-

@

[t}

Toward Support For
Environment Prototyping

Lori A. Clarke
Jack C. Wileden
Alexander L. Wolf

COINS Technical Report 87-65
July 1987

- Software Development Laboratory
Department of Computer and Information Science
University of Massachusetts, Amherst

This work was supported in part by the following grants: Rome Air Development Corporation, F30602-86-C0006;
National Science Foundation grants DCR-84-04217.

ABSTRACT

There is widespread agreement on the need for software development environments. There is
much less unanimity about how such environments should be organized and what tools they should
contain. This suggests that environment research must be based on experimental, exploratory, pro-
totyping activities. Therefore, one important element of environment research is the development
of appropriate tools to support environment prototyping.

In"this paper, we describe the requirements that we see for tools supporting prototyping of
environments. We then describe GRAPHITE, a tool that represents one step toward appropriate
support for environment prototyping. Specifically, GRAPHITE is intended to aid in the rapid
development and easy modification of tools that manipulate graphs, since graphs are a very common
data structure employed in environments. We report on our experience using GRAPHITE in several
projects and outline future directions toward improved support for environment prototyping.

1 Introduction

There is widespread agreement on the need for software development environments. There is
much less unanimity about how such environments should be organized and what tools they should
contain. This suggests that environment research must be based on experimental, exploratory, pro-
totyping activities. Therefore, one important element of environment research is the development
of appropriate tools to support environment prototyping.

A full-fledged software development environment will consist of a large number of components,
both tools and data objects, interacting with one another in a variety of ways. The effectiveness of
the environment will depend upon both the quality of the individual components-and the quality of
their interaction, i.e., the integration of the environment. In addition, evaluation of an environment
will depend heavily upon performance characteristics such as response time.

These considerations impose some requirements on tools for environment prototyping that differ
from the requirements for tools supporting the prototyping of other kinds of software.

In an effort to create suitable environment prototyping capabilities for use in the Arcadia consor-
tium’s software development environment research (4], we have developed a tool, called GRAPHITE,
that represents one step toward appropriate support for environment prototyping. The GRAPHITE
tool, who_se name derives from GRAPH Interface Tool for Environments, processes abstract data
type specifications for classes of graphs. These specifications are written in a specialized Graph De-
scription Language, GDL. Given the GDL specification for a particular class of graphs, GRAPHITE
produces an implementation for that abstract data type in a strongly-typed, statically type-checked
and compilable language, namely Ada. The GRAPHITE-produced Ada implementation, which we
call an interface package, defines the type of the graph ebject and the operations that other envi-

ronment tools can use to manipulate graphs of that type. The interface package encapsulates the

actual data structures and algorithms used to implement the type and its associated operations.
The way in which GRAPHITE generates these data structures and algorithms, and their particular
form, results in valuable support for environment prototyping.

In this paper, we first elaborate on the requirements that we see for tools supporting proto-
typing of environments. We then describe the GRAPHITE tool and illustrate how it can facilitate
environment prototyping. We report on our experience with using GRAPHITE in several projgcts.
Finally, we discuss related work and alternative approaches to the support provided by GRAPHITE

and outline future directions toward improved support for environment prototyping.

2 Support for Environment Prototyping

Prototyping of environments has much in common with prototyping of other kinds of software
systems. We have found, however, that some of the characteristics of environment prototypes are
fundamentally different from those that typify other kinds of prototype software. These differences
lead to significant differences in the kinds of tools needed to support environment prototyping. In
this section, we first discuss support for prototyping in general and the traditional ways in which
it has been provided and used. We then elaborate on the relevant characteristics of environment

prototypes and their implications for tools to support prototyping.

2.1 Prototyping in General

Prototyping as an approach to producing software has two defining goals. These are:

e Rapid Development: A first version of a prototype software system should be up and
running as quickly as possible. In other words, a developer should experience minimal delay

between conceiving of a system and being able to experiment with a first prototype of that
system.

e Easy modification: Changes in the prototype, often suggested by the results of previous
experiments, should be easy to incorporate. In other words, a developer should experience

minimal delay between experiments.

One aid to achieving these goals is an application-oriented notation. Clearly, the better a
language is suited to the problem domain at hand, the easier it will be to describe a prototype of
the sy;tem. Easy description should contribute to rapid development and easy modification.

Another aid to achieving the goals of prototyping is a software reuse capability. In fact, two
somewhat different kinds of reuse—“as-is” and “variant”—can contribute. Being able to use an
existing piece of software as-is in some other system certainly contributes to rapid development. It
can also facilitate modification when a pre-existing component can be added as-is to a prototype.
On the other hand, a relatively minor variation on an existing piece of software may provide
.exactly what is needed as (part or all of) an initial prototype of a different system or in modifying
a prototype after some experimentation. Thus capabilities for both kinds of reuse can be valuable
support for prototyping.

Finally, an important aid to easy modification is any mechanism that helps to limit the impact
of changes. If a developer only wishes to experiment with changes to some restricted part of the
prototype system, the effects of those changes should be confined to that part of the prototype
as far as possible. Moreover, the delay resulting from a change should be proportional to the size
of the change; if small changes result in large delays between experiments then the goal of easy

modification will be thwarted.

2.2 Traditional Prototyping Applications

Several characteristics seem to be implicitly assumed in- most applications of prototyping. Pro-

totypes are typically seen as small to medium scale programs. Generally they are constructed and

used by a single developer. They tend to be rather monolithic, consisting of relatively few distinct
pieces that are relatively loosely coupled. Efficiency, in terms of execution speed or space consump-
tion, is apparently unimportant in most traditional prototyping situations. Finally, most traditional
prototypes are taken to be “throw-away” systems, destined to be replaced by a completely new,
built-from-scratch version once their experimental usefulness is through.

Particularly in light of these characteristics, the traditional approach to support for prototy?ing
is quite reasonable. That approach is based on the use of a high-level language that is interpreted
rather than compiled. Often the language is weakly typed, or typeless, and any type checking that it
might provide is done at run time rather than statically. For certain well-understood applications,
the language may be application-oriented. More often it is a general-purpose language such as
Lisp.

In the context of traditional prototyping applications, this approach can be seen to achieve
the goals of prototyping quite well. Interpreted languages with limited typing and run-time type
checking facilitate rapid development and easy modification in part because elimination of the
time required to compile or type check reduces development and modification time. Given that
efficiency is not an important consideration, the delays induced by compilation and static type
checking are not considered worth the improvements in speed and space utilization that they can
provide. The loss of control over interfaces between components and the reduced documentation
of system structure resulting from weak typing or no typing are not deemed critical in relatively
monolithic, single-developer, throw-away prototypes. Furthermore, an interpreted language limits
the impact of any kind of modification; changes to instructions do not require recompilation and

changes to data-object definitions do not require rechecking of type definitions and their usage.

2.3 Environment Prototyping

Some of the characteristics of environment prototypes distinguish them from most traditional
kinds of prototypes in ways that suggest different approaches may be needed to achieve the goals
of rapid development and easy modification.

Orre important difference is that environment prototypes are by nature large, complex and
highly interrelated collections of components. Those components include tools, such as editors,
compilers, testing and debugging support systems and the like, and also data objects, such as
source text, abstract syntax trees, object modules, symbol tables, test-data sets, test results and
many others. Moreover, environment prototypes are generally developed by groups rather than by
one individual. Partly due to their size, and partly because of the kinds of experiments they are
to be used for, efficiency in both time and space is significant for environment prototypes. Finally,
since they are such large and complex systems, many of whose components may be large, complex
and robust tools, it is less obvious that environment prototypes should be treated as throw-away
systems.

One implication of these characteristics is that a transition path from prototype version to
end-user version is extremely desirable for environment prototypes. Thus a very desirable property
for a tool supporting environment prototyping is a transition strategy for going from a prototype
to a robus't and usable version. Such a strategy would primarily involve removing any remaining
inefficiencies that may have been introduced ‘to facilitate modification and reduce inter-experiment
delay. The more easily this can be done, the greater the long-term value of the prototyping support
tool.

Another implication of the characteristics of environment prototypes is that they are likely

to be developed and modified component-wise. That is, a developer is likely to experiment with

one component at a time, by adding one or modifying one while leaving the rest of the prototype
unchanged.

The characteristics of environment prototypes also imply that managerial control will be im-
portant. Controlled and disciplined change is crucial in a multi-developer setting, especially when
dealing with a large, complex system composed of highly interrelated components.

Documentation also assumes an important role due to the characteristics of environment pro-
totypes. Managerial control depends upon the visibility provided by good documentation. Easy
change of complex and highly interrelated software in a multi-developer setting also demands ap-
propriate documentation.

The characteristics of environment prototyping and their implications make the traditional
approach to support for prototyping ill-suited for this application area. An interpreted language and
run-time type checking will probably not result in sufficient efficiency for environment prototypes. A
weakly-typed or untyped language makes modifications to a large, complex and highly interrelated

system unacceptably error prone, while reducing the documentation needed in a multi-developer

situation.

These considerations suggest that prototyping support for environments should be based on
a compiled, relatively strongly-typed and statically type-checked language. Unfortunately, most
such langu.ages lead to unacceptably slow development and modification. Often a small change,
especially if it involves a system component that is widely used by other components, necessitates a
complete recompilation. This is generally true even if the change being made actually affects only
a very few components.

Ideally then, support for environment prototyping would provide the efficiency, documentation

and interface control of a compiled, strongly-typed and statically type-checked language. At the

same time, it would provide means for limiting the impact of changes 80 as not to interfere with
the rapid development and easy modification that are crucial to prototyping.

The GRAPHITE system that we discuss in the remainder of this paper represents one step
in this direction, applicable to one important class of environment components, namely abstract
data types for graph ébjects. GRAPHITE works within the context of a compiled, strongly-typed
and statically type-checked language, namely Ada, but introduces an application-oriented language
to aid in rapid development and a means for limiting the impact of changes that facilitates easy
modification. Finally, GRAPHITE provides a transition strategy for going from prototype versions of
these abstract data types and their operations to versions that are suitable for use in environments

that could be used in real software development applications.

3 The GRAPHITE System

Many of the data objects manipulated by software development environment tools are graphs.
For example, parse trees, abstract syntax trees, control flow graphs, and call graphs are all classes
of graphs that are likely to be manipulated by tools in an environment. Moreover, an individual
instance of a graph class may be shared by several different tools in that environment. For example,
an abstract syntax tree may be initially created by a syntactic analyzer, modified by a semantic
analyzer and referenced by a pretty printer, among other tools. During the prototyping phase
in the design of a software development environment, experimentation with tools may dictate
changes to the structure of a graph as well as changes to the graph’s underlying representation.
The GRAPHITE system facilitates both kinds of experimentation while minimizing the impact
of that experimentation on the tools that manipulate that graph in an environment. In addition,

GRAPHITE provides a medium for clearly documenting the graph structures used in an environment

so that new tools can consider these structures as candidates for reuse. Moreover, GRAPHITE
provides support for moving from a prototype implementation to a production implementation
once the design of the graph structures has stabilized and efficiency becomes more of a concern
than flexibility. Thus, for graph structures, GRAPHITE provides a prototyping facility that satisfies
the objectives described in the previous section.

The GRAPHITE system accepts specifications of classes of graphs written in the graphlde-
scription language, GDL. Given the GDL specification for a particular class of graphs, GRAPHITE
produces an implementation of an abstract data type for that class of graphs, which is encapsulated
in the generated interface package. The interface package defines the graph and the operations that
can manipulate the graph. The operations include those that allow tools to create nodes, to get
and put attribute values, and to read and write nodes and graphs, as well as to ascertain the kind
of a node and its associated attributes.

Usiné the interface package produced by GRAPHITE, a tool can create and/or access a number
of different graphs of a particular class. Any or all of these could be manipulated by other tools,
which would also access these graphs through the operations provided in the interface package.
Moreover, a tool may use more than one interface package in order to access more than one class
of graphs. Figure la illustrates how GRAPHITE can be used to create interface packages for two
different classes of graphs, called Class A and Class B. Figure 1b then shows how two tools might
use these packages; Tool 1 to manipulate two instances of Class A and both Tool 1 and Tool 2 to

manipulate an instance of Class B.

Environments are large and complex and often even prototype environments cannot be effec-
tively evaluated unless they are somewhat efficient. To this end, GRAPHITE produces two different

kinds of interface packages. One supports software development of experimental systems. It is

GDL INTERFACE
SPECIFICATION | ————| GRAPHITE | —u PACKAGE

OF CLASS A FOR CLASS A

GDL INTERFACE
SPECIFICATION | ——————» GRAPHITE ——————= | PACKAGE

OF CLASS B FOR CLASS B
(a)
CLASS A
GRAPH
«——- .o | INTERFACE
TooL 1 PACKAGE
FOR CLASS A
INTERFACE
CLAass B
TooL 2 PACKAGE —
FOR CLASS B GRAPH

(b)

Figure 1: Creating and Using Graph Interface Packages.

designed so that when developers modify the definitions of graph classes there is a minimal effect
on other tools in the system, even on those tools that use this modified class. The second interface
package is designed for efficient manipulation of graphs. When the definition of a graph class has
been finalized, the second interface package can be substituted for the first so that a more efficient,
but less flexible, version of the tools can be created. Thus we have support for both development
and production versions of the interface package and a process for easily going from the develop:pent
to the production version.

In the following subsections we describe the GRAPHITE system. First, GDL is described and
an example is given. Second, the interface package is described. The capabilities provided by this
package as well as the underlying design for both the development and the production versions of
the abstract data type are presented. An example of how one might use the system and how to move
from the development version to the production version of the system are provided. The GRAPHITE
system has been implemented in Ada (the host language) for use in building environment tools in
Ada (the target language). In the ensuing discussion, the examples are given in Ada but the basic
concepts are independent of the host and target languages. The major requirements for the target
language are that it provide support for abstract data types and for separate compilation, including

separate compilation of the specification part of an abstract type from its implementation part.

3.1 Graph Description Language

In GDL, a class of graphs is defined by specifying a set of node kinds. Each node kind is
associated with a set of attributes. Attributes are used to describe the properties of the objects
represented by the nodes in the graph and each such attribute has a type, referred to here as an

attribute value type. Some of the attribute value types are actually node kinds, which makes it

10

possible to connect nodes into graph structures. An instance of a node kind is a set of values, one
for each attribute associated with that node’s kind. A particular graph, which is a member of some
class of graphs, is then just a set of instances of node kinds in that class.

As noted above, GDL facilitates the development of software systems by documenting the
availab!e graph classes. From this description, developers can decide if an object they need already
exists or can be easily created from existing graph classes. To make this description as natural to
use and easy to understand as possible, it should be modeled afer the target language whenever
possible. Since our environment development work is being done in Ada, we have implemented
GRAPHITE to produce an Ada abstract data type and have designed a GDL that is very Ada-like.
To illustrate the information that must be provided by a GDL description, we shall use this Ada-
like notation. Thus in Figure 2, the GDL specification for a given graph closely resembles, at least
syntactically, an Ada package specification that contains a collection of Ada-like type declarations.

A given GDL Speciﬁcation defines a particular class of graphs by declaring the node kinds,
attributes, and attribute value types making up the class. Figure 2 preseuts a skeleton GDL
specification in which ExampleGraph is the name of the class of attribute graphs being defined and
Example is the name of the interface package that is to be generated. This figure is used throughout
the remainder of this section to illustrate features of GDL and- the interface packages.

Node kinds are the primary building blocks of GDL. To define a node kind, the developer
specifies the name of that node kind and the attributes that make up nodes of that kind. The format
for defining a node kind is similar to that of an Ada record declaration, with attributes acting as
record fields. The similarity between node kind declarations and record declarations, however, is
purely syntactic. In particular, node kinds are not necessarily implemented as records, and record-

oriented operations, such as field selection, cannot be applied directly to nodes. ConditionNode and

11

class ExampleGraph Is
package Example;

with Lexical.(Comment, Position);

type Lexicalinformation Is
record
SourceComment : Lexical. Comment;
SourcePosition : Lexical.Position;
end record;

type BranchWeight is new Integer range -10 .. 10;

group Statement; -- complete definition given below
type StatementSequence Is sequence of Statement;

node ConditionNode; -- complete definition given below
type ConditionSequence Is sequence of ConditionNode;

node ExpressionNode Is

end node;

SourceConnection : Lexicallnformation;
ExecutionCount : Natural;

node ConditionNode is
SourceConnection;
Weight : BrarichWeight;
Condition : ExpressionNode;
Statements : StatementSequence;
end node;

node [fStatement Is
SourceConnection;
ExecutionCount;
IfBranch : ConditionNode;
ElsifBranches : ConditionSequence;
ElseBranch : StatementSequence;
end node;

group Statement Is (IfStatement, WhileStatement, CaseStatement, ...);

end ExampleGraph;

Figure 2: GDL Specification for a Class of Graphs.

12

IfStatement are two node kinds declared in Figure 2.

GDL provides a syntactic shorthand intended for situations in which two or more node kind
declarations contain an identical attribute declaration (i.e., the name and type of the declared at-
tributes are the same). This syntactic shorthand allows a commonly-available attribute declaration
to be made in one place and then used in various node kind declarations by simply listing the
attribute’s name. For example, in Figure 2, node kinds ConditionNode and IfStatement contain
identical declarations for the commonly-available ati‘.ribute named SourceConnection. Whether or
not this shorthand is used, each attribute is only associated with one node kind; it is simply the
type information that is shared using commonly-available attribute declarations.

GDL supports four categories of attribute value types: predefined types, user-defined types,
imported types, and GDL-specific types. Predefined types are those types defined within the target
language such as Character, Boolean, and Integer. User-defined types use the target languages’s type
constructors to define types from the pre-defined types or other user-defined types. For imported
types, we use an Ada-like with clause to indicate which external types are to be imported. For
example, in Figuré 2, types Position and Comment are imported from package Lexical and used in
defining the record type Lexicallnformation. Although not described here, other information, such
as the definition of an assignment operator for objects of that type, must sometimes be provided
with impc;rted types.

There are three GDL-specific types, node kind, node group, and node sequence. Each is an
attribute value type constructor that facilitates descrii)ing a graph class. Node kind was described
above. Node group is used as a value type for an attribute whose values can be any one of a
number of different node kinds. An example of this is given in Figure 2 where Statement is defined

to range over a set of nodes representing statements. The operations appropriate to values of a

13

node group are the same as those for a node kind, since a value of a node group is simply a node.
Node sequence is used to indicate an ordered collection of nodes. Again referring to Figure 2, type
StatementSequence is declared to be an ordered list of nodes, where each node must be one of the
node kinds declared in the group Statement. Operations on values of a node sequence include those
to create a sequence, retrieve an element of a sequence, and determine whether or not a sequence
is empty. All the operations for GDL-specific types are provided as operations in the genergted
interface package.

A more complete description of GDL is given in (7).

3.2 Interface Packages

Having described the input to GRAPHITE, we now turn to the output, namely the interface
packages that implement a given GDL specification of a class of graphs. As mentioned above,
GRAPHITE can generate either a development version or a production version of such a package.
The versions are similar in that they realize a class of graphs as an abstract data type and provide the
same set of operations on graphs. The versions differ in how they resolve the often conflicting goals
of flexibility and efficiency; while the express purpose of the development interface is to support easy
modification by minimizing the impact of changes on tools, the intent of the production interface
is to provide efficient access to a relatively stable class of graphs.

This subsection presents our designs for the development and production versions of the inter-
face package. First, an overview is given of the operations on graphs provided by interface packages.
Details of the development interface are then presented and the flexibility that that design pro-
vides is demonstrated. Finally, the production interface is described and issues in moving from a

development version to a production version are considered.

14

3.2.1 Operations Provided by Interface Packages

The operations provided by GRAPHITE-generated interface packages fall into four basic cate-
gories, as shown in Table 1. There are several things to notice about these operations.

First, notice the granularity of the operations that get and put attribute values. These oper-
ations are designed to work on all the attributes of a particular type. Therefore, there will be a
separate pair of get/put opérations for each attribute value type in a class. Because the get (put)
operations differ in the type of the attribute returned (entered), the subprograms that implement
them can be overloaded in a language like Ada, i.e., they can be given the same name. The use of
overloading in this situation is appealing because it underscores the similarities in the operations’
functionality. For instance, tool developers can take the perspective that there is only one get
operation and one put operation and that these two operations will work for any attribute. The
fact that the interface package must actually provide several pairs of subprograms to realize these

operations is hidden by the fact that the pairs are overloaded.

Our choice for get/put granularity has advantages beyond that of using overloading. Compared
to the alternative of having one get/put pair per attribute (e.g., Get Weight/Put Weight), our
alternative results in a unique pair per attribute value type. In the extreme, these alternatives
are the same if every attribute were given a unique attribute value type. This is, of course, an
unlikely possibility. More typical would be classes consisting of small numbers of attribute value
types compared to attributes. One consequence of our choice is that general purpose tools would
need fewer arms in case statements to process all attributes of a node kind. Furthermore, we would
expect that the set of attribute value types would change much less often than the set of attributes.
Therefore, our approach provides greater protection against changes in class definitions.

A second thing to notice about the set of operations provided by interface packages is the

15

1. OPERATIONS TO

MANIPULATE A NODE

Create

Delete Node
Get Attribute
Put Attribute

creates a new node of a given kind

deletes a node

gets the value of an attribute of a given type
puts the value of an attribute of a given type

2. OPERATIONS TO

ASCERTAIN A NODE’S DEFINITION

Attribute Value T)Tpe
Kind
Node Kind Attributes

‘retrieves the name of an attribute’s value type
retrieves the name of a node’s kind
retrieves the names of a node kind’s attributes

3. OPERATIONS TO

MANIPULATE NODE SEQUENCES

Create

creates a given sequence

Insert inserts a node into a sequence at a given position
Remove removes a node at a given position from a sequence
Kind retrieves the name of a sequence

Length retrieves the length of a sequence

Retrieve retrieves a node from a sequence at a given position
4. OPERATIONS TO INPUT AND OUTPUT GRAPHS

Read Graph reads a graph from a file

Write Graph writes a graph to a file

Table 1: Operations Provided by Interface Packages.

16

inclusion of operations to retrieve details about a node’s definition. This, like the granularity of
the get/put operations, is intended to facilitate the development of general-purpose tools. Using
these functions, tools could be written that apply to any class definition as long as the attribute
value types are known. Consider, for example, the design of a tool that, given the name of an
attribute and the name of the type for nodes, traverses a graph searching for all nodes containing

that attribute. The basic algorithm for such a tool might be the following.

1. Retrieve the list of attribute names for the current node.
2. Note whether the desired attribute is present.
3. For each attribute in the list:

(a) Retrieve the name of the attribute’s value type.

(b) If the type indicates that the attribute is a node, then recursively apply the algorithm
to that node.

Notice that the algorithm is independent of any particular class definition because it can dynami-
cally determine all the information that it needs.

Third, notice the operations provided by GRAPHITE to manipulate node sequences. Although
support for node sequences is not strictly necessary, since such sequences can be simulated with
attributes that linearly link nodes together, it is provided simply because such structures are
so common in the representations used in software development environments. For example, in
representing a program, the nodes for the elements of a declarative part or the elements of a
statement part are, by their very nature, in a sequence. The operations for manipulating node
sequences were chosen for their primitive functionality. From them, practically any style of sequence
manipulation, such as a LiSP-like CAR-CDR-CONS approach, can be built.

The fourth thing to notice is that the read and write operations are intended to support the

sharing of a graph instance among tools that may be invoked at widely different times. The write

17

operation, given a node N in a graph, creates a secondary file and saves in that file every node
reachable from N. The read operation reconstructs a graph by retrieving the nodes saved in a file
by a previous write operation.

Finally, notice that two possible categories of operations are completely missing. The first
would consist of operations to dynamically add node kinds, attributes, or attribute value types to a
class definition. Such capabilities, if provided, would adversely affect reuse since the descriptiop of
the graph class could not be easily determined. Thus we decided not to provide such capabilities.
The second missing category would provide capabilities to convert an instance of a graph created
from a previous class definition into an instance of a graph corresponding to the current definition.
This would be an important category if, for example, an experimental environment is expected to
undertake the analysis of large, or large numbers of, programs. Then we may not want to incur
the cost of complete re-analysis because graph representations have undergone change. Since we

do not expect such loads on prototype environments, operations to perform instance-to-instance

translations have not been included.

3.2.2 Ada Development Interface

Figure 3 shows a portion of the specification part of the development version of the Ada interface
package that would be generated by GRAPHITE from the GDL specification given in Figure 2. The
specification part contains declarations for the subprograms realizing the operations discussed above
and for the Ada types realizing the attribute value types of the class definition.

Note that the name of the class given in a GDL specification is used as the name of an Ada
private type whose objects designate nodes in graphs of the class. The name of the class is also used

to form the name of an Ada private type whose objects designate sequences of nodes in the class.

18

-- imported types and subtypes
with Lexical;

package Example Is
-- GDL-specific types

type ExampleGraph is private;
type ExampleGraphSequence Is private;
NullExampleGraph : constant ExampleGraph;

NullExampleGraphSequence : constant ExampleGraphSequence;

-- user-defined types and subtypes
type Lexicalinformation 13
record
SourceComment : Lexical. Comment;
SourcePosition : Lexical.Position;
end record;
type BranchWeight Is new Integer range -10 .. 10;

-- types for communicating names

type NodeKindName Is new String;
type NodeSequenceName Is new String;
type AttributeName Is new String;

type AttributeValueTypeName is (ExampleGraphVT, ExampleGraphSequenceV T,
BranchWeightVT, LexicallnformationVT, IntegerVT, ...);

-- types for listing a node’s attributes
type AttributeNamePointer Is access AttributeName;
type AttributeNamelList Is array (Positive range <>) of AttributeNamePointer;

-- operations to manipulate a node

function Create (NodeKind : NodeKindName) return ExampleGraph;

procedure DeleteNode (TheNode : In out ExampleGraph);

procedure PutAttribute (TheNode : ExampleGraph; TheAttribute : AttributeName;
TheValue : ExampleGraph);

function GetAttribute (TheNode : ExampleGraph; TheAttribute : AttributeName)

. return ExampleGraph;

procedure PutAttribute (TheNode : ExampleGraph; TheAttribute : AttributeName)
TheValue : ExampleGraphSequence);

function GetAttribute (TheNode : ExampleGraph; TheAttribute : AttributeName)
return ExampleGraphSequence;

procedure PutAttribute (TheNode : ExampleGraph; TheAttribute : AttributeName;
TheValue : BranchWeight);

function GetAttribute (TheNode : ExampleGraph; TheAttribute : AttributeName)
return BranchWeight;

Figure 3: Specification Part of Interface Package for Class of Figure 2
(Development Version).

19

procedure PutAttribute (TheNode : ExampleGraph; TheAttribute : AttributeName;
TheValue : Lexicallnformation);

function GetAttribute (TheNode : ExampleGraph; TheAttribute : AttributeName)
return Lexicallnformation;

procedure PutAttribute { TheNode : ExampleGraph; TheAttribute : AttributeName;
TheValue : Integer); -- used for subtypes of Integer

function GetAttribute (TheNode : ExampleGraph; TheAttribute : AttributeName)
return Integer; -- used for subtypes of Integer

-- operations to ascertain a node'’s definition
function Kind (TheNode : ExampleGraph) return NodeKindName;
function’ AttributeValueType (TheNodeKind : NodeKindName; TheAttribute : AttributeName)
return AttributeValueTypeName;
function NodeKindAttributes (TheNodeKind : NodeKindName) return AttributeNamelList;

-- operations to manipulate node sequences
function Create (NodeSequence : NodeSequenceName) return ExampleGraphSequence;
procedure Insert (TheSequence : ExampleGraphSequence; ThePosition : Positive;
TheNode : ExampleGraph);
procedure Remove (TheSequence : ExampleGraphSequence; ThePosition : Positive);
function Kind (TheSequence : ExampleGraphSequence) return NodeSequenceName;
functlon Length (TheSequence : ExampleGraphSequence) return Natural;
function Retrieve (TheSequence : ExampleGraphSequence; ThePosition : Positive)
return ExampleGraph;

-- operations to input and output graphs
procedure ReadGraph (FileName : String; TheGraph : In out ExampleGraph);
procedure WriteGraph (FileName : String; TheGraph : in out ExampleGraph);

-- exceptions
UnknownNodeKind : exception; UnknownAttribute : exception;
UnknownNodeSequence : exception; NodeSequenceError : exception;

private
-- representations; complete declarations given in body part
type ExampleGraphRep;
type ExampleGraphSequenceRep;

type ExampleGraph Is access ExampleGraphRep;
type ExampleGraphSequence Is access ExampleGraphSequenceRep;

NullExampleGraph : constant ExampleGraph := null;
NullExampleGraphSequence : constant ExampleGraphSequence := null;

end Example;

Figure 3: (continued).

20

Thus, for the example shown in Figure 3, the type for designating nodes is ExampleGraph and the
type for designating node sequences is ExampleGraphSequence. Becauge these types are private, the
only operations on nodes and sequences of nodes (other than assignment and the equality /inequality
tests) that can be performed by tools are those realized by the visible subprograms defined in the
specification part. Although one type is used to designate nodes of all kinds, an interface package
will guarantee at run time that a node is used in a manner consistent with its kind. For instance,
if a node kind has an attribute 4 whose value type is another node kind NK, then only nodes of
kind NK will be allowed as values of attribute A. The same guarantee is made for node sequences,
which like nodes are designated by objects of one type.

As pointed out in Section 2, avoiding recompilation of tools uninterested in a change is an
important design goal for the development version of interface packages. This goal can be attained
within the context of Ada’s recompilation rules only if the specification part of an interface package
does not require recompilation after a change has been made, since such a recompilation would
invalidate previous compilations of the portions of tools that use the package. Toward this end,
GRAPHITE generates a development version of interface packages whose specification part is nearly
devoid of all definition- and representation-specific information about the graph class being managed
and so insulates users of that package from most changes in class definitions and representations.

Definition Independence. In the specification part shown in Figure 3, there is no mention
of particular node kinds, such as IfStatement and ConditionNode, no mention of particular node
sequences, such as StatementSequence and ConditionSequence, and no mention of particular at-
tributes, such as SourceConnection and Weight. Moreover, as discussed above, subprograms such as
GetAttribute and PutAttribute are provided for manipulating arbitrary classes of graphs. Of course,

tools and the interface package still need to refer to the names of node kinds, node sequences, and

21

attributes (e.g., to specify the desired attribute for a get operation). This is accomplished in our
design through character strings; notice the declaration and use of t:ypes NodeKindName, NodeSe-
quenceName, and AttributeName in package Example. The only information specific to a particular
class of graphs that must appear in the specification part of an interface package is the set of Ada
types that represent the class’s attribute value types. This is necessitated by Ada’s use of a static
type-checking mechanism.!

Representation Independence. Our design for interface packages provides tools with the
maximum amount of insulation from changes in graph representations that is possible within Ada
by using indirection in references to nodes. Indirection allows the details of a data structure—in
this case, the representation of a graph—to be confined to the body part of a package, where it
can be changed without affecting the specification part of the package and, by extension, the tools
using that package. While Ada’s access types are the obvious choice for implementing indirect
references, any type whose values can serve as “pointers”, such as an integer that is an index
type for an array, would be suitable for achieving the desired insulation from changes. Access
types have an advantage over other types, however, in that they can point to dynamically created
objects. Therefore, access types are used in both the de\;elopment and production versions of
GRAPHITE-generated interface packages. This is illustrated in Figure 3, where the private type
ExampleGraph is shown to be an access type that designates the incomplete type ExampleGraphRep.
The full declaration of ExampleGraphRep, which defines the actual data structure for representing
graphs, would appear in the body part of package Example. Notice that the type representing node

sequences also exploits this device.

!Conceivably, even this could be avoided by using string or integer types and then allowing tools to interpret them
in any way that they wished. This provides a certain degree of dynamic flexibility in available types at the cost of
added complexity in the code of that tool.

22

In sum, our design for the development version of an interface package is an attempt to carefully
and selectively circumvent compile-time type checking so that tools can be insulated from changes
in the defintion and representation of a class of graphs. With this design, changes in the sets of node
kinds, node sequences, or attributes of a class only require the reprogramming and recompilation of
the body part of an interface package and those portions of tools directly interested in those changes.
In addition, a change to the representation of a class of graphs only requires the reprogramming
and recompilation of the body part. The impact of a change is further reduced by the fact that
GRAPHITE automates the process of reprogramming a body part. Only when a new type is added
to a class definition’s set of attribute value types will the specification part of an interface package
change and so cause recompilations of all tools using that class. As noted above, this is likely
to occur much less often than changes to the other aspects of a class definition. Although our
design sacrifices some compile-time checking, it still permits an interface package to enforce the
type consistency of the specified class definition. In particular, the body part contains all the
information necessary to check at run time the legality of node kind, node sequence, and attribute

names as well as the operations applied to instances of its class.

3.2.3 Using the Development Interface

To appreciate some of the flexibility offered by the development version of an interface package,
consider the following scenario: Tools T, through T, manipulate graphs of class ExampleGraph.
Thus, they all refer to entities declared in package Example and are compiled against the specifi-
cation part of that package. Suppose that the developer of T decides that it is necessary .m have
a new node kind, called SpecialTool1Info, and that nodes of this kind are to be a new attribute,

called Toolllnfo, of node kind IfStatement. Suppose further that tools T2 through T, have no use

23

for this new attribute. How extensive will be the effects of this change?

Certainly interface package Example must be reprogrammed to account for the new node kind
and attribute. This activity, of course, is automated by GRAPHITE; the developer need only alter
the existing GDL specification of class ExampleGraph and pass that altered specification through
GRAPHITE. Tool T; must also be reprogrammed if it is to make use of the new node kind and
attribute. The remaining tools, on the other hand, need not be reprogrammed, since they interact
with IfStatement nodes, when necessary, through subprograms such as GetAttribute and PutAt-
tribute, which allow a tool to operate exclusively on the node kinds and attributes of interest. Now,
the only difference between the newly generated interface package and the old interface package
(assuming all the attributes of SpecialToolllnfo were of previously used types) is in their body
parts; the specification parts of both packages are identical, since they do not contain any specific
information about node kinds and attributes. Therefore, only tool T} and the body part of Example
must be recompiled to account for this change in the class definition. Because the specification

part of Example is not recompiled, tools T3 through T, do not need to be recompiled.

3.2.4 Moving From Development to Production

Once a graph class has stabilized to the point where experimentation with its definition and
representation is no longer a primary activity, a developer can use GRAPHITE to generate a version
of the interface package that is oriented more toward efficiency than flexibility. The design of
the production interface is intended to make this transition as easy as possible. Specifically, our
goal was to minimize the amount of reprogramming of tools that would be needed to begin using
the optimized interface. Hence, the production version is very similar to the development version;

graph structures are realized as abstract data types and the same set of subprograms is provided for

24

operating on graphs. In fact, the only difference between the development and production versions
that is visible to tools involves the use of enumeration types. The production version, because it is
not required to be as flexible as the development version, uses enumeration literals to communicate
the names of node kinds, node sequences, and attributes between tools and interface packages;
whereas in the development version, types NodeKindName, NodeSequenceName, and AttributeName
are character-string types, in the production version they are enumeration types. In the production

version of package Example, the declarations for these types would resemble the following.

type NodeKindName is (ConditionNode, IfStatement, ...);
type NodeSequenceName is (StatementSequence, ConditionSequence, ...);
type AttributeName is (Condition, ExecutionCount, SourceConnection, ..., Weight);

With enumeration literals, the overhead of interpreting character strings to check their legality
and to use them for processing is avoided. Of course, moving from character strings to enumeration
literals, since it involves a change in a visible type, does require the reprogramming of tools.
The amount of that reprogramming, however, can be made almost negligible with the use of an
appropriate programming discipline during development. That discipline primarily requires that
the string constants, representing node kind, node sequence, and attribute names within tools,
should be used as parameters in calls to interface package subprograms. For example, a tool that
refers to node kinds ConditionNode and IfStatement should, during development, use the following

declarations.

ConditionNode : constant NodeKindName := “ ConditionNode" ;
IfStatement : constant NodeKindName := " IfStatement”

These string constants could then be used for all (relevant) invocations of graph operations, such

as the following call to create a ConditionNode node.

X := Create (ConditionNode);

25

Notice that references to node kind, node sequence, and attribute names through string constants
are syntactically identical in Ada to references through enumeration literals. Thus, for a tool
that adheres to this discipline, moving from development to production would only involve the

reprogramming necessary to remove the string-constant declarations.

4 E)‘cperiences Using GRAPHITE

GRAPHITE has been used extensively during the past two years in the development of the graph
data structures of several environment tools. A short description of some of those tools and graphs

follows.

e Ada Front End Toolset.

A collection of tools for performing lexical and syntactic analysis of Ada programs, and
for creating and displaying a general directed graph representation of those programs. The
toolset consists of two kinds of lexical and syntactic analyzers, one table driven and the
other hard coded, that both create program-representation graphs. The table-driven ana-
lyzer, called Athena, manipulates a second class of graphs, namely a binary tree used to
organize an identifier table. The toolset also consists of a pretty printer that “unparses” a
program-representation graph, and a graph walker that produces a linear, textual listing of
a program-representation graph useful for debugging the other tools. The toolset was devel-
oped cooperatively by researchers at separate sites: the University of California, Irvine, and
the University of Massachusetts, Amherst.

e PIC/ADL Front End.

A lexical and syntactic analyzer for an Ada-based design language that focuses on the spec-
ification of module interface relationships. This tool was built by modifying Athena and its
associated program-representation graph. Athena’s other graph structure, the binary tree,
was borrowed as-is.

e AdaPIC Analysis Toolset.

A collection of tools that extract, analyze, and report on information about the consistency
of software module interfaces (as specified, for example, in PIC/ADL). Two classes of graphs
are shared among these tools. Both are essentially linked lists that are built using the node-
sequence mechanism (see Section 3.1).

26

o Loop Analyzer.

A tool that determines and solves a loop’s recurrence relations, which describe how the values
of the variables modified by a loop traversal are computed from their values on previous
traversals. This tool uses two classes of graphs, one for representing loop bodies as trees and

the other for representing the traversal context as linked lists of linked lists. Here too, the
linked lists are built using the node-sequence mechanism.

. _C'EDL Front End.

A lexical and syntactic analyzer for a design language that focuses on the specification of
task (i.e., process) definition and interaction in concurrent systems. In addition to lexical
and syntactic analysis, the front end creates graphs that are trees used to represent CEDL
programs.

e GRAPHITE.
The GRAPHITE processor itself uses two classes of graphs and was built by bootstrapping off

an earlier version. In fact, the component of the GRAPHITE processor that constitutes the
GDL front end is, like the PIC/ADL front end, a modified version of Athena. It produces,
as does the PIC/ADL front end, a variation on Athena’s program-representation graph and
borrows as-is the binary-tree graph structure for an identifier table.

These uses of GRAPHITE exhibit a wide range of complexity, from a class consisting simply of
one node kind (the binary tree of Athena) to a class consisting of 47 node kinds, 6 node groups, and
16 node sequences (the tree of the CEDL front end). They also involve a wide range of development
activities, including rapid development, reuse, modification, and transition from development to
production. In the remainder of this section we relate a sampling of experiences with GRAPHITE
in the development of these tools. On the whole, these experiences substantiate our claim that
GRAPHITE is a useful prototyping tool and that prototyping in a strongly-typed, compiled language
with enforced documentation has significant advantages for environment development.

The AdaPIC toolset (8] was built as a prototyping effort to demonstrate the feasibility of the
PIC approach to interface control [6]. The idea was to quickly “get something up” that exhibited

the essential functionality of the system. During design, we identified the central data structures as

lists and the principal operations as various kinds of traversals of those lists. We chose to use the

27

ready-made GRAPHITE abstraction of lists, the node sequence, because with very little effort—the
specification in GDL of the components of the lists—the code for manipulating those lists could
be obtained. The automatic generation of input and output operations in particular was seen as
important and useful aids to rapid development, since the lists were to be shared among several

tools being developed concurrently.

The table-driven Ada front end Athena was built using three tool-building tools in concert. In
addition to GRAPHITE, Ada-oriented versions of the familiar Unix tools LEX and YACC, called
ALEX and AYACC, were used to generate the tables used in lexical and syntactic analysis.? In
all, Athena consists of 23 separately compilable units that total over 750 kilobytes of source code
(Table 2). Compilation of a moderately-sized program such as this takes a substantial amount
of computer it.ime and, perhaps more importantly, programmer time. The component of Athena
that generates program-representation graphs was actually developed incrementally by successively
handling larger and larger subsets of the Ada language. Growth from one subset to the next often
involved changes to the definition of the program-representation graph. The only part of the
program “interested” in such changes was the set of so-called “actions” that are performed by
the front end; these actions are embodied in unit Actions. By using the development version of
the interface package, we were able to minimize the recompilation necessitated by changes to the
definition of the program-representation graph. In particular, only the body part of RepPack (and,
of course, Actions) had to be recompiled; the other units in the program were insulated from such
changes. This reduced recompilation time by over half as compared to what would have been
required if the definition of the program-representation graph had been exposed.

Another tool in the Ada front end toolset that benefited from our design of the interface package

2ALEX and AYACC were developed at the University of California, Irvine.

28

|._UNIT [KIND' [BYTES |

LINES [SEMICOL

ONS | COMPILATION TIME |

Actions? S 68924 | 2317 1140 T T T es30]
Athena S 1821 53 124 9.5
BTreePac PS 4729 161 69 5.6
BTreePac PB 19525 697 310 94.1
GoTo PS 53036 2798 14 552.0
RepPac PS 7182 227 116 7.7
RepPac? PB | 352634 | 10575 | 44l 1552.1
LitTable PS 2417 55 12 3.6
LitTable PB 6051 154 65 18.1
MakeNode PS 2027 43 6 3.1
MakeNode PB 9870 335 33 109.8
Parser _PS 1502 36 9 4.3
Parser PB | 2020 “s2| T T[T 257
ParserUtil | PS | 1523 32 4 i 2.8
ParserUtil | PB | 1387 31 BT 4T
Scanner PS 242 14 11 4.7
Scanner PB 153972 2873 2599 826.9
Shift PS 50915 2754 11 557.8
SymTable PS 1706 34 5 2.9
SymTable PB 4553 131 56 18.1
_Tokens | PS | 3009| 70 7 81y
Utilities PS 1368 28 3 28
Uiies | PB | vess| a| o) g
[TOTALS | 752069 | 23514 | B & i

tS—mxbprogmm; PS-package specification; PB-package body.
$CPU seconds for VERDIX Ada compiler (5.2a) on a DEC VAXStationII running ULTRIX.
A VERDIX limitation actually necessitates the breaking up of this unit into subunits for

compilation; time shown is a sum of subunit compilation times and is therefore somewhat
higher than expected due to the extra processing required.

Table 2: Compilation Units Composing Athena.

29

was the graph walker, Monkey. Monkey makes extensive use of the functions that ascertain a node’s
definition. As a result, it was possible to insulate this entire tool from changes to the definition of
the program-representation graph as that class was incrementally developed. The only change that
could cause a particular version of Monkey to become obsolete would be one to the set of attribute
value types. As it happened, this kind of change never occurred and thus we were able to use the
same, stable version of Monkey throughout the development of the other tools in the toolset.

As mentioned above, tools in the Ada front end toolset were developed at two different sites,
making the coordinated development of their principal data structure, the program-representation
graph, difficult. This problem was eased somewhat by the use of GRAPHITE. In particular, the
GDL description of the data structure served as documentation that could be passed among de-
velopers. Moreover, the legitimacy of that documentation could be guaranteed, since it was the
documentation itself that was used to generate actual code. Changes to the definition of the
program-representation graph, because they were made by changing the GDL description, became
more visible, and hence more controlable, than they would have been if the changes were reflected
only in the changed code of a tool.

The PIC/ADL and GDL front ends are examples of tools whose development costs were substan-
tially reduced by reuse of existing software. In this case, (re)use was made of Athena, particularly
the inputs to the three tool-building tools ALEX, AYACC, and GRAPHITE. PIC/ADL and GDL
both happen to be extended subsets of Ada. This is reflected in the changes that were made to the
inputs to the tool-building tools, such as the removal of some node kinds and the addition of others
to the definition of the program-representation graph. Making such changes was significantly easier
and less error prone than either modifying the code of Athena directly or constructing the inputs

to the tool-building tools from scratch.

30

We should also point out an interesting side effect of having used a GRAPHITE-generated
interface package for the program-representation graphs of PIC/ADL and GDL. Monkey, the
graph walker developed as part of the Ada front end toolset, can be used as-is on the program-
representation graphs produced by the PIC/ADL and GDL front ends, despite the fact that those
tools produce graphs of markedly different classes. This is a consequence of the fact that functions
are available to Monkey that allow it to “discover” the set of node kinds and attributes defined for
a given class, rather than having those definitions embedded directly in Monkey’s code.

The PIC/ADL front end has recently reached a point in its development were we feel confident
about the stability of its program-representation graph. We are now interested in actually using
the tool, which implies that our focus has shifted from the flexibility provided by the development
version of the graph’s interface package to the relative efficiency provided by the production version.
Our preliminary results indicate that by moving to the production version, we were able to reduce
execution times by approximately one third.3 Moreover, by adhering to the guidelines for referring
to names of node kinds and attributes that are described in Section 3.2.4, we were able to move
from the development version to the production version with virtually no recoding required of the
tool.

GRAPHITE, even in its still early versions, has proven a valuable aid to the prototype de-
velopment of a variety of tools and toolsets. It has, among other things, facilitated the rapid
development of significant components of tools by a.utomaﬁing mundane coding chores, reduced the
costs of making modifications by limiting unnecessary side effects and automating code changes,

increased the bandwidth of communication among cooperative developers by providing high-level

*In general, the speed up experienced by a given tool is highly dependent upon the kind of processing being done
by that tool; the greater the percentage of a tool’s code that involves directly manipulating the graph, the greater
the expected speed up in the overall execution of the tool.

31

and enforceable documentation, which has also served to enhance the reusability of the software,
and provided a mechanism for moving from flexible development versions of an interface package
to more efficient, but less flexible, production versions. In future versions of GRAPHITE, we intend
to concentrate on enhancing the reusability of class definitions, perhaps along the lines of the in-
heritance mechanisms of object-oriented languages, and on increasing the efficiency of production

versions of interface packages.

5 Conclusion

In this section we look at alternative approaches for supporting the development of graphs and
discuss why we believe the GRAPHITE approach is superior for prototype development. We then
discuss some extensions to the system that would bé beneficial, as well as discuss more long term
directions of future research on managing complex objects for software development environments.

There are two major alternatives to using GRAPHITE. One is to use a traditional database
approach and the other is to use an alternative graph application language, such as the IDL
processor [3]. With a database management system, the classes of graphs that are to be manipulated
are described using a database schema. Such systems provide a basic set of operations to create,
enter, and retrieve information. For example, a relational database system provides a consistent
set of operations based on relational algebra for manipulating attributed graphs.

One of the major drawbacks to a datebase approach is the lack of support for user-defined types
and the run-time overhead of such systems [1|. Typically, database systems only provide support for
a limited set of predefined types such as integers, reals, and character strings. Building a software
development environment requires a much richer set of types than these. Another drawback is the

run-time overhead required for the newer, more powerful database models, such as the relational

32

approach. The run-time overhead for such systems is too prohibitive for even the prototype version
of an environment. This overhead is due to support for dynamic redefinition, which we have argued
should be avoided for our application, to support for powerful operations, which for the most part
are not needed for our application, and to maintain the assorted data objects in one monolithic
structure instead of as separate objects associated with the set of tools that directly manipulate
them. Thus, the database approach is not a viable option at this point in time for large, complex
system development such as an environment.

Others have recognized the limitations of current database systems and proposed alternative
approaches. Probably the most popular of these is the Interface Description Language (IDL) and
its processor. IDL is a BNF-like language for describing graphs. The IDL processor takes an IDL
description as input and creates a set of Pascal procedures that realize some of the operations
available in interface packages generated by GRAPHITE. The IDL processor has been rewritten by
several organizations so that it produces C and Ada interface packages. None of these organizations,
to the best of our knowledge, has designed the interface package so that it is supportive of prototype
development. In truth, the IDL system is a much more ambitious system than GRAPHITE. It is
intended to be language independent and provides a number of additional capabilities. On the
other hand, GRAPHITE is tailored for experimental development and provides a mechanism for
moving from development to production.

The GRAPHITE system has proven to be very successful at meeting our prototyping needs.
Rapid tool development has been achieved for those tools or components of tools that primarily
manipulate graphs. The capabilities in GDL for describing classes of graphs and the operations for
manipulating instances of graph objects have been demonstrated to be useful and appropriate for

a number of projects. GRAPHITE has also been shown to facilitate modifications and reuse. By

33

minimizing the impact of change, GRAPHITE allows developers to quickly and easily experiment
with new class objects. The GDL specifications provides documentation on the available graph
classes, allowing developers to peruse these specifications to determine if object classes already
exist that meet their needs. If some do, then developers can reuse their interface packages and
perhaps even instances of those classes " ag-is.” If an available class is not identical but only similar
to the desired structure, then modifications that alter thé structure can easily be made to these
graph class descriptions and automatically incorporated into the interface package. Such changes
have a minimal impact on existing tools, usually requiring no changes to those tools that only
manipulate the unchanged aspects of the modiﬁed graph class,

Graphite can be viewed as an application language for describing and manipulating graphs. For
software development environments, this is a common and important object type. We have found
that the current set of capabilities effectively support a wide range of tool ﬂpplicatibns. This is not
to say that users will not need to build tool-specific operations on top of the GRAPHITE provided
operations. It is our experience that GRAPHITE provides a reasonable se. of primitive graph
operations that readily support the construction of higher levels of abstraction and/or functionality.

While we have been pleased with the prototyping gains made with the GRAPHITE system, we
realize that it is only an initial step toward achieving more general prototyping suppbrt. There
are modifications to programming language and compiler capabilities as well as e'xtensions to the
GRAPHITE system that could greatly improve upon this prototyping support.

Our work with GRAPHITE has pointed out several ways in which programming languages and
compilers could be more supportive of development work. For example, although there has been
work on smart recompilation [5], most compilers still do a poor job of recognizing when recompila-

tion can be avoided. In addition, extensions to programming languages should be considered that

34

would greatly improve the ability of compilers to do this task. For instance, constructs that allow a
programmer to indicate the volatile and stable parts of their system could be used in determining
which underlying representation should be used when such choices impact separate compilation.
Our previous work on interface control [8], in which modules may indicate the objects and types
they intend to rgference as well as the modules to which they are making particular objects and
types available, also provides information that facilitates smart recompilation.

There are many extensions to GRAPHITE that one could consider. One such extension is to
support multiple views of the graph classes. Currently, GRAPHITE requires a single description of
a graph class, although that description may be shared by several different tools, where each is only
concerned with a subset (or view) of the structure. It would be beneficial if tools could describe
the particular view of a structure that they wanted.

Related to views is the ability to partition the physical representation of an instance of a graph
based on some criteria. One option would be to partition the representation based on the views,
under the assumption that views represent information about locality of reference. Since environ-
ment objects can be quite large, such efficiency issues are of concern even within the prototyping
domain. Another alternative is to hide the physical partitioning from the tool developer, leaving
the system to make such decisions based on metrics such as frequency of use. Thus, views could
be coalessed into a single structure or physically partitioned based on user or system monitored
metrics.

Another concern is our model of graphs, which currently treats graphs simply as collections of
nodes. A more powerful model of graphs that recognizes larger-grained graph operations would
prove useful. For example, the concept of “subgraph” is clearly important in many applications.

Except for subtrees, there is currently no way to read or write parts of a graph, since all nodes

35

reachable from the selected start node are written or read. If graphs were treated as collections of
subgraphs, then developers could take advantage of that abstraction by indicating which subgraphs
are to be the focus of particular operations.

As part of the Arcadia project we are working on issues related to better object management.
Our work with GRAPHITE, although restricted to one type of object, namely grapl;s, has provide
valuable insight into the difficulties of supporting complex objects. For the Arcadia environment,
our goal is to support arbitrary abstract data types. In addition, we are considering the design of
an object manager that would recognize views of objects, have a flexible storage mechanism that
could be directed by the programmer to partition objects based on perceived locality of reference
and frequency of use, but could override these directives based on experiential evidence. We are
considering such capabilities as object persistence in which instances of objects can be written
to and read from secondary storage without forcing the developer to explicitly program how to
go from the program representation to the linear secondary storage représentation. And we are
incorporating interface control information into the data abstraction so that the minimal impact
of change can be recognized and exploited by the object manager. Again we are focusing on
the needs of software development environments and the complex, interrelated objects that they
create and manibulate. The presence of such an object manager will greatly facilitate environment
development by automating many of the tasks, documenting available types and objects and their
interrelationships, and minimizing the impact of change. Even production environments must be
designed to accommodate change since the tool set and the associated types and objects must be
allowed to grow as developers’ needs change. Thus the issues we are exploring should cross the
boundary between prototype and production development in this domain, as it most certainly does

in other problem domains.

36

Acknowledgements

We wish to thank Mary Burdick, Peri Tarr, William Rosenblatt, and Robert Graham for their

contributions to the design and implementation of GRAPHITE.

37

REFERENCES

[1] P.A. Bernstein, Database System Support for Software Engineering, Proceedings of the
Ninth International Conference on Software Engineering, Monterey, California,
March 1987, pp.166-178.

[2] Reference Manual for the Ada Programming Language (ANSI/MIL-STD-1815A),
United States Department of Defense, Washington, D.C., January 1983.

(3] D.A. Lamb, Sharing Intermediate Representations: The Interface Description Language, Tech-
nical Report CMU-CS-83-129, Computer Science Department, Carnegie-Mellon University,
Pittsburgh, Pennsylvania, 1983.

[4] R.N. Taylor, L.A. Clarke, L.J. Osterweil, J.C. Wileden, and M. Young, Arcadia: A Software
Development Environment Research Project, Proceedings of the IEEE Computer Society
Second International Conference on Ada Applications and Environments, Miami
Beach, Florida, April 1986, pp.137-149.

[5] W.F. Tichy, Smart Recompilation, ACM Transactions on Programming Languages and
Systems, Vol. 8, No. 3, July 1986, pp.273-291.

[6] A.L. Wolf, Language and Tool Support for Precise Interface Control (Ph.D. Dissertation),
COINS Technical Report 85-23, COINS Department, University of Massachusetts,
Ambherst, Massachusetts, September 1985.

(7] A.L. Wolf, GRAPHITE User Manual, Arcadia Desigh Document, 1987.

[8) A.L. Wolf, L.A. Clarke, and J.C. Wileden, The AdaPIC Toolset: Supporting Interface Control
and Analysis Throughout the Software Development Process, IEEE Trans. on Software
Engineering (to appear), 1987.

Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).
UNIX is a trademark of AT&T Bell Laboratories.

ULTRIX is a trademark of Digital Equipment Corporation.

VERDIX is a trademark of VERDIX Corporation.

38

