A Task Grammar Approach to the
Structure and Analysis of Robot Programs

R.Vijaykuma.rT, S.Venkata.rama,nT, G.Dakint
D.M.LyonsI

COINS Technical Report 87-67

July 1987
TLaboratory Jor Perceptual Robotics ¥ Robotics and Flezible Automation Dept.
Dept. of Computer and Information Science Philips Laboratories
Unsversity of Massachusetts 845 Scarborough Rd.
Amherst, MA 01008 Briarcliff Manor, NY 10510
ABSTRACT

This paper describes a formal representation for the structure and context of a
robot task. The principal objective of the representation is to allow the analysis
of robot task descriptions for correctness. The importance of having an explicit
representation of a task and its structure in addition to an object representation
is emphasized. A formal-languages approach is used to express task structure.
Although an informal semantics of task representation is used in this paper, we
discuss the use of a formal semantics in the final section.

A version of this paper is to be published in the proceedings of the IEEE Workshop
on Languages for Automation, Vienna, Austria, August 25-26th, 1987.

Task Grammar 1

A Task Grammar Approach to the
Structure and Analysis of Robot Programs

R.Vijaykuma.rT, S.Venkata.ramanT, G.Da.kinT, and D.M.Lyons;t

TLaboratory for Perceptual Roboties Y Robotics and Flexible Automation Dept.
Dept. of Computer and Information Science Philsps Laboratories
Univ. of Massachusetts 345 Scarborough Rd.
Amherst, MA 01003 Briarcliff Manor, NY 10510

1. Introduction

Typically, robot programming languages are divided into robot-level languages, where
all actions are defined in terms of manipulator movements, and task-level languages, where
all actions are described in terms of object relationships. We argue in this paper that
there is a useful third class of languages: task-level languages which have an explicit
representation for the operational aspects of a task. Informally, a task can be defined as
a well-defined domain of interaction between the robot and the environment. Associated
with it are a purpose, a method, and a specification of when the method remains applicable.
For example, if tracing a surface is the purpose of a task, compliant motion could be its
method and contact with the surface would be the applicability condition. We define
the contezt of a task to be its method along with its applicability condition. Methods of
complex tasks are obtained as compositions of methods of simpler tasks, just as programs
are obtained as compositions of statements, conditionals, loops, etc. The structure of a
method constitutes the structure of the corresponding task.

In this paper we construct a formal definition for tasks and suggest a representation
for the structure of tasks. The basic composition operations we introduce to express
complex tasks in terms of simpler tasks are sequencing, parallel execution and conditional
execution. In each case, we are interested in determining if the task will succeed or where it
can fail. We use context-free grammars to represent task structure and provide operational
semantics for this representation. Throughout this work the semantics of task structures is
given informally. However, a formal semantics could be defined based on Lyons’ R S (Robot

Preparation of this paper was supported in part by grant numbers DMC-8511959 and IST-8513989 from
NSF (M.A.Arbib and K.Ramamritham, Principal Investigators).

Task Grammar 2

Schemas) [3] model of computation. This issue is discussed in the final section.

An overview of previous work in this area sets the scene for our definition of a task.
We develop a representation for task structure based on formal grammars and illustrate
this development with a simple but useful example. This representation is then augmented
to deal with parallel actions and conditional actions. Finally, the way in which this task
structure representation suggests a hierarchical decomposition of tasks is discussed.

2. Motivation

Robot-Level programming systems are computer languages with predefined routines to
control the robot actuators and sensors ezplicitly, while task-Level programming systems
are specially defined programming languages in which actions specified implicitly through
desired object relationships. The motivation for constructing a task-level interface to a
robot is simply that it is easier for humans to specify programs in terms of the desired
relationships between objects, than in terms of manipulator movements. However, goal
object relationships are only part of the information a human can readily provide. A
particular goal object relationship may be established by more than one set of actions.
Frequently, the actions (i.e. operations) by which the goal relationship is achieved are very
important, especially in fine motions. For example, the goal relationships for the insertion
of a peg into a hole and placing one block on another are very similar. The control strategy
adopted for insertion, however, is quite different from that for simple placement. The
value of providing such operation information was recognized early in the development of
task-level languages|2].

Our contention is that while goal object relationships by themselves do not provide
adequate information for selecting an appropriate control strategy, a combination of object
and operation information is adequate for this purpose. This provides the motivation
behind our view of tasks as comprising of a purpose (goal object relationships), 2 method
(control strategy) and its applicability condition.

Fine motion strategies [4] are a good example of what we would call a task control
strategy and they provide a clear operational meaning (our example of insertion versus
placing). In addition, they have a good formal representation. However, there is no formal
representation for the way in which fine motions and free motions must be mixed, perhaps
hierarchically, in a complex robot program. This is the main problem we attempt to
address using our formalism for task structure. The following section introduces a formal

Task Grammar 3

definition of tasks and our representation for task structure.

3. The Definition of A Task

We start by reiterating what we mean by the word “task.” A task defines a well-
defined domain of interaction between the robot and the environment. A task description
contains a specific goal condition, a control strategy to achieve this goal, and an applicability
condstion specifying whether or not the control strategy remains appropriate for achieving
the goal. The control strategy represents one possible way to achieve this goal, and is what
is primarily characteristic about any given task.

The task control strategy is a concise description of the relationship between sensing
and action in a task. Since committment to a specific task control strategy eliminates
possible actions and interpretations of sensory data, it is very important to ensure that
the applicability condition holds throughout the execution of the control strategy. To
reflect the need for continuous monitoring of this applicability condition we term this a
task tnvariant condition. For example, if during an insertion task, the gripper drops the
peg, then the insertion task is no longer applicable; i.e., the task invariant has become
false. We now define the word task more formally and provide operational semantics for
the components of a task:

Definition 1 A task T is a triplet (Gr,Cr, I7), where

— Gr represents the goal geometry the task is to achseve.

— Cr represents the control strategy of the task: a filtering of sensory input and a
motor vocabulary.

— Iy represents the task tnvariant, a predicate which can be applied to the world
to determine sf task T s still relevant to the achievement of its goal Gr.

Definition 2 Cr s considered a servoprocess which operates continuously until esther the
logical condition Gt becomes true, in which case it ts considered to terminate success-
Jully, or until the logical condition It becomes false, sn which case it ts considered to have
terminated unsuccessfully.

Task Grammar 4

On the basis of this semantics, we shall write Iz and Gr as logical conditions and Cr as
a set of constraint equations in our examples. To emphasize that Cr is semantically a
servoprocess, we will enclose the constraint equations in angle-brackets.

As an example of this task definition, consider a guarded move. Call the robot end-
effector E and the desired contact surface C. The goal of the task is to have E against C,
where against represents the geometric relationship of the end-effector in contact with the
desired surface. We write this as:

Gr(C) : E against C

and read this as “the goal component of task T', parameterized by C, is the condition that
E be against the surface given by parameter C.”

The control strategy for this task is a compliant move expressed as a constraint equation
1 of the form u = g(kA(r) — f). The equation expresses the relationship between control
signal u that drives the end effector towards C, and the difference between the sensed force
f and the compliance force kA(r) caused by the error in end-effector position A(r). g and
k are constant terms. We write this as:

Cr:< u=gq(kA(r)-f) >

and read this as “the control strategy component of task T is a servoprocess which contin-
ually enforces the constraint equation that the control signals that move the end-effector
be given by g(kA(r) — f).”

The invariant for this task has the responsibility of ensuring that Cr remains applicable
in achieving the goal Gr. The implication here is that there exists a path from the end
effector’s present location, say r, to the contact surface C. The invariant serves to monitor
the applicability of the control strategy. Depending on the sophistication of the implemen-
tation this may be quite complex, thus making the task execution proportionately more
robust. For illustrative purposes, we choose to specify the invariant as saying that there
exists a collision free path from r to the contact surface C. We write this as:

Ir : 3 a path from r to C

and read this as “the invariant for task T is that there exists a collision free path from the
present location of the end-effector to the contact surface C”

1You could choose a different constraint equation to express the control strategy, and that would make
it a different task.

Task Grammar 5

3.1 Representation of Task Structure

The example above describes a simple task in that the control strategy is expressible
as a simple constraint equation between sensed variables and controlled variables. One of
the main objectives of this paper is to propose basic composition operators by which such
simple (and complex) control strategies may be combined to produce control strategies of
complex tasks and to suggest a suitable formal representation for the structure of such
complex tasks. Let us consider a complex task T whose control strategy is the sequent:al
composition of control strategies of simple tasks. The control strategy of this compound
task can be defined as a contezt-free grammar{5|. The language tracer, defined in relation
to this grammar will, in a sense to be defined, delimit all possible ways that this task can
execute.

Our primary motivation for choosing context-free grammars as our representational
mechanism for task structures are that: (a) sequentiality is readily represented; (b) the
use of non-terminals provides a representation of grouping and abstraction; and (c) context-
free grammars are well-understood as a formalism and therefore such a represenation lends
itself to further analysis. The definition of a context-free grammar is:

Definition 8 A contezt-free grammar G is (X, N, P, S), where:

— T is a finite set of terminal symbols (the alphabet),

— N is a finite set of non-terminal symbols,

— P s a finite set of productions of the form A — a, where A € N and a €
(NuX) .

— S € N 1s the start symbol.

L(G), the language defined by G, is the subset of T* each element of which is obtainable
by repeated applications of productions in P to the start symbol S.

Our alphabet will be a set of primitive sensory predicates and motor actions. Sensory
predicates will include task invariants and goals. Motor actions will include the control
strategy components of tasks. For example, if the control strategy of task T, Cr, occurs
in some string, we consider that to mean that the servoprocess which obeys the constraint
equations specified by Cr is started.

Task Grammar 6

Now that we have introduced the notion of formal languages, we can provide a succinct
reformulation of the operational semantics of Definition 2 of simple tasks, by defining a
set trace, of possible outcomes of a task t.

Definition 4 For a simple task t = (Gy, Cy, I), trace; 1s defined as the Iangdage over the
alphabet {G,Cy, I;,—} given by trace; = {C:,C:G:, Ci 11}

We define a task grammar as a formal language representation of the control strategy
component of a task.

Definition 5 A task grammar is a context-free grammar (Definition 8) in which the al-
phabet s composed of the goal condition, control strategy and invariant condition of some
number of subtasks.

We now have to extend our semantics of Definition 2 to tell us how to execute a control
strategy which is defined as a task grammar. We provide an informal description below:
If Cp is defined by a grammar T}, the productions are applied to the start symbol in a left-
most derivation (i.e., the left-most non-terminal is rewritten first) until a string is derived
which contains a terminal control strategy symbol Ci. This control strategy is executed,
and on successful termination of C;, the suffix of C; is processed left to right; if a terminal
control strategy appears before a non-terminal, the control strategy is executed and the
procedure is repeated with its suffix; if a non-terminal is found then left-most derivation is
applied until a terminal control strategy appears. This process is repeated until a string of
terminals comprising only sensory predicates is left. This informal description is formalized
by defining the set tracer of possible execution traces of a complex task T whose structure
is given by the grammar 7.

Definition 6 Let T denote a complez task whose control structure is given by the task
grammar T,, where T, = (Zr, Nz, Pr,St). Let o denote the operation of concatenation of
languages. For any string o of terminals and non-terminals of the grammar T,, define the
set trace, recursively as follows:

1. if @ = w, where w is a string of terminal symbols consisting purely of sensory predi-
cates, trace, = {w}.

2. if a = wCB, where w is a string of terminal symbols consisting purely of sensory
predicates, and C; is a terminal control strategy, then tracea = ({w}o{C:,CimL;}) U
({wC\G.} o tracep).

Task Grammar 7

3. if a = wA~y, where w is a string of terminal symbols consisting purely of sensory
predicates, A is a non-terminal, and the set of producions in Pr that rewrite A are
given by
A= By|B2|]| B, then trace, = {w} o (traceg, Utraceg, - -- Utraceg,) o trace.,.

tracer is then defined as tracer = traces,. tracer is thus a language over Ty U {-}.

Definitions 4 and 6 describe the computational procedures by which the language tracer
can be derived given the grammar corresponding to task 7.

Two previous uses of formal languages in robotics are due to Albus[1] and Saridis|6).
Both of these have been aimed at structuring and programming hierarchical control sys-
tems. Our use of formal languages is to express in a concise form what possible behaviors
can result from a given task. We shall, however, take advantage of their work in decompo-
sition to examine how abstract tasks can be rephrased at less abstract levels. Both Saridis
and Albus use formal languages as a useful programming tool, whereas our use of formal
languages is primarily analytic.

3.2 Example

We shall explore the use of a grammar to represent a complex control strategy with
an illustrative example (figure 1). Suppose task T is composed of three sequential motion
control strategies for a robot end-effector — P: a position controlled move to some location
(2,y,2); followed by Q: a compliant move in the z direction until contact is made with
a surface; followed by R: a compliant move in the z direction until contact is established
with a surface during which contact is maintained in the z direction. We will describe the
components of these tasks, and then formulate the control strategy of the compound task,
T.

P = (Gp,Cp, Ip) is the positioning task. Let r denote the position of the end-effector;
r. = (zc,y., 2.) denotes the current position and ry = (Z4,¥;, 2,), the goal position. Let
PC(Ar) denotes a position controller based on the error in r.

Gp(z,y,2) :r. =7,

Cp :<u=PC(Ar) >

Ip :(fz=0)AND (fv=0)AND(fz=0)
The control strategy component here is a servoprocess which calculates control signals u
to move the end effector based on the error between the desired and the current position.

Task Grammar ® 8

Figure 1: A Simple Aggregate Control Strategy

@ = (Ggq,Cq, Ip) is the compliant move, along the z axis, to a surface. The terminology
is identical to the example in Section 3 except that all forces are subscripted with z to
denote they are forces along the z-axis (i.e., E is the end-effector, u, is the 2 direction
control signal, f, is sensed z force, and k,, g, are constants).

Gg(C) :E against C
Co < u, =g (k.A(2) - f2) >
Iq : (fz =0) AND (§, =0)

Note that contact (in the z direction) with the wall is represented through the goal com-
ponent and how we achieve contact in this direction is represented through the control
strategy. Note also that the difference between the invariance for P and @ is that @ has
no invariance specification in the z direction because that is the direction in which we
perform the compliant move through @’s control strategy.

R = (Gg,Cpg, Ir) is the final compliant motion (representing a sliding action) and is
the most complex task so far. Let D be the upright surface. '
Gr(C,D) :(E against C) AND (E against D)

Cr <y, = Qz(sz(z) - fz)a Uz = q,(k,A(z) - f’) >
IR . fy =0

Now how are these three strategies aggregated to represent T'? The goal component of

Task Grammar 9

task T is given as
Gr(C,D) : (E against C) AND (E against D)

The task invariant component for T would be that the sensed force in the y direction is
zero throughout the sequence of motions representing 7.

The compound task T has a control strategy component defined by the grammar T,
given below:
T, = (Zr,Nr,Pr,St)
ET = {CP:CQ,CRsGPaGQ1GRaIP)IQ,IR}
Ny = {t1,t2,t3}

Sr = {1} (1)
Pr = {tl — Cpt2

t2 — Cqt3

t3 — CR}

The alphabet of the grammar consists of the control strategies, goal assertions, and invari-
ants of the three component tasks. The productions implement the sequencing of the three
tasks. The language tracer obtained by Definition 6 corresponding to the task grammar
T, is given by
tracer = { Cp,Cp-Ip,

CpGpCQ,CpGpCQ"IQ, (2)

CpGquGqCR, CpGpCQGQcR—'IR,

CpGpCQGQCRGR}.

tracer consists of all possible outcomes of the compound task T, including non-terminations
and partial completions terminated by errors. The crucial point is that we now have a
representation of the interactions of the three control strategies that is open to formal
analysis.

3.3 Parallel Actions

A robot programming formalism should allow for representation of parallel actions in
order to adequately express the versatility of robot actions. Production grammars such
as the task grammar presented in this paper produce words comprising fixed sequences of
terminal symbols. Unless constructs for concurrency are built within the task grammar,
all sensory.events and motor actions generated by the grammar will be processed and
performed in a strictly sequential order. Although most tasks call for some degree of

Task Grammar 10

sequential ordering of their motor and sensory components, many perceptions and actions
may, or should, be sensed or executed in parallel. For example, preshaping of the hand is
performed in parallel with the motion of the arm.

To represent parallel actions, we extend our string notation. A string of symbols such
as $,5,955,5;s is called a sequential string of symbols. A string of symbols separated by
commas and enclosed in paranthesis such as (S, Sz, Ss), is called a parallel string. Mixed
sequential and parallel strings are allowed. We formalize the syntactic construction of
mixed sequential and parallel strings in Backus-Naur Form (BNF) as given below?:

< mized_string > = < mized string > < mized_string >|
< parallel_string >| symbol (3)
< parallel_string > == (< listof mized_strings >)
< list_of mized_strings > := < mized_string >,<listo f_mized_strings >|

< mized_string >, < mized_string >

We are now able to express the control strategy of a compound task as sequential and
parallel compositions of simpler tasks. For example, 5;5,(Ss, S4)SsSe expresses the intent
that operation S, follows S;, which is then followed by operations Ss and S, executed in
parallel. On completion of S and S, operations S5 and Se are to be executed sequentially
in that order. Based on this informal description of the execution semantics of the parallel
construct, we define below a procedure to compute the execution traces of a parallel control
strategy. The definition below is an addendum to Definition 6 to include parallel constructs.

Definition 7 Let T denote a complez task whose control structure is given by the task
grammar T,, where T, = (£r,Nr,Pr,Sr). Let o denote the operation of concatenation
of languages. Given a string s of symbols, let I, denote the set of all strings obtatned by
permuting the symbols in s (eg., If s = abe, then II, = {abc, acb, bac, bea, cab, cba}). For
any string o of terminals and non-terminals of the grammar Ty,

if @ = w(By,Ps2,---,Bn)Y, where w is a string of terminal symbols consisting purely
of sensory predicates, then the set trace, of possible ezecution traces of the control

strategy given by o is defined as trace, = {w} o (U,es IL,) otrace,, where § = traceg, o
traceg, o --- otlraceg,.

2Left and right parantheses and comma are now added to the set of terminal symbols to allow this
syntactic construction for representing parallel strings

Task Grammar 11

3.4 Conditional Actions

Another desirable feature in a notation for task control strategies is the ability to
express conditional execution. A course of action may be appropriate only when certain
conditions are detected in the environment. We use o to denote conditional execution.
For example, T} — (0 o Tp) is to be interpreted as: evaluate the condition expressed by
o; if o evaluates to true, then execute the control strategy of the task represented by Tp.
Conditional execution constructs can be mixed with sequential and parallel constructs to
express complex task control strategies. We extend the BNF description of mixed strings
in equation 3 to reflect this.

< mized_string > = < mized_string > < mized_string >|
< parallel_string >| < conditional_string >|
symbol
< conditional_string > u= (predicate o < mized_string >)

Based on the description of execution semantics of conditional constructs given above,
we provide an extension to Definition 6 to deal with task grammars that include condi-
tional constructs. Like Definition 7, the following definition should also be treated as an
addendum to Definition 6.

Definition 8 Let T denote a complex task whose control structure is given by the task
grammar T,, where T, = (1, Nr, Pr,St). For any string « of terminals and non-terminals
of the grammar T,

if @ = w(oof)y, where w is a string of symbols consisting purely of sensory predicates,
and o denotes a condition, then the set trace, of possible execution traces of the
control strategy given by a is defined as trace, = {w}o({—o}U({o}otraceg))otrace.,.

3.5 Task Hierarchies

Our task definition does not help in decisions about what domains of interaction be-
tween objects should be embodied as tasks, and what such tasks form an atomic set. That
is, they do not help in deciding how abstract tasks (high-level tasks) decompose into other
tasks, or in deciding on a complete and robust set of primitive (lowest level) tasks. The
question that immediately comes to mind is: when is a set of primitive tasks sound and

Task Grammar 12

complete with respect to assembly operations? A set of primitive tasks is complete if it can
produce all the fine and free motions necessary for any assembly. A set of primitive tasks
is sound if only valid free and fine motions can be produced by combining these tasks.

It is clear that it is hard to use completeness and soundness in any formal sense.
However, we can use them in an informal sense. It is common to divide robot motion
into free motion (motion in free space) and fine motion (motion which incurs reactive
forces, including guarded moves). The first requirement that we wish to impose on the
system is that if we construct a hierarchy of tasks, each level of the hierarchy should have
a natural concept of free and fine motion. In this case, soundness presents a criterion for
the interactions between successive levels in the hierarchy. Using this we can define an
natural set of hierarchical levels, similar to [8].

At the lowest level fine and free motion are defined between the robot and its environ-
ment (this is the traditional domain in which to view fine and free motion). At the next
level, fine and free motion are defined between an object and its environment (i.e., the
robot is holding the object, its scope of attention is limited to just the object its holding).
At the highest level of abstraction, fine and free motion are defined between arbitrary
objects (i.e., the scope of attention is the whole assembly, and is independent of robot
structure). We call these three levels of abstraction, the Immediate, Tactical and Strategic
level, respectively. For example, a fine-motion of a tool grasped in a dextrous hand against
an object in the workspace can be seen at a lower level as a fine-motion between the hand
and the tool. The informal soundness constraint tells us that a fine motion between two
objects must transform into a set of fine motions between the hand and a single object. It
also tells us that there should be no loss of information in the interaction between vari-
ous levels. For example, the task invariant associated with a task at one level should be
inherited by its subtasks at lower levels.

One of the strengths of this approach to constructing a hierarchy is that the levels are
clearly separate, and the transformations between levels are well-defined. Note that this
hierarchy embodies the object-level, manipulator-level division discussed earlier, but has
more generality since it can represent more than just geometric information. At each level
of abstraction, the control strategy component of a task is modelled as a formal language.

Task Grammar 13

4. Discussion

We have introduced a formal representation of a robot task and the structure of a task
in order to express and analyze complex tasks. The representation allows us to analyze
non-termination of a task in addition to other error cases. Our analysis is preliminary as
yet on all these issues, but it shows much promise.

We feel that the research outlined in this paper motivates the development of task-
level languages which have an explicit representation for a task description. There has
been some research along exactly these lines in the literature, e.g. Taylor’s procedure
skeletons([2,7]. However, full use has not been made of the advantages of task context.
In particular the literature is weak in the formal representation of task structure. One
promising work from the task grammar perspective is Lyons’ RS model [3]. This is a
formal model of computation specifically designed for sensory-based robot control. RS
provides a set of well-defined computational entities with which to structure robot task
plans. In [3], a Temporal logic was used to analyze tasks for correctness and safety. A
formal, R § semantics could be defined for task grammars in place of the trace semantics
(Definition 4,6, and its extensions 7 and 8). This would have the advantages of making the
task grammar concept more concise, and also providing a less complicated analysis tool
for RS programs. However, the representational abilities of the two systems are yet to be
compared.

Although this work is still in a preliminary stage, we feel the examples presented here
show its promise. Much work remains to be done. Specifically, we are now looking into
Recursive Transition Networks (RTNs) (5] and their extensions, Augmented Transition
Networks [9] as alternate representation mechanisms for task structure. Although RTNs
are equivalent to context-free grammars, the notion of task hierarchies and nesting of task
grammars suggest RTNs as a more natural representation. Augmented Transition Net-
works have the additional feature that choice of rewrite rules can be based on evaluation
of specified conditions, which is appealing given that we have conditional constructs. How-
ever, determining the viability of using these representations need further consideration.

Acknowledgements.

The authors would like to thank Michael A. Arbib of USC, and Roy Featherstone of
Philips Laboratories for many challenging comments and suggestions on the task grammar
concept.

REFERENCES 14
REFERENCES

[1] Albus, J., MacLean, C., Barbera, A., and Fitzgerald, M., “Hierarchical Control for
Robots in an Automated Factory,” Proceedings, 13th ISIR, Chicago, 1ll., Apr., 1983,
pp-13.29-13.43.

[2] Lozano-Perez, T., and Brooks, R., “An Approach to Automatic Robot Programming,”
AI Memo 842, MIT, Cambridge, MA, April, 1985.

[3] Lyons, D.M., “RS: A Formal Model of Distributed Computation for Sensory-Based
Robot Control” Ph.D. Dissertation, COINS Technical Report # 86-43, University of
Massachusetts at Amherst, Amherst, MA 01003, 1986.

[4] Mason, M., “Compliance and Force Control for Computer Controlled Manipulators”
IEEE Trans. SMC SMC-11, No.6, June 1981, pp418-432.

[5] Moll, R., Arbib, M., Kfoury, A., An Introduction to Formal Language Theory Springer-
Verlag 1987.

[6] Saridis, G.N., “Intelligent Robotic Control” IEEE Trans. on Automatic Control Vol
AC-28, No.5, May 1983, pp547-557. :

[7] Taylor, R., “A Synthesis of Manipulator Control Programs from Task-Level Spec-
ifications,” Technical Report STAN-CS-76-560, Department of Computer Science,
Stanford University, Stanford, CA, Jul., 1976.

[8] Vijaykumar, R., and Arbib, M.A., “Problem Decomposition for Assembly Planning”
Proceedings IEEE R&A, Raleigh, North Carolina, 1987.

[9) Woods, W.A., “Transition Network Grammars for Natural Language Analysis” Com-
munications of the ACM, Vol. 13, No. 10, October 1970, pp591-606.

