operator [ - I,':HI,’:H is a high-pass filter. Thus, we see that the projection updates u*+!
by replacing its low frequency component by a projection of u*.

For linear problems equations 11-13 are equivalent to 18-20. A key aspect of the FAS
method is that the function stored on a coarse grid G* approximates the fine grid solution
in that u* = I,’f,uM. These functions at varying levels of resolution provide a hierarchy of

descriptions of the solution.
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ke—M _istart at finest level
Rk — M ; initial right-hand-side
vk — uM ; initial solution estimate
Until uM has converged Do
uf — Relax[L* - = RF|u* : a relaxation “sweep”
If u* has converged Then
If K < M Then
k—k+1 : go down one level
wk — uk 4 IF (ukmt - [FluE) : add correction
Else if convergence is slow Then
If k > 0 Then
k—k-1 : go up one level

uk — 1,’:+1u"+' : initial estimate

R* — I | (R¥+! - Lk+lyk+1) o [kyk . new right-hand-side

Figure 2: Full ‘Approximation Storage. multilevel relaxation

The FAS algorithm is shown in pseudocode in Figure 2. In the next few sections, we
further discuss the details in this algorithm, namely, projection and reduction of images
between grid levels, selection of relaxation operator. and measures of convergence.

3.2.3 Interpolation: Projections and Reductions

The notation I% represents the generic operation that transfers data from grid G™ to grid
G*. We will always transfer data between adjacent levels using suitably defined I,’:“ and

I,":‘+l is a projection down one level. The values on the finer grid are

I,':_l. The operator
interpolated from those on the coarser. The accuracy of a given interpolation algorithm
can be measured by the order of interpolation which is a measure of how the error
of interpolation is reduced as the mesh-size goes to zero (h — 0). In particular nearest-
neighbor interpolation, in which interpolated values are equal to the nearest known value,
is of order O(h~!). While linear interpolation is of order O(h~2). Interpolation of order
O(h™") is called n-th order interpolation.

The order of interpolation must be greater than or equal to the order of the differential
equations [Brandt 77a, p.377|. The order of a differential equation is the highest degree of
all differential operators in the equation. The differential equations we are solving are all
second order, hence we use bilincar projections. In this case, the value at a fine pixel is

computed from the values of the four nearest coarse pixels by bilinear interpolation.
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3.2.4 Relaxation

If we are to approximate the residual equation on a coarse grid then the residual r¥ must
have little high frequency component. Relazation sweeps are used to smooth the error
component. The Gauss-Seidel iterative algorithm is a common example. In this algorithm,
during one sweep the points x* in G* are scanned one by one in some fixed order. At each
point the old value of u¥(x*) is replaced by a new value which satisfies Equation 6. Having
completed such a sweep, the equations are not vet solved since they are coupled together.
Standard (non multilevel) iterative algorithms apply a long sequence of such relaxation
sweeps. They can be very slow since relaxation has little effect on smooth errors which can
have very small local errors (small residuals) relative to their own magnitude. However, in
multilevel methods relaxation sweeps are only used to smooth the error. This can be done

in only a few iterations.

The Gauss-Seidel algorithm is not parallel since grid points are updated in a sequential
order. New values at a given point will in general depend on new values at some neighboring
points. The Jacobi method involves similar update equations at each node, but they are
applied at all grid points in parallel. This is the method we use because it is makes full use
of cellular arrays of processors.

3.2.5 Convergence Measures

Convergence is measured using the residual norm — the Euclidean L2 norm of the resid-

ual. It is defined as
\/_1:_, Z(rk - Lruk)?

where the sum is over all N grid points. (Note that it has the form of the root-mean-
square-error.) The rate of convergence is measured as the ratio of consecutive residual
norms from one iteration to the next. Convergence is “slow” when this ratio rises above
a threshold parameter (0.6 in our experiments and in [Brandt 77a]). Convergence at the
finest level is defined by a user supplied tolerance (threshold) below which the residual norm
must fall. Convergence at an intermediate level is defined by a dynamic threshold. This
coarse level “target” threshold is set, when we pass up a level, to a fraction of the current
residual norm at the fine level. This fraction is another parameter in the algorithm (0.3 in
our experiments and in [Brandt 77al). Brandt claims robustness of such algorithms to the
extent that variations of these two parameter settings produce little qualitative change in

performance.
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3.2.6 TFixed Cycling Schemes

The two parametrized decisions that are used in controlling the cycles are global compu-
tations, that is, they are computed from the current solution estimate over the entire grid.
This is due to the fact that the decisions are based on the residual norm which is an integral
(continuous case) or a summation (discrete case) over the entire domain. It will be seen
later—as Brandt has pointed out—that for some problems we can forego the computation
of the residual norm and thus attain a purely local and parallel computation. Moreover, for

optic flow computation, such a control scheme will allow us to avoid divergence problems.

3.3 Normalized Coordinate Systems

We will use normalized coordinate systems at each level to make intralevel operators inde-
pendent of the mesh size for the given level. The base coordinate system is determined
by the finest level (L). The interpixel spacing at the finest level is 1 unit in the base coordi-
nate system. The interpixel spacing at a coarser level k. when measured in the base system
is pL7% = (hp_k/hy_k41) - .. .(hp-2/hp 1) « (h;-17hL). In the normalized coordinate
system at a given level, the distance between two adjacent pixels is 1 unit. Image op-
erators which involve finite differences can be then be computed without using hj terms,
hi being the distance between pixels. Intra-level computations and comparisons must take
into account the difference in the grid spacings as given by the ratio p £ hi_,/hi. This
adjustment is described below.

If regular image data (intensity, brightness, etc.) is moved between grid levels, pro-
Jected or reduced, then no adjustment for the normalized coordinate systems is necessary.
However, if image gradient data is moved, then adjustments must be made. Whether such
adjustments must be made and what they are is completely determined by the order of the
quantity we are moving between levels. This is now defined.

Image opérators that approximate spatial derivatives with finite differences involve the
mesh size h;. The order of the derivative corresponds to the power of h; which appears
in the denominator of the operator (in the non-normalized form). See, for example, the
discrete Laplacian in Section 4.2.2 (Equation 26). in which the term 1/h? appears. Now,
consider the units we use to measure the quantities being manipulated. Let I represent
the unit of image data and L the unit of length. Application of a differential operator
results in a change of units. For example, if a first difference is applied to image data,
then the resultant units are [/L. If the Laplacian is applied to the original data, then the
resultant data is in units of /L?. The change in units is directly related to the order of
the differential operator.

We define the order of a quantity as the negative of the exponent of its length units. We
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also define the order of a finite difference operator as the order of the differential operator
it approximates. As noted above this is equal to the exponent of h; in the non-normalized
form. When a finite difference operator is applied. the order of the result is equal to the
sum of the order of the operator and the order of the operand.

When data of order n is reduced, an extra factor of p” must be applied. Let u* be mea-
sured in units of //L™ and let i* represent the same quantity in the normalized coordinate
system. Then the relationship between these two measures is it = hRu* where A is the
mesh-size (i.e., the length per pixel-spacing). If A is a local averaging reduction operator,
then reduction of u* would be given by u¥ ! — Au*. If normalized coordinates are used at
levels k and k — 1, then by substitution vl""/h}r"_l — A(@*/h7?) and the reduction becomes
W51 (hy_y/he)" Ak = p" Atk

Projections involve an adjustment in the opposite direction. When data of order n is
projected, an extra factor of p™" must be applied. The demonstration of this is analogous

to that for reductions. These results are now summarized.

Reduction and Projection of Order n data

If data u of order n is represented in a pyramid using normalized coordinates at each level,
then it is reduced using

ukb=t oo gk (23)

and it is projected using
1
wktl ;I—,Pnk (24)

where 4 and P are (non-normalized) reduction and projection operators respectively and
we have dropped the tildes (7).

4 Multilevel Optic Flow Computation

4.1 An Optic Flow PDE

Let us represent the optic flow field as (u,v) = (u(x. y).v(z.y)) where u is the z-component
of velocity and v is the y-component. Let the dynamic image be given as F(z,y,t). In
Section 2, Horn & Schunck’s variational principle was described. It includes a first order
smoothness constraint on u and v and the velocity line constraint. The resulting variational
problem is to find the optic flow field satisfying Equation 3. The equivalent PDE system is
given in Equation 4. We can represent this in the form LU = F as follows:

@A - F? FF, ] u | _ F.F, (25)
~F.F, oA~ F; v FyF,
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This elliptic system of PDE’s generalizes Laplace’s equation in that (1) it is a vector field
equation and the component equations are coupled, (2) Oth order terms appear, and most

significantly (3) the coefficients are non-constant (they depend on r and ).

4.2 Discrete Representation and Computation
4.2.1 Normalized Coordinate Systems

Because normalized coordinate systems are used at each grid level, the order of the quanti-
ties being manipulated must be noted. If we examine the equations in the previous section
we see the following quantities: (1) optic flow estimates (u,v) of order —1 (since it is mea-
sured in units of length per time); (2) spatial derivatives F; and Fy of order 1; and (3) a
time derivative F; of order 0. The L operator is of order 2, as given by each of its ele-
ments, namely, the Laplacian and the products of the spatial derivatives. The order of the
equations themselves is 1 (L applied to (u.v)) and thus this is the order of the residual.
In the course of multilevel processing, the optic flow estimates and the residuals will be
transferred between levels. Reductions and projections must take their respective orders
into account. '

Optic flow vectors in normalized coordinates will be represented as @ = (@,9). They
are related to the unnormalized form by hiii = (heie. hed) = (u.v) = u. Spatial gradi-
ents in normalized coordinates will be represented as (i”,, F,,) They are related to the
unnormalized form by (Fy/hk, Fy/hk) = (Fz. Fy).

4.2.2 Relaxation

The particular relaxation operator used is determined by the discrete approximation to the
Laplacian that is used and by the iterative relaxation scheme. We choose Jacobi relaxation
because it is a parallel updating method. The discrete Laplacian is used in all of the
following experiments is

2 1
-12 2 (26)
2

I —

i
Akz —.AZ -
hi

!
hs 4

xts
[ Lt Pt

The simpler five-point Laplacian (four 1’s surrounding a central —4) is not a good choice
for use with Jacobi relaxation because elimination of the highest frequency error is not
guaranteed. This is shown by local mode analysisin [Glazer 87, Appendix F]. In Section 6,
local mode analyses are defined and the results in [Glazer 87| are summarized. Those results
show that our choice of discrete Laplacian does provide good convergence for multilevel
relaxation using the Jacobi scheme.
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The discrete version of Equation 25 is
L*uf = o (27)

where i
;—‘—A - F}? -F.F,

L* = )
a? 2
-F.F, ,‘l—‘_.A—Fy

(28)

uk = [uf v¥|T and r* = [k r§|T= [F.F, F,F,|T.

The Jacobi update equations are derived as follows. The discrete Laplacians Au and

Av can be represented as 3(& - u) and 3(0 r) where & and © are local averages given by:
1 1 21 , |

&:-'12 2.0 2 |+u i':12 20 2 |+v (29)
1 2 1 1 21

The expressions 3(i — u) and 3( - v) are substituted into Equations 27, 28 and the equa-
tions solved for u and v. The resultant equations are used as Jacobi update equations
by specifying that at the (s + 1)-st update iteration. a new value (ues1,ves1) at the cen-
tral pixel is computed from the local average (i,.1,) of old values at the neighbors. The
following update equation results:

et = W = F[Fritg + Fyo. + Fl/(30° + F2 + F?) (30a)
Vert == 0o = FylFoie + Fyb. + F|l/(30° + F? + F?) (30b)

We convert to the normalized form by substituting in the normalized form of the
flow vectors and the spatial gradients, namely, (i, hid) = (u,v) and (Fy/hy, Fy/hk) =
(Fz, Fy), and dividing the equations by A, to get:

eyt — & - Fo|Fpue+ Fyu, + F)/(30% + F2 + F}) (31a)
Vo1 = b= By[Faie + Byb. + RB)/(30° + F2 + F2) (31b)

where @ and © are changed in meaning to local averages of & and ¥ respectively.

4.2.3 Projection

The interpolation operators used for projection and reduction are bilinear interpolation
[,f_1 = Bil and average-of-the-sons I,f‘l = A2.2. Substituting into Equation 21, correc-

tions are projected using

ub — uk 4 Bil(uF! - 4,,,u%)
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Using flow vectors represented in normalized coordinates, the projection equation is

uf —af 2Bl ! - | A ah)

-

The scale factors 2 and % for projection and reduction are used because u is of order —1.
For example, a velocity or displacement of 2 pixel positions at a given level, when reduced,
is equivalent to 1 pixel position at the coarser level.

4.2.4 Reduction

Coarse solution estimates are passed up using:

1
“ - <k
u | S ;_.1.:'..,1 (32)
The coarse residuals are given by:
rfl— Ag,o(x* - L*ub) + LF1u*! (32)

where L* and L*~! are defined by Equation 28. (From Equation 19.) If we multiply through
by hg_, we get:
I - .
hk_ll‘kml — i‘l.‘lzgg(hkl"‘ - hy Lkllk)+}tk_lLk~lllk-l
hy

which is ﬁn.ally converted to the level-independent form of the update equation used
(Ri—1/he = 2):

FE o 24p,,(FF - LARK) + [F gkt (34)
—  24y..%F - 24, S LFGF 4 LE'ak! (35)
where the normalized right-hand-sides are #¥~' = hy_yr*~! and #¥ = h,r*, and the nor-

malized operator is given by

Lk = h2 Lk = - e R " '76
k ’-FJ'FH Q.A_F!;Z (l) )
Equation 35 can be broken into its component. equations as follows:
ATl 24z,07 - 24 o(cfAuk - Fluk - FLFob) (37a)
+ ((.vzzAu"‘l - Ffu"-l _ f:‘zj;*yvk-l)
;g_l — 2A2A2;§ - 2-’12;.:2(0’2Auk - -: k — in,'lyuk) (37b)

v
+ (PAvk! - F:vk_l - F,Fyu"'l)

Reduction is given by Equations 32 and 37.
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Figure 3: Optic flow test data

(Left) First frame, a cross product of sinusoids with 1% uniform noise added. (Right)
Second frame, the first frame displaced 1 pixel up, 1/2 pixel to the right.

5 Experiments

In this section we demonstrate the increased convergence rate obtained by multilevel relax-

ation over that for single-level relaxation in computing optic flow.

5.1 Single-level Relaxation

The two frames of test data for the first experiment are shown in Figure 3. In the first
experiment the motion is translational: 1,2 pixel to the right and 1 pixel up. One percent,
uniform noise has been added to both test images and is uncorrelated between frames.
This test data is designed to be as close as possible to that used in [Horn & Schunck 81].
The single grid Horn & Schunck algorithm is shown in Figures 4 and 5. Figure 4 shows a
portion of the image plane at various stages in the iteration. The initial estimate (shown

as iteration 0) is given by the edge Aow vectors computed from equation 38.

e —lyh ) (38)

FZ+FE" Fi 4 F:

An error graph is plotted in Figure 5. In Figure 5, the residual norm and the mean
error magnitude are plotted against iteration number. The latter is defined as the mean

of the length of the error vector at cach pixel, where the length is given by the Euclidean
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Iterations 0,1,2,5,10 and 50. Only a portion of the image plane is shown.
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norm, and the error vector is the difference between the computed flow vectors and the
ideal flow vector (Drow, D.ot) = (-1.0.0.5). Note that the ideal flow is NOT equal to the
actual solution to the discrete representation of the optic Aow equations. There are two
reasons for this. First, there is an inherent error involved in a discrete representation due to
approximations in the finite difference operators and the finite precision arithmetic. This
is known as truncation error. Secondly, we have added noise to the data, thereby further
corrupting the approximate coefficients derived from the spatial and temporal gradients.
In any case, we still see the computed flow vector coming very close to the ideal, with
error on the order of .015 pixels. (For further accuracy statistics, see the single-level versus
multilevel comparison in Table 1.)

5.2 Multilevel Relaxation

The results of the multilevel algorithm are shown in the next two figures. The FAS
hierarchical control strategy is used since it provides a hierarchy of solution fields at the
varying levels of resolution. While reductions to levels coarser than level 4 were allowed,
that was the highest level that the algorithin chose to go to. In Figure 6 the first 14 iterations
are shown for a portion of the full image (the upper left corner). Consecutive iterations
at a given level are juxtaposed in the vector plots. At the top of Figure 7 residual norm
is plotted versus iteration. By the 22nd iteration. little further reduction in the residual
norm is seen. At the bottom of Figure 7 mean error magnitude is plotted versus iteration,
showing accuracy at least as good as that obtained by single-level relaxation after many
more iterations. The mean error magnitudes in the error graphs are given in the “non-

normalized” base coordinate system to aid in comparison

Table 1 compares the actual computed optic flow versus the expected value of (-1,.5)
at each pixel. The tables show that after 22 iterations, the multilevel algorithm has reached
a solution which, in terms of relative error, is more than twice as good as that reached by

the single-level method in 50 iterations.

5.3 Non-Translational Motion

Next we present an experiment using a rotational motion field. Again, this test data is
designed to be as close as possible to that used in [Horn & Schunck 81). The first image
frame is the same as the first frame in Figure 3. The second frame is a rotated version
of the first frame, where the rotation angle is .05 radians (2.86 degrees) and the center of
rotation is the point 1/4 in from the left and hottom sides (i.e., the center of the lower left
quadrant). In Figure 8 the edge flow for a rotational motion is shown. This vector field is
used as the initial estimate of optic flow. '
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Single-level, iteration 50 Multilevel, iteration 22
Actual Dyow D, Actual Drow D.,
mean -1.007 .5205 mean -1.003 .5082
SD 01478 .01667 SD 01554 .01967
minimum | —1.056 .4595 minimum | —1.066 4541
maximum | -0.9584 5715 maximum | —0.9582  .5694
| Expected ] -1.0 5 l Expected [ -1.0 .5

Table 1: Optic Aow field statistics

These tables compare the actual compnted optic flow against the expected values. The
table on the left shows the results after 50 iterations of the single level relaxation algo-
rithm. The relative errors of the mean actual value in the two components are .7% and
4.1%. The table on the right shows the results after 22 iterations of the multilevel optic
flow algorithm. The relative errors of the mean actnal value in the two components are
.3% and 1.6%.

Figure 9 shows later stages in the multilevel relaxation, and Figure 10 shows the error
graphs for this experiment. The computed flow fields shown look good to the eye and the
fine-level field at iteration 13 has reached a mean error magnitude of less than a tenth of a
pixel. However, at level 3 the algorithm has diverged and does not return to level 5 where,
as the downward trending data suggests. we would expect an even more accurate fine-level
field to have been obtained compared to the final time the algorithm was at level 5. We

will consider this problem further.

In this experiment, the highest level allowed was level 3. In a similar experiment not
shown, when control was allowed to pass to level 2, divergence occurred and was more
extreme. If coarsening is only allowed up to level 4. then divergence does not occur and
more accurate level 5 fields are obtained. However. in that experiment convergence at level
4 eventually slowed to the point where the target residual norm was not reached after tens
of iterations, leaving control “stuck” at level 4. This behavior will be examined later in
Section 7.2.

In these last experiments on rotational motion fields, the basic FAS algorithm fails to
work. Divergence at coarse levels prevents good fine-level solutions from being attained. In
the next sections, we further analyze multilevel optic flow relaxation equations to show how
this divergence is caused by local variations in the image data, where “local” is measured

relative to the grid resolution. This being the case, hierarchical control must avoid too
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coarse a level. We will see that instituting a fixed cycling scheme, that is, a fixed pattern
of reduction and projection, solves the divergence problem.

6 Local Mode Analysis

In this section, we describe Brandt’s notion of local mode analysis and we consider the
local mode analysis of optic flow relaxation. This further analysis of multilevel optic flow
relaxation serves to justify our formulation and to provide added insight into the nature of
its convergence properties. Brandt's purpose was to provide a good approximate measure of
the convergence rate of multilevel algorithms by considering the error reduction performed
at each level in a hierarchical algorithm. [n onr analysis of optic flow relaxation, besides
obtaining the approximate convergence rates. we show how the error reduction is related to
both the direction and the magnitude of the gradient of the image data. It will be shown
that when the gradients are weak (i.e. low magnitude) convergence behavior is equivalent
to simple smoothing; and that when gradients are strong convergence will be accelerated
towards the constraint line.

Multilevel relaxation algorithms use relaxation to smooth out error components. At a
given level, relaxation is effective in smoothing out those components of the error which are
high frequencies at that level. The overall rate of convergence for a multilevel algorithm is
directly related to the rate at which high frequency error terms are reduced at each level,
and it is independent of the rate of reduction of low frequency terms, which as we know
can be very slow. Brandt introduced local modr analysis to approximate the rate at which
high frequency error terms are reduced in the approximate solution [Brandt 77a). This
involves defining a local convergence rale tu measure error reduction of the high frequency
error terms.

Local mode analysis involves a Fourier analysis of the error terms. In this analysis,
the convergence rate for individual error frequencies (as defined by the Fourier Transform
of the error function) is computed. The local convergence rate is then defined as the
maximum individual convergence rate over the higher frequencies. These higher frequencies
are selected to be those in the baseband at a given level which are not also in the baseband
of the next coarser level. That is, the frequencies which are representable at the given level
but not at a coarser level.

The details of local mode analysis can be found in [Glazer 87, Section F.1| where a
thorough analysis is performed for the simple case of Laplace’s equation. The main result
appears in [Glazer 87, Section F.2], where we perform a local mode analysis of optic flow
relaxation. We briefly suinmarize the results of the former analysis before examining the
optic flow analysis in detail.
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6.1 Local Mode Analysis of Laplace’s Equation

Laplace’s equation AU(z, y) = 0 is the Euler equation for the variational problem in which
the solution U(z,y) minimizes the integral [[, || VU/||* dzdy under a suitable boundary
condition. Relaxation algorithms for solving Laplace's equation on discrete grids intera-
tively update (replace) the value of U at given grid locations with a weighted average of the
values at neighboring pixels. The form of the weighted average depends on the particular
discrete Laplacian chosen.

After a given relaxation iteration, the error 4 is equal to the difference between the
exact solution to the discrete system of equations U and the current approximation u, i.e.
§(m,n) & U(m,n) — u(m,n). Individual frequency components of the error are given by
the Fourier transform of the error function 5(m.n)

6(m, n) = / .*la(-"(""""'"‘.‘ﬂ) do
[t x

where 8 = (6}, 02) and |0| = max(6,,0;). The convergence rate for the individual § compo-

A

nent is then defined as

u(8) =

Ao

where Ay is the Fourier coefficient before a given iteration of relaxation and Ap is the
Fourier coefficient after the iteration. The values of 12(#) range from 0 to 1, with low values
indicating fast convergence and high values slow convergence. The local convergence
rate is defined as the maximum individual convergence rate over the high frequencies, that
is:

&

max pu(8)

H= il
The results of local mode analysis depends on the choice of finite difference approxi-
mations, and on the choice of iterative update scheme. With the A in Equation 26 used
to approximate the discrete Laplacian and with the Jacobi relaxation scheme used, the

individual convergence rate is found to be

|
= §|c0501 + cosfa + cosfy cos | (39)

A

n(0) 2 i

and hence the local convergence rate is given by

[]>2

e = ) =

i
Note that at low frequencies (@ near (0,0)), individual convergence rates can go to 1,
indicating no reduction of the error term. This is of no consequence in a multilevel algorithm

since low frequency error is handled by coarser levels.
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6.2 Local Mode Analysis of Optic Flow Relaxation

In the local mode analysis of Laplace's equation. the error component at frequency 8 before
and after relaxation were represented by the Fourier coefficients As and Ag respectively.
In the case of optic flow, the error component is a vector field, and there are two Fourier
coefficients (Ag, By) before and two coefficients (Ay, By) after relaxation, one for each of
the vector components. |

The general relationship between these coefficients is given by the convergence matriz
— a 2 x 2 matrix relating error components at a given spatial frequency before and after
relaxation. This generalizes the single valued individual convergence rate seen in the case
of Laplace’s equation. The local convergence rates can then be defined in terms of the
eigenvalues of the convergence matrix.

First we state the results of the local mode analysis of optic flow relaxation. (The proof
is found in [Glazer 87, Appendix F|.)

Local Mode Analysis 1 Suppose we usc the discrete Laplacian A (Equation 26) in a
Jacobi relazation scheme to do maultilevel optic flow relazation. If (Aq, Bg) are the Fourier
coefficients of the 0 component of the error before relazation. and (Ag, Bq) are the coeffi-

cients after relazation, then these coefficients arc related by the convergence matrix M

[ 9 ] [ 5 ]
Ba Bﬂ
u(f) [ 3o + P;,“ ~F: Fy ] [ Ag }

3%+ FI+F; | -F,F, %*+F! || Bs

as follows:

I

where p(8) = %(cos 0) + cosf, + cosfy cos0a). The eigenvalues of M are

Ja*

Amin = #(0) g 2 4 2 4 F}

Amaz = ;1(9)
The eigenvector associated with Ay, is VF = (F,. F,), the gradient of F. The eigenvector
associated with Apaz is V  F 2 (= F,, F;), a vector perpendicular to the gradient of F.

The convergence matrix generalizes on the convergence factor u(8) £ |As/Aq| de-
fined in the case of Laplace’s Equation. (In a non-rigorous sense it is a measure of
[As Bo]"/[As Be]T.)

Various remarks are now in order:

1. When the convergence matrix M operates on error components, Apy,,.; provides an

upper bound on how much that error component is reduced in magnitude. A,z is,
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by definition, the spectral radius of Al; and. since M is symmetric, it is equal to the
spectral norm of M; and thus for any vector x we know that ||Mx||< Apmaz [|X|| where
||l is the Euclidean norm [Varga 62].

. The convergence matrix tells us how error is reduced at different spatial frequencies.

The action of M on a component (As, By) of the error vector § is given by: (1) break
(Aq, By) into component vectors parallel to VF and V F; (2) multiply those com-
ponents by Apin and Apm respectively; (3) add the results of (2) together. More for-
mally, if (As, Bs) = 2, VF +2;V  F, then M(As, Bs) = (AminZ1)VF + (Amazz2) VL F
and, iterating n times, M"(Aq, Bp) = (AL, 21)VF + (AR, ,22)V L F

min

The term p = %(cos 61 +cos 8z +cos f cos f2) is determined by the particular discrete
Laplacian A that is used. Note that it is equivalent to the individual convergence

rate derived in the local mode analysis of Laplace’s equation.

. If the gradient is zero, then Amin = Ama: = u(f). the convergence matrix is equal to

(6) times the identity matrix, and relaxation serves to multiply the error vectors by
1(8). Convergence in the two components of the optic flow is identical to that seen
for simple smoothing by Laplace’s equation. This is consistent with the fact that the
optic flow update equation reduces to simple smoothing (as expressed by Laplace’s
Equation) when the gradient vanishes.

. If the gradient is not zero, then the convergence rate perpendicular to the gradient

is still x(@), but the convergence rate parallel to the gradient is faster in proportion
to the gradient magnitude (squared). Thus. error components perpendicular to the
gradient still converge at the simple smoothing rate. while error components parallel
to the gradient converge at a faster rate, where the decrease is proportional to the
magnitude of the gradient.

If we measure overall convergence by the maximum eigenvalue Apmgz = p(f), we must

conclude that the local convergence rate is the same as that for simple smoothing. The

minimum eigenvalue Ap;, is associated with convergence towards the constraint line, since

the direction parallel to the gradient is perpendicular to the constraint line. For strong

gradients (large magnitude), Amin is small implying fast convergence. This is a quantitative

measure of the enforcement of the velocity line constraint at a point.

There is a second aspect to convergence of optic flow relaxation which is not captured

by the local mode analysis. The local mode analysis only depends on the gradient at the

central pixel. Any effect that locally varying gradient directions have on convergence are

not reflected directly in the convergence matrix. Local mode analysis does not give us any
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measure of convergence based on the accumulation of information from multiple constraint
lines with varying directions. In particular, it does not lend any insight into the divergence
we have seen at coarse levels. In the next section. we study the relationship between coarse
divergence and (1) variations in the flow field and (2) variations in the image data. The
latter is shown to directly influence both overall speed of convergence and the occurrence
of divergence.

7 Analysis of Coarse Approximations

In this section we consider the divergence of the multilevel optic flow relaxation algorithm
at coarse levels. This divergence may be due to variations of the disparity field or in the
image data itself. We first show that the former is not the case and then go on to analyze
the relationship between local structure in the image data and convergence/divergence at

varying resolutions.

7.1 Variation of the Disparity Field

The multilevel algorithm does not exhibit divergence at coarse levels in the case of pure
translational motion. This suggests the possibility that coarse divergence may be related to
variation in the disparity field to be computed. Clearly. if a disparity field with large enough
variation was chosen, the local smoothness property on which the optic flow relaxation
method is based would be violated. and we would not expect a relaxation technique to
convergence to a reasonable solution. However. this does NOT explain the occurrence of
divergence at coarse levels only as seen in Figure 10. As we show next, the variation of
rotational disparity fields is the same at all resolution levels. Thus, with high enough
variation, we would have to see divergence at all levels, not just at coarse levels.

Consider, in the continuous case, the rotational disparity field (u, v) = (u(z,y), v(z,y))
centered at (z.,y.) with angle 3. It is given by

u | | cosfB~1 sin /4 T -z
v] | -sing cosd-1 Y= Y.

The variation of the field (u,v) is given by the gradients of u and v. Considering their
magnitudes, we see that [Vu|? = |Vu|? = 2(1 - cos 3) — a constant value. Now consider
a discrete rotational field formed by sampling the continuous field (u(z,y),v(z,y)) at grid
points. If finite differences are used to measure the gradient, the result is exact (up to the
finite arithmetic precision) because the individual components u and v are linear functions
of z and y. Thus, the local variation of a rotational disparity field as given by the finite
difference gradient magnitude of u and v is a constant value independent of grid level.
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7.2 Variation of the Image Data

We are now left with variations in the image data to explain coarse level divergence. In-
tuitively, the reason seems to be that the optic flow PDE is not accurately represented at
coarse levels because of the spatially varying coefficients. This idea is taken up more fully in
the next section. For now, we point out that the coefficients are directly computed from the
image data, being products of first differences. Spatial variation in the coefficients is due
to spatial variation in the underlying image data. [n this section, the relationship between
spatial variations in the image data and convergence/divergence of optic flow relaxation is
shown by experiment.

Consider the spatial variation of the image data in the previous experiments. The test
image in Fiéure 3 is a product of sinusoids in the r (column) and y (row) directions with
wavelengths of 12.8 and 21.33 respectively at the finest level. If a low-pass pyramid is built
from this data, the corresponding wavelengths at coarser levels would be 10.67, 5.33, 2.67
at levels k = 4,3,2 respectively for A, and 6.4, 3.2, 1.6 at levels k = 4,3,2 respectively
for A;. The level 2 z-wavelength of 1.6 is not actually representable since the maximum
wavelength representable at any level is A = 2. These numbers suggest that the coefficients
for the optic flow PDE cannot be adequately represented at level 2 and that even at level 3
the variation may be too high.

If divergence at some coarse level is related to the degree of local variation in the image
data, where “local” is measured relative to the pixel spacing at the coarse level, then we
expect that when the test data has less variation (i.e. lower spatial frequencies) convergence
will be obtained at coarser levels. This is in fact the case as experiment will show. Before
demonstrating this for rotational motion fields. we revisit the case of translational motion
for both single-level and multilevel experiments. this time with data of less spatial variation.
These experiments on translational motion show the relationship between relative frequency
content and convergence/divergence independent of any variation in the motion field. We
start with a single-level relaxation experiment that shows how convergence is slower for
lower frequency data.

The test data for these experiments is equivalent to that used in the prior experiments
(Figure 3) with one important exception: the wavelengths of the sinusoids are doubled to
25.6 and 42.67 in the z and y directions respectively. First, we again consider the case of
purely translational motion, using the same translational field of (-1.0,0.5). In Figure 11
the error graphs are shown for single-level optic flow relaxation. This should be compared
to the comparable single-level experiment shown in Figure 5. Convergence is clearly much
slower for the low frequency data. This must be attributed to reduced local variation in
the direction of the image gradients.



VOZT rrI3Is€co~MD® MO aor-

VODBOM ZDMIX TMNO Or

3
\
i\ i
........ X
e
- \
s
l
0 B
10 20 30 49 59 60
ITERATIONS
0 - -
\-“-.V\-
_l -——— . — -
2 N
10 20 36 40 59 50

ITERATIONS

Figure 11: Single-level relaxation: low frequency data

33



34

PVOZ rICo—NMOT TNO or-

DODOM ZDMIT MO OOr

Computation of Optic Flow by Multilevel Relaxation

10 20 30
ITERATIONS

10 20 Y
ITERATIONS

Figure 12: Multilevel relaxation: low frequency data



The next experiment shows how multilevel relaxation fares on the low frequency data.
Figure 12 contains the error graphs for this experiment. Compare them to the corresponding
experiment for higher frequency data shown in Figure 7. (Note the different ranges of the
iteration count axis in these two experiments.) Two points are easily made. First, for
the case of lower frequency data, the hierarchical control strategy found it necessary to
go to level 3 twice, while for the earlier experiment level 4 proved sufficient,. (In both of
these experiments, the hierarchical control parameters would have allowed reduction up to
level 2.) Secondly, in both cases, convergence (in terms of the residual norm) was reached
after about 20 iterations. It is interesting to note that while the single-level relaxation takes
longer to converge on the lower frequency data, the multilevel algorithm made use of a yet
coarser level to achieve comparable convergence in the same number of iterations used for
multilevel solution of the high frequency case.

Now, we come back to the case of rotational motion, this time with the lower frequency
data. The error graphs are shown in Figure 13 and should be compared to the comparable
higher frequency data experiment shown in Figure 10. As expected, for the lower frequency
data, we no longer see divergence at level 3. We do have the remaining problem that at
later visits to level 3 convergence eventually slows to where the target residual norm (for
that visit) may not be reached. This also occurred in an experiment with high frequency
data, but that time at level 4. In both cases. a simple limit on consecutive iterations at
one level would prevent getting stuck. This will be implemented in the fixed cycle scheme
in Section 8.

8 Further Experiments

In the last section, we established the need to avoid coarse level relaxation when fast local
variations in the image data at those coarse levels causes divergence. In this section, we
show how coarse level divergence is avoided by changing the hierarchical control strategy to
a fixed cycling scheme, i.e. the decisions to move up or down (reduce or project) are made
not by a dynamic tracking of the residual norm. but rather by a fixed pattern of up/down
moves.

The fixed pattern hierarchical control strategy is important to us for two reasons. The
first relates to the divergence problem and the related problem of siowed convergence at
coarse levels. By limiting the number of iterations during any one visit to a given level,
hierarchical control cannot get stuck at coarse levels when convergence slows at later stages
of the overall relaxation process. Moreover. if in fact any divergence at coarse level is seen,
then limiting iterations also limits the extent to which this divergence corrupts finer-level
solutions.
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The second benefit of a fixed cycling scheme is that it is no longer necessary to mea-
sure the rate of convergence of the residual norm. This is very important for multilevel
algorithms run in a parallel architecture. The measurement of residual norm is a global
computation, since it is defined as a summation over an entire level of residuals at individ-
ual pixels. A dynamic control strategy which makes reduce/project decisions based on the
residual norm must at each iteration collect individual residuals together somewhere. In
a locally connected architecture. such a global operation introduces high communication
costs.

In the first two experiments, we use the *high frequency, rotational field” image, that
is, the first frame is that shown in Figure 3. and the second frame is a .05 radian rotation
of the first frame image. Recall that both images have one percent uniform noise added in,
uncorrelated between the two frames. The eXperiment shown in Figure 10 used this data.

The fixed pattern of hierarchical control that we have used in all of the next experiments
is a “three up, two down" pattern, that is. after a reduction to a coarser Jevel three iterations
are performed and after a projection to a finer level two iterations are performed. For the
first experiment, reduction is only allowed up to level 4 and hierarchical control simplifies to
an alternating pattern of two iterations at level 5 (after an initial three) and three iterations
at level 4. The error graphs for this experiment are shown in Figure 14.

For the second experiment, reduction i< allowed up to level 3 and the “three up/two
down” pattern of hierarchical control is seen. The error graphs for this experiment are
shown in Figure 15. For both of these experiments. we see a fine-level rotation field extracted
with high accuracy at the finest level — level 5. In the first case, at iteration 33, the mean
error magnitude goes to .031 pixel-lengths at level 5. In the second case, at iteration 43,

the mean error magnitude goes to .037 pixel-lengths at level 5.

In both cases, the resultant vector fields at all levels are clearly seen to be very good
approximations to rotational fields. This is shown for the second experiment in Figure 16.
For comparison, refer back to the initial solution estimate (iteration 0 at level 5) for this
experiment shown in Figure 8. Solution estimates at later stages in the relaxation are shown
in Figure 16. Iteration numbers correspond to those shown in the graphs in Figure 15. The
rotation field is seen clearly at all levels.

In the third experiment, the .05 radian rotation is applied to the lower frequency data.
This is the same image data as used in the experiment shown in Figure 13. In that prior
experiment, convergence flattened at level 3 and control did not pass back to the finer
levels. In the experiment shown in Figure 17. return to the finest level is assured by the
fixed pattern of hierarchical control. Convergence to less than .1 pixel-lengths at the finest
level is attained by the 32nd iteration during the fourth visit to level 5.
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The higher frequency data shown in Figure 3 is nsed with the second frame a 0.05 radian
rotation of the first frame data. Reduction was allowed only up to level 4.
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Figure 16: Rotational solution fields

These vector fields are solution estimates for the experiment with error graphs shown in
Figure 15.

(a) The fine-level (level 5) olution at iteration 23. The mean error magnitude at this
iteration (Figure 15bh) is .048 pixel-lengths.

(b) The level 4 solution at iteration 21. The mean error magnitude at this

iteration is
.047 level-5-pixel-lengths.

() The level 3 solution at iteration 19. The mean error

magnitude at this iteration is
.056 level-5-pixel-lengths.
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Figure 17: Fixed up/down control, low frequency data

The image data for this experiment is the low frequency data with a rotational flow field,
the same data used in the experiment shown in Figure 13. Reduction was allowed up to
level 3.
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Figure 18: Multilevel relaxation: motion in depth

The higher frequency data shown in Figure 3 is used with the second frame, a 5% up-
scaling of the first frame data. Reduction was allowed only up to level 4. Residual norm
is plotted vs. iteration number.

In the final experiment, multilevel relaxation with a fixed hierarchical control strategy
is applied to another type of non-translational motion field. In this case. the second frame
was computed to be a scaling up of the first frame by 5% about the point 1/4 in from
the left and bottom sides. (Such a scaling corresponds to depth motion, i.e. translation
perpendicular to the image plane.) Figurc 18 shows results comparable to those for the
rotational case shown in Figure 15. The edge flow used as the initial optic flow estimate is
shown in Figure 19.

Solution estimates at later stages in the relaxation are shown in Figure 20. The resultant
vector fields at all levels are clearly seen to be very good approximations to scaling fields.
Iteration numbers correspond to those shown in the graphs in Figure 18. The scaling field

is seen clearly at all levels.

9 Summary

In this paper, we have shown how multilevel relaxation can be used to compute optic
flow, using significantly fewer iterations than single-level relaxation. After a relatively
straightforward application of Brandt’s ideas. we arrived at a multilevel optic flow relax-
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Figure 19: Scaling edge flow

The edge flow field for the depth motion data as given by E
is used as the initial estimate of optic flow.

«quation 38. This vector field
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(a) The fine-level (level 5) solution at iteration

- ficlds are

Figure 20: Scaling solution fields

solntion estimates for the experiment with error graphs shown in

(b) The level 4 solution at iteration 21.

(c)

The level 3 solution at iteration 19.

23,
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ation algorithm. While exhibiting the expected increased convergence rate over single-level
relaxation, some experiments presented a problem of divergence at coarse levels. A local
mode analysis of the update equations showed how (1) convergence is at least as'fast as
simple smoothing; and (2) when the gradient is strong, convergence is accelerated towards
the constraint line. However, the local mode analysis did not account for the coarse-level
divergence seen in experiments. This divergence was then shown to be due to spatial vari-
ation in the image data. That is, when significant variations were on a scale comparable
to the pixel spacing at a given coarse level. then divergence was seen. Finally, fixed cy-
cling schemes were introduced as hierarchical control strategies to overcome the divergence
problem. Further experiments showed the success of such a method.
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