AL

A Perfect Lookup Table Evaluation
Function for the Eight-Puzzle

Paul E. Utgoff
Sharad Saxena

COINS Technical Report 87-71

August 4, 1987

University of Massachusetts
Ambherst, MA 01003

Abstract

The eight-puzzle is a classic problem that is used for testing, illustrating, and comparing
problem solving algorithms. Brute force search js expensive. Several heuristics have been
suggested for heuristic search. This report describes a perfect evaluation function for the
eight-puzzle. The evaluation function is represented as a lookup table. Such an evaluation
function can be helpful for study of the eight-puzzle or other small puzzles.

Contents

1. Introduction

. 2. Perfect Evaluation Function

3. Analysis -

A Program Code

Al Filetablec
A2 Filetabled.
A3 Fileindexfnsc,

A4 File tablesum.c
A5 Filepositions.]

1. Introduction

The eight-puzzle consists of 8 square tiles lying in a 3x3 grid. The tiles are numbered 1
through 8. A legal move consists of sliding a tile that is horizontally or vertically adjacent
to the empty location into the empty location. The standard goal state is the particular
configuration shown in figure 1. An eight-puzzle problem is generated by scrambling the
tiles using only legal moves. The objective is to solve the puzzle by identifying a sequence
of moves that restores the tiles to the goal state configuration.

1123
4156
718

Figure 1: Goal State for the Eight-Puzzle

2. Perfect Evaluation Function

An evaluation function maps a problem state to an estimate of the remaining work to
be done to reach a goal state. A perfect evaluation function is one in which the estimate is
correct. Many imperfect evaluation functions have been devised for the eight-puzzle, such
as the total number of misplaced tiles, and the sum of the Manhattan distance of each tile
from its correct location in the goal state (Nilsson, 1971). This section describes a perfect
evaluation function, represented as a lookup table.

There are 9! possible ways to lay 8 tiles into a 3x3 grid. However, given the rule for
moving a tile, these 9! states are partitioned into two subsets. One subset contains all the
states from which the goal state can be reached in 0 or more steps. The other set contains
the states from which the goal state cannot be reached.

For each of the 9!/2 legal states, a perfect evaluation function maps the state to the
number of moves needed to reach the goal state. It should be noted that with the existence
of a perfect evaluation function, hill-climbing is a sufficient search algorithm. A perfect
evaluation function was generated as a lookup table in an exhaustive manner using the
procedure given in figure 2.

The table generation procedure is straight forward except for mapping a state to an
index for the purpose of indexing the lookup table. The algorithm for mapping the permu-
tations one to one onto a unique interval of integers is taken from (Reingold et al, 1977).
The generation algorithm creates the lookup table in 124 cpu minutes on a VAX 750 under
Berkeley 4.2bsd. The code is a combination of Franz Lisp and C.

3. Analysis

The lookup table allows some simple analysis. A distribution of the number of states
for each value is shown in figure 3. Recall that the value is the number of steps needed
to reach the goal state. For example, there are two distinct problem states that require

1

1. Initialize the lookup table with each entry as undefined.

2. Set open list to contain a single element that is the goal state G with value 0. An element is
a (state,value) pair.

3. Remove the first (state,value) pair from open, call it (s, v).
4. Define lookup(s) to have value v.
5. Generate the successors of s, call them succ, associating with each one the value v+ 1.

6. For each succ;, if lookup(succ;) is undefined, then append the element (succ;, v + 1) to the
end of open.

7. If open is empty then stop, else go to 3.

Figure 2: Procedure for generating lookup table

exactly one step to be solved. Note that the worst case problem requires 31 moves. The
average problem requires 21.9724 moves.

A further observation is that one can compute the size of a restricted problem space.
For example, if one is limited to problems that require at most 10 steps, then the problem
space contains only 706 states, the result of

10
Y states(t)
i=0

with states(:) returning the total number of states of length ¢, as indicated in the distri-
bution.

References | . .
Nilsson, N. J. (1971). Problem-Solving Methods in An;tiﬁcial_ Intelligence, McGraw-Hill.

Reingold, E. M., Nievergelt, J. and Deo, N. (1977). Combinatorial Algorithms: Theory and
Practice, Prentice-Hall.

Value States

[1
1 2
3 4
3 8
4 16
5 20
[30
7 [}
8 1108
o 152
10 280
11 306
12 T48
13 102¢
14 1803
15 2512
16 4485
17 5638
18 0520
10 10878
20 16003
21 17110
22 23052
23 20224
24 24047
25 165678
26 14860
27 6274
28 3010
20 700
3n 221
31 2

Figure 3: Distribution of states by solution length

A Program Code
Al File table.c
#include <sys/file.h>

typedef unsigned char uchar;

static uchar *table = (uchar *) 0;
static long tablesize = 0;

inittable(tsize)
int *tsize;
{ int i;

if (*tsize<0)
return(-1);
else
{ it (table) free(table);
tablesize = *tgize:
table = (uchar *) malloc(tablesize);
for (i=0; i<tablesize; i++) table[i]=0;
return(tablesize);
}

restoretable()
{ int 14d:

fd=open("eight.table",0_RDONLY,0660) ;
if (£d)

{ it (table) free(table);
read(fd,&tablesize,sizeof (long));
table = (uchar *) malloc(tablesize);
read(fd,table,tablesize);
close(£d);
return(tablesize);

}

else
return(-1);

}

savetable()
{ int 14;

fd=open("eight.table",0_CREAT|O_WRONLY,0660) :
it (£d)
{ write(fd, &tablesize,sizeof(long));
write(fd,table,tablesize);
close(£d);
return(tablesize);
}

else
return(-1);

puttable(index,val)
int *index,*val;
{ if (table && O<=(*index) && (*index)<tablesize && table[*index]==0)
{ table[*index]=(*val)+1;
return(table[*index]-1);
}
else
return(-1);

}

gettable(index)
int *index;
{ if (table && O<=(*index) && (*index)<tablesize)
return(table[*index]-1);
else
return(-1);

A2 File table.l
(cfasl "table.o" ’'_inittable 'init-table nin)

(getaddress '_restoretable ‘restore-table "i")
(getaddress ’'_savetable ‘save-table "in)

(getaddress *_puttable "put-table "in)

(getaddress °_gettable ‘get-table "in)

(cfasl ‘indexfns.o '_state_to_index ‘state-to-index "iv)

(getaddress '_index_to_state 'index-to-state "i")

A3 File indexfns.c

/* returns the lexicographic number of a pernutation in perm of size length */
#include <stdio.h>
state_to_index(pern)
long *perm;
{ int state[16],length;

int index_value.element.index.tactorial.temp.k:
length=0;
while (perm)
{ state[length++] = % ((int *) (*((long *) perm+1)));
pern = (long *) *perm;
};
index_value = 0;
for (element = 0; element < length ; element ++)
{
index = state[element] - 1 ;
factorial = length - element - 1 ;
temp = factorial ;
while (temp > 1) factorial *=. (--temp) ;
index_value += index * factorial :
for (k = element + 1 ; k < length ; k++)
if(state[k] > state[element])
state[k]--;
}
return(index_value);

index_to_state(index,length,pernm)
long *index,*length,*pernm;
{
int state[l&].factorial.number.remainder.pos,elements.i.j.ka
elements = *length - 1;
number = *index ;

factorial = 1 ;
pos = 0 ;
while (*length > 1)
{
for (1 = 2 ; 1 <= *length ; i++)
{ C
factorial *= i - 1 ;
remainder = number % i ;
number = number/i ;
)
state[pos] = remainder;
(*length)-- ;
pos += 1;
*index -= (remainder * factorial);
number = *index;
factorial = 1;
}
state[elements] = 1 ;
for(i = elements - 1 ; i >= 0 ; i--)

{
for(j = i+1 ; j <= elements ; j++)
if(state[j] > state[i]) state[j] += 1 ;
state[i] += 1;

}

k=0;
while (pernm)
{ * ((long *) (*((long *) perm+1))) = state[k++];
perm = (long *) *perm;
}
return(k);
}

A4 File tablesum.c

#include <stdio.h>
main()
{ int i,n,count[264],maxcnt, j,total;

total=0;
maxcnt=0;
for (i=0; 1<264; i++) count[i]=0;

n=restoretable();
printf("Table size = %d\n",n);

for (i=0; i<n: i++)
{ j=gettable(&i);
if (j>=0) count[j]++;

it (j>maxcnt) maxcnt=j ;
b H

for (i=0; i<=maxcnt; i++)
{ printf("count [%2d] = %6d\n",1i,count[i]);
total += count[i];
};

printf("Table holds %d elements\n",total);

exit(1);
}

A5 File positions.]
(eval-when (compile) (includet '/user/lrn/utgott/lisp/lisp.1))

(declare (macros t)

(special ~goal
“instances
“top-row
“bottom-row
“left-column
“right-column
“row-gize
“board-size
“table-gize
“max-elements
“perm-hunk
“debug
poport
TERM))

(setq “top-row '(1 2 3))

(setq ~“bottom-row ‘(7 8 9))

(setq “left-column '(1 4 7))

(setq “right-column ‘(3 6 9))

(setq “row-size 3)

(setq “goal '((1 234667 80)9))
(setq “board-size 9)

(setq “table-size 362880)

(setq “max-elements 362880)
(setq “debug nil)

(load 'table.l)

(init-table “table-size)

(det get-all-positions
(lambda (goal)
(let [open-list options new-position test-index (elements 0) (steps-to-goal
0)]
(setq open-list (tconc nil (1list (pack-board goal) steps-to-goal)))
(put-table (state-to-index (car goal)) steps-to-goal)
(incr elements)
(While
[(and (car open-list) (< elements “max-elements))
(setq new-position (caar open-list))
(cond
[(eq (car open-list) (cdr open-1list)) (setq open-list nil)]
[t (setq open-list (rplaca open-list (cdar open-1list)))])
(setq options (next-states (unpack-board (car new-position))))
(setq steps-to-goal (addl (cadr new-position)))
(let [configuration index]
(While
[options
(setq configuration (Pop options))
(setq index (state-to-index (car configuration)))
(cond
[(eq (get-table index) -1)
(put-table index steps-to-goal)
(incr elements)
(and (eq (remainder elements 1000) 0)
(msg (length (car open-1list)) t))
(setq open-list
(tconc open-list
(1ist (pack-board configuration)

steps-to-goal)))1)1))]
[(>= elements ~max-elements)

(msg "too many elements" t t)
($prpr (car open-list))
(return)1))))

(def pack-board
(lambda (state)

(let [(val 0) (vec (car state))]
(While

[vec (setq val (+ (* 10 val) (Pop vec)))])
val)))

(def unpack-board
(lambda (val)
(let [vec blank (i 9)]

(While
(> 1 0)
(Push vec (remainder val 10))
(setq val (quotient val 10))
(cond

[(eq (car vec)) (setq blank 1)])

(decr 1)])

(l1ist vec blank))))

(def next-states
(lanbda (configuration)
(let [end-conditions]
(setq end-conditions (boundries configuration))
(cond
[(eq (length end-conditions) 0)

(1ist (move-up configuration)
(move-down configuration)
(move-left configuration)
(move-right configuration))]

[(eq (length end-conditions) 1)
(cond
[(eq (car end-conditions) 1)
{ The blank is in left column)}
(1ist (move-up configuration)
(move-down configuration)
(move-right configuration)))
[(eq (car end-conditions) 2)
{ The blank is in the right column}
(1ist (move-up configuration)
(move-down configuration)
(move-left configuration))]
[(eq (car end-conditions) 3)
{ The blank is in the top row}
(list (move-down configuration)
(move-left configuration)
(move-right configuration))]
[(eq (car end-conditions) 4)
{ The blank is in the bottom row}
(list (move-up configuration)
(move-left configuration)

(move-right configuration))])]
[t

{ Blank position satisfies 2 end conditions}
(cond

[(memq 1 end-conditions)

{ Blank in left col}

(cond
[(memq 3 end-conditions)
{ And in top row}
(1ist (move-down configuration) (move-right configuration))]
[t
{ And in bottom row}
(1ist (move-up configuration) (move-right configuration))])]

[t

{ Blank in right col.}

(cond
[{(memq 3 end-conditions)
{ And in top row}
(1ist (move-down configuration) (move-left configuration))]
[t
{ And in bottom row}
(1ist (move-up configuration) (move-left configuration))1)1)1))))

(def boundries
(lambda (configuration)

(let [end-conditions (blank-position (cadr configuration))]
(cond

[(memq blank-position ~left-column) (Push end-conditions 1)])
(cond

[(memq blank-position ~right-column) (Push end-conditions 2)])
(cond

[(memq blank-position ~“top-row) (Push end-conditions 3)])
(cond

{(memq blank-position ~bottom-row) (Push end-conditions 4)])
end-conditions)))

(def move-up
(lambda (configuration)
(change configuration (- (cadr configuration) ~“row-size))))

(def move-down
(lambda (configuration)
(change configuration (+ “row-size (cadr configuration)))))

(def move-left
(lambda (configuration)
(change configuration (- (cadr configuration) 1)))) :

(def move-right
(lambda (configuration)

10

