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ntelligent teaching
systems are emerg-
ing as a possible
solution to the
nation’s large training
problem in government,
academy, and industry.
But since the few systems
that have been built were
customized for specific
applications, few guide-
lines or tools exist for
building intelligent
teaching systems. As a
result, building such sys-
tems remains a black
art—a pretechnology
requiring considerable
experimentation and
effort while producing
minimal results. In addi-
tion, existing systems
show intelligence within
a narrow specialization.
Like other expert sys-
tems, tutoring systems
display varying levels of
expertise.! In every case,
an intelligent tutor has
less breadth of scope

and flexibility than does its human counterpart. Incor-
porating community expertise could increase the
limited competence of current tutors.

We believe that intelligent tutoring systems can be
designed using a community memory, with multiple
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experts contributing
their teaching and learn-
ing knowledge. The con-
cept of knowledge base
as community memory
reflects the fact that
knowledge is often dis-
tributed, incomplete, and
acquired incrementally—
especially in tutoring
systems where the
domain expert, cognitive
scientist, and teaching
expert are typically not
the same person.' Expe-
rience with commercially
successful expert systems
such as R1? and the Dip-
meter Advisor® suggests
that using knowledge
from a single expert can
produce systems foreign
to other system users—
systems having concep-
tual holes. In the case of
the Dipmeter Advisor,
the expert model solved
problems in an uncom-
mon way, creating blind
spots in the knowledge

base.! To develop a community memory for tutoring
systems, we need to create a framework within which
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teaching experience and domain wisdom can be saved.
We must be able to (1) modify this framework, and (2)
augment it as time passes.

We will study the development of three intelligent
tutors, describing how lessons about acquiring knowl-
edge from multiple experts were applied toward build-
ing each system. In particular, we will look at tools
and methodologies for knowledge acquisition that
might be transferred to other systems. We will first
describe the role of computers in education, and then
examine our three case studies in detail. Finally, we
will extrapolate from these systems possible tools and
criteria for building intelligent tutors.

Computers in education

Education is in trouble. Tough classroom problems,
lack of public support, and inappropriate policies
have left educators engaged in an uphill battle to
reverse deficiencies in student learning and teacher
training. This dilemma has fostered sometimes
unrealistic expectations on the state of intelligent
tutoring systems; hardware and software potential
have led to exaggerated stories about the possible
achievements of an as yet undeveloped technology.

As Figure 1 illustrates, innovation in computer tech-
nologies can be viewed as an S-curve measuring the
relationship between the effort put into improving a
product or process and the results one gets back from
that investment.* Preintelligent tutoring systems, or
computer-aided instructional systems, are at the end
of their S-curve (Figure la); consequently, increased
effort brings little additional performance. Expert sys-
tems (Figure 1b) are beginning to emerge from the low
part of their S-curve as uniform and easy-to-use tech-
nologies like Al shells are developed, speeding produc-
tion and performance. Intelligent tutoring systems
(Figure Ic) are at the beginning of their S-curve; thus,
they require substantial effort and new tools before
they can produce substantial results.

Preintelligent tutoring systems achieved high per-
formance in many areas by encoding built-in commit-
ments regarding how their knowledge would be used.**
These systems represented knowledge implicitly within
the specific command that determined (and thus
predefined) system input/output. As a result, each sys-
tem required excessive development time.

The first hour of computer-aided instruction typically
required about 200 hours of programmer preparation—
an amount possibly exceeded by the preparation time
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required for building intelligent teaching systems.
However, each additional hour of instruction for
preintelligent systems also required about 200 hours of
programmer preparation. Domain or teaching knowl-
edge must be implicitly defined in the very question or
explanation for which the knowledge is intended. This
led to systems that could not automatically query stu-
dents about concepts that had been previously
defined.

In comparison, intelligent tutors are designed to
make their knowledge explicit and uncommitted,
thereby utilizing a single piece of knowledge in many
ways. For example, by explicitly representing a concept
such as force or acceleration, a physics tutor should
have some flexibility in the use of that knowledge—
and should be able to test students about the concept,
describe the concept, demonstrate it within a simula-
tion, and answer questions about it.

CaSef studiés ‘

The following three example tutors all required mul-
tiple sources of knowledge expressing their knowledge
explicitly. From these case studies, we will attempt to
derive tools and methodologies that can be used to
acquire knowledge for the next intelligent tutor gen-
eration.

RBT for teaching complex industrial processes. The
first tutor is fully implemented, tested, and now being
used for training in nearly 60 industrial sites across
America. It is still being augmented based on formal
evaluations of student response to the system. RBT
(the recovery boiler tutor) was built for a kraft recov-
ery boiler—the type of boiler found in paper mills
throughout the United States.’

Built by the J.H. Jansen Company and sponsored
by the American Paper Institute, RBT provides multi-
ple explanations and tutoring facilities tempered to the
individual user (a control room operator). The tutor is
based on a mathematically accurate formulation of
the boiler and provides an interactive simulation com-
plete with help, hints, explanations, and tutoring (see
Figure 2).

Students can initiate any of 20 training situations,
emergencies, and operating conditions—or they can
ask that an emergency be chosen for them. Students
can also accidentally trigger an emergency as a result
of their actions on the boiler. Once an emergency has
been initiated, students are encouraged to adjust
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Figure 1. The S-curve of three computer technologies: (a) computer-aided instruction technology; (b) expert
systems technology; (c) intelligent tutoring systems technology.
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Figure 2. A sectional view of the recovery boiler.

meters and perform actions on the simulated boiler to
solve the emergency. The system challenges student
operators to solve new problems while the system
monitors and advises those operators. RBT can recog-

. nize optimal, less than optimal, and clearly irrelevant
actions. Operators can continue their freewheeling or
purposeful problem-solving behavior while the tutor
offers help, hints, and explanations—plus providing
tutoring advice when needed or requested. Operators
are expected to observe the impact of their actions on
the simulated boiler and to react before the tutor
advises them regarding potential problems.

An example dialogue. In the example interaction
below between student and tutor, a partial blackout is
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in progress that will lead to combustion process deteri-
oration if no action is taken. As students change set-
point controllers and request information about the
boiler, the tutor selectively discusses the optimality of
their actions and suggests how they might better focus
their actions or utilize their data. An important fea-
ture to note about this dialogue is that at any point
during the simulated emergency there are many
actions that operators might take and, as the problem
worsens, an increasing number of actions that they
should take to correct the operating conditions. Thus,
an immediate and correct response might require only
one action, such as rodding the primary air ports. But
a delayed response causes the situation to worsen,
requiring the addition of auxiliary fuel.
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Meters indicate that CO, SO2, and O2 readings are
abnormally high. An alarm buzzer sounds, beginning
the following dialogue:

Tutor: What action are you going to take?
Student: Check smelt spout cooling water.
[The student’s action does not result ina
change in the boiler.]

Tutor: It looks as though the liquor isn’t
burning . . .

Student: Help. What is going on? [The stu-
dent requests help.}

Tutor: A partial blackout is occurring and
this causes TRS, CO, SO2, and O2 to
increase. Steam flow and steam temperature
are dropping. [ think part of the bed is not
burning.

Student: Rod the primary air ports. [A small
improvement in the boiler readings can be
observed.)

Tutor: Your action is correct; however, at this
time rodding alone is not effective . . .
Student: Raise the liquor temperature. {The
student’s action does not reverse the emer-
gency and a new alarm buzzer sounds.]
Tutor: Rodding the air port apparently was
not enough to undo the blackout.

Student: Increase the oil fuel supply. [The
student’s action reverses the emergency.]
Tutor: That solved the problem alright.
Good thinking.

Analysis of the problem: You had a partial
blackout caused by plugged primary air ports
and a cold bed. Partial blackouts can be
effectively treated through a combination of
rodding the primary air ports and adding
more heat. The problem can be avoided by
keeping the air ports clean.

This dialogue was not actually produced in natural
language; student input was handled through menus
and tutor output produced by cutting text from
emergency-specific text files loaded when the emer-
gency was invoked. Operator interactions are handled
through a hierarchy of menus enabling such activities
as checking for a tube leak or rodding the smelt spout
as well as selecting the alarm board or control panel
board.

While the simulation of the recovery boiler is run-
ning, operators can view the boiler from many direc-
tions and can focus on several components; for
example, the fire bed in Figure 3. The tutor provides
assistance through visual clues such as a darkened
smelt bed, acoustic clues, ringing alarm buzzers, tex-
tual help, explanations, and dialogues. Operators can
request up to 30 process parameters on the complete
panel board, view an alarm board (not shown), change
20 set points, and ask menu questions such as ‘““What
is the problem?”” ““How do I get out of it?*” “What
caused it?”’ and “What can I do to prevent it?’’ These
questions are answered by cutting text from a file
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which was loaded with the specific emergency. These
questions do not provide the basis of the tutor’s
knowledge representation, which is described else-
where.” Operators can request meter readjngs, physical
and chemical reports, and dynamic trends of variables
(see Figure 4). All variables are updated in real time
every 1 or 2 seconds.

In addition to providing information about the
explicit variables in the boiler, RBT provides reasoning
tools designed to aid students in reasoning about
implicit processes in the boiler. One such tool is com-
posite meters (shown on the left sides of Figures 2
through 5) recording the state of the boiler using syn-
thetic measures for safety, emissions, efficiency, and
reliability of the boiler. The meter readings are calcu-
lated from complex mathematical formulas that would
rarely (if ever) be used by operators to evaluate the
boiler.

For instance, the safety meter is a composition of
seven independent parameters including steam pres-
sure, steam flow, steam temperature, feed-water flow,
drum-water level, firing-liquor solids, and combusti-
bles in the flue gas. Meter readings allow students to
make inferences about the effect of their actions on
the boiler using characteristics of the running boiler.
These meters are not presently available on existing
pulp and paper mill control panels; however, if they
prove effective as training aids, they could be incorpo-
rated into actual control panels.

Other reasoning tools include trend analyses (see
Figure 5) and animated graphics such as shown in the
Figures above. Animated graphics provide realistic and
dynamic drawings of the several boiler components
such as steam, fire, smoke, black liquor, and fuel.
Trend analyses show how essential process variables
interact in real time by allowing operators to select up
to 10 variables including liquor flow, oil flow, and air
flow—and to plot each against the others and against
time. : )

Each student action, be it a set-point adjustment or
a proposed solution, is recorded in an accumulated
response value reflecting overall operator scores and
how successful (or unsuccessful) operator actions have
been and whether actions were performed in sequence
with other relevant or irrelevant actions. This accumu-
lated value is not presently used by the tutor, but the
notation might be used to sensitize the tutor’s future
responses to student records. For instance, if operators
have successfully solved a number of boiler emergen-
cies, the accumulated value might be used to temper
subsequent tutoring so that it is less intrusive. Simi-
larly, if student performance has been poor, the
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accumulated value could be used to activate more
aggressive responses from the tutor,

RBT has been well received and is presently used in
actual training in the control rooms of pulp and paper
mills throughout the US. Formal evaluation has
begun. However, informal evaluation suggests that
operators enjoy the simulation and handle it with
extreme care. They behave as they might in actual con-
trol of the pulp mill panel—slowly changing parameters,
adjusting meters through small intervals, checking
each action, and examining several meter readings
before moving on to the next action. Experienced and
novice operators alike engage in lively use of the sys-
tem after about a half-hour introduction. When
several operators interact with the tutor, they some-
times trade ‘“war stories,”” advising each other about

SUMMER 1987

rarely seen situations. In this way, experienced opera-
tors frequently become partners with novice operators
as they work together to simulate and solve unusual
problems:!

RBT was developed on an IBM PC AT with 512K-
byte RAM, enhanced graphics, and a 20M-byte hard
disk. It uses a math coprocessor, two display screens
(one color), and a two-key mouse. The simulation was
implemented in Fortran and took 321K bytes; the tutor
was implemented in C and took 100K bytes. Although
we tried to implement the tutor in Lisp, we found
extensive interfacing and memory problems, including
segment size restrictions (64k), incompatibility with
the existing Fortran simulator, and addressable RAM
restrictions (640K).

To circumvent these problems, the tutor was devel-
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Figure 5. Trends selected by the operator.

oped in C, with many Lisp features implemented in C
such as functional calls within the parameters of C
functions. Meter readings and student interactions in
the simulation were transferred between Fortran and C
through vectors passed between the two programs.

Caleb for teaching a second language. Our second
intelligent tutor teaches languages based on a power-
ful pedagogy called the “‘Silent Way’>—a method
developed by Caleb Gattegno that uses nonverbal
communication within a controlled and artificial envi-
ronment to teach second languages.® Learning a *‘sec-
ond”’ language differs from acquiring a “‘first”’
language (as a child does). Children learning a first
language must acquire linguistic competence such as
the ability to associate meaning with sound, to make
transformations, and to derive rules from observations
and experimentation. Persons who have learned a first
language have this linguistic competence and the
Silent Way capitalizes on their ability by providing a
directed environment engaging them in new, but
analogous, linguistic experiences. The directed discov-
ery environment engages students in an active learning
process.

In Figure 6a, the tutor presents a new piece—a rod
located in the center box. The student responds by
typing the word for the new piece at the cursor. In Fig-
ure 6b, the student invents a new phrase by combining
old pieces with the new one. In Figure 6c, the tutor
corrects a student who places the adjective before
(rather than after) the noun.

The tutor teaches Spanish by using graphical
representations of Cuisenaire rods (originally devel-
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oped by Gattegno for teaching arithmetic) to generate
linguistic situations in which new words such as
nouns, verbs, and adjectives are associated with mean-
ing. On the screen, a rod is shown playing various
roles; for example, it is used as an object to be given or
taken by a student, or it is used to brush teeth. As a
new rod is presented, students theorize about what sit-
uation is being represented, offer their conjectures,
and revise their hypotheses as the situation demands.
Students respond by typing a phrase to describe the
situation in the text window. If the picture of a rod
appears while the words una regleta are displayed, stu-
dents type una regleta (as seen in Figure 6a). If students
theorize that a new word such as blanca describes the
size of the rod, they can later change that definition if
(in fact) the new word defines the color of the rod (see
Figure 6b). Meanwhile, students will have learned to
write the word, spell it, and place it correctly in a sen-
tence (see Figure 6¢). They will have classified the
word as a descriptor and will have invented phrases
using it. Making and correcting hypotheses is central
to language learning. Learner refinement of word
meaning (that is, by a closer and closer approximation
of expert ability) is one way to achieve linguistic
mastery.

The tutor does not display words except to mention
once, and only once, each new word in the target lan-
guage. The tutor provides minimal pieces of the new
language where piece is defined to be a phoneme, syl-
lable, word, or phrase (see Figure 7). Pieces are aspects
of the language that students can’t invent, such as
vocabulary and pronunciation. The tutor communi-
cates silently, using icons, edit signals, and the rods—
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blanca

una regleta

Figure 6. A system for teaching second languages.

Theme Pleces Potentlal misconceptions
1. Noun arod, unaregleta word order/agreement
example response: una regleta
2. Adj white, blanca word order/agreement
grey, gris

striped, listada
dotted, punteada
example response: una regleta blanca

3. Conj and,y word order/use in series
example response: una regleta gris y una regleta blanca — una regleta gris,
una regleta blanca, y una regleta negra

4. Numbers two, dos -s word order/agreement
three, tres -s
one, una
example response: dos regletas blancas y tres regletas negras
5. Noun deletion one, blank usein series/agreement
ones
example response: una regleta roja y una blanca - dos regletas blancas y tres negras
6. Verb + direct take, toma word order/agreement
object
example response: toma una regleta gris - toma una regleta gris y tres blancas
7. Verb + indirect give me, dame word order/pronoun/agreement/case
object
example response: dame una regleta blanca - dame tres regletas negras y dos blancas
8. Pronoun it/them, la/las word order/pronoun/agreement/case

example response: toma una regleta blanca y damela - toma tres regletas negras y damelas

Figure 7. Themes and pieces in the Spanish curriculum.
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Label idea to get across

go it Is your turn to do something

wait tutor busy, don't worry about
nothing happening

attention tutor about to do something new

signal OK let student know his response is

signal error

OK
let student know he has error

puzzied/repeat say/do again (unintelligible
response)
more say/do more (incomplete
response)
help help is available
dictionary list of words already covered
“throw out extra stuff, do not need
stop save and quit = good bye
pause take a break/stop timer
take icon for mouse action
give icon for mouse action

pacing regulator

frustration
gauge
error correcting

slow down or speed up
student emotional state

word processing techniques

Figure 8. Communication icons in Caleb.

only “speaking"’ to provide words that students have
not yet heard. Figure 8 lists icons used to represent
these gestures, edit signals, and pantomime. These
icons are used by the tutor, who plays the role of an
orchestrator and monitor rather than that of an infor-
matior giver.

With the introduction of verbs, action becomes pos-
sible. For example, the tutor prompts for a command
by indicating a hand taking two white rods in the
graphics window. The student types the command
Toma dos regletas blancas (*‘Take two white rods’’)
and the tutor performs the action.

So that students both produce and understand lan-
guage, the tutor triggers two kinds of response: word-
oriented responses typed at the keyboard, and action-
oriented responses performed with the mouse and pic-
tured objects. An example of the latter is the tutor giv-
ing the command Toma dos regletas blancas (‘‘Take
two white rods’*). Students respond by using the
mouse to take two pictured white rods with a grasping-
hand-shaped cursor.

The non-verbal communication (that is, pantomime
such as gestures, nods, and hand signals) of a Silent
Way tutor are used to teach students to recognize
when it is their turn to produce a sentence, when the
tutor is about to say something, when the tutor expects
more than students have produced, when an error
needs correcting, or how to get help when they are stuck.

Errors are produced as students test and revise their
theories about the language. When an error does
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blinking cursor
Mac watch

sound
happy face

sad face/Mr. Yuk
puzzled face/again sign

hand pull

?

book shape

Mac trash can

hand waving bye/stop sign
coffee cup

grasping hand

open hand

speedometer
thermometer

highlight/blinking cursor/placement arrows/fade in line

occur, students are not deluged with entire sentences,
nor are they provided a correct model to imitate.
Instead, the precise location of the error is pointed
out, as in Figure 6c, so that students may correct it
themselves. The goal is to to let students develop their
own sense of correctness or inner criteria for the new
language.

The tutor monitors student input for correctness. A
fault-tolerant parser filters ““noisy’’ input so that some
errors are ignored and some are treated, depending
upon the situation. When the tutor treats an error,
only the piece, noun, verb, or adjective that needs cor-
recting is pointed out and students edit their input.

Regarding the presentation order of new material,
the tutor makes decisions based on whether it’s teach-
ing the current piece, old piece, or old theme (see Fig-
ure 7). It uses five contexts to determine the number of
times students should practice the piece. In the intro
context, for example, the tutor simply presents the
first example on the list of examples associated with
each piece. When the tutor is in the practice context,
the example source remains the same and the tutor
marches down the list in a fixed order. In the more
practice context, examples are chosen randomly from
the piece example list. In the review context, examples
are taken from an example pool of either the current
theme or old themes. In the error context, examples
come from the list associated with the error itself.

This system is implemented on a Macintosh and a
Sun.
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ESE for teaching thermodynamics. A third tutor
built by Exploring Systems Earth—three universities
working together to develop intelligent tutors—ESE is
now in the early stages of implementation. This third
tutor is one of a set of tutors that use interactive and
monitored simulations for teaching elementary physics
at high school and college levels. The goal is to put
students in direct contact with physics elements such
as mass, acceleration, and force. Students pursue vari-
ous activities, such as changing the position or veloc-
ity of bodies in a celestial mechanics simulation, while
viewing dependent changes in the size, speed, and
position of orbit to improve their intuition about
physical concepts. Each tutor monitors and advises
students while providing examples, analogies, or
explanations based on student actions, questions, or
responses.

The tutor we are working on addresses the second -
law of thermodynamics—the law stating that heat
cannot be absorbed from a reservoir and completely
converted into mechanical work. This law is taught at
the atomic level using a rich environment through
which the principles of equilibrium, entropy, and ther-
mal diffusion can be observed and tested.® Students
are shown (and are able to construct) collections of
atoms that transfer heat to one other through random
collision (see Figure 9).

Students can create areas of high-energy atoms,
indicated by dark squares, along with variously
shaped regions within which the system can be ana-
lyzed and monitored. Several systems can be con-
structed, each with specific areas of high energy and
associated observational regions. Concepts such as
temperature, energy density, and thermal equilibrium
for each observational region can be plotted against
each other and against time. Students can then
observe thermodynamic principles, such as heat trans-
ference through random collision and entropy as a
function of initial system organization.

Students can modify system temperature, the num-
ber of collisions per unit time, and the shape of the
initial ‘‘hot”’ region at any time. Changes in these
parameters will cause dependent changes in the sys-
tem. The tutor uses all student activities—including
questions, responses, and requests—to formulate its
next teaching goal and activity. It uses student actions
to determine whether to show an extreme or near-miss
example, whether to give an analogy or to ask a ques-
tion. It bases its lessons on an ordered sequence of
topics. To refine the tutor’s response, we are now
studying student misconceptions and common errors
in learning thermodynamics and statistics.
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Figure 9. Systems moving towards equilibrium.

Klaus Schultz is ESE’s domain expert, and Tom
Murray the domain and teaching expert. Craig Lant,
Paul Duquette, and Miguel de Campos are the
environmental experts. The three universities compris-
ing Exploring Systems Earth are the University of
Massachusetts, San Francisco State University, and
the University of Hawaii.

The need for multiple experts

Observations about the participation of experts in
building these and other intelligent tutoring systems
suggest that multiple experts must work on system
design and implementation."'® Much knowledge is dis<
tributed, subjective, unorganized, and misunderstood.
No one human can supply the knowledge required—
knowledge including environmental, teaching, cogni-

tive, and domain expertise.

Given the complex and heterogeneous nature of
knowledge required, we need methodologies and tools
to transfer teaching and learning knowledge from each
expert to the system under construction. Currently,
few such tools exist.

Expert system shells contain a framework for build-
ing knowledge bases about concepts and rules, and for
making inferences about them. Shells make building a
tutor simpler to write.''> However, we need more spe-
cific tools for designing and storing tutoring knowl-
edge, and shells are limited in this respect. They are
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frequently based on production rules and are limited
in representing history and dependency of the tutoring
interaction. Also, they inadequately represent tutoring
and misconception knowledge—such as how to reason
about teaching strategies, how to update and assess
student models, how to select a path through domain
concepts, and how to remediate for misconceptions.

The environmental expert. The first expert needed
to build an intelligent tutor is the environmental
expert. This person often uses a majority of system
memory' to provide an envelope within which students
and system interact. The environment provides specific
tools and operators for solving domain problems or
for performing domain activities.

Environmental, teaching, cognitive, and domain
expert contributions interact strongly with each other—
especially that from the environmental expert. For
example, a system asking students to record entrance
and exit angles for light rays in an optics experiment
implies that the environment supplies such measuring
devices.

The following criteria for developing tutoring envi-
ronments have begun to emerge:

(1) Environments should be intuitive, obvious, and
fun. Student energy should be spent learning the
material, not learning how to use the environment."
For example, to indicate errors, express feelings, or
convey meaning, the second language tutor’s visual
activities (see Figure 6) mimic the human Silent Way
teacher’s gestures, facial expressions, and rods. Each
icon is designed to be clear, unambiguous, and to
make use of student intelligence, experience, and
resourcefulness.

(2) Environments should record not only what stu-
dents do but what they intended to do, might have for-
gotten to do, or were unable to do." Environments
should provide a ““wide bandwidth’’ within which
multiple student activities can be entered and ana-
lyzed. For example, the Pascal tutor developed by
Johnson and Soloway processed and analyzed an
entire student program before offering advice."

(3) Environments should be motivated by teaching
and cognitive knowledge about how experts perform
tasks and the nature of those tasks. For example,
Anderson performed extensive research with geometry
students before developing his geometry tutor inter-
face,'s and Woolf et al. incorporated knowledge from
experts with more than 30 years experience working
with boiler operations before building the RBT
interface.”
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(4) Environments should isolate key *‘tools’’ for -
attaining expertise in the domain. The economics
tutor pravided and monitored student use of key tools
for performing economic experiments.'” The RBT
tutor provided process parameter graphs tracing trends
over time, and used abstract meters to help operators
reason about complex processes—thereby enabling
them to make inferences about the effect of their
actions (see Figures 2 through S).

(5) Environments must maintain physical fidelity:
Fidelity measures how closely simulated environments
match the real world.' High fidelity identifies a sys-
tem as almost indistinguishable from the real world.
The RBT tutor presents a mathematically exact dupli-
cate of the industrial process. It models and updates
over 100 parameters every two seconds. Visual compo-
nents of the industrial process such as alarm boards,
control panels, dials, and reports are duplicated from
the actual control room.

(6) Environments should be responsive, permissive,
and consistent.'® They should target applications
based on skills people already have (such as moving
icons) rather than forcing people to learn new skills.
By responsive, we mean that student actions should
have direct results—that students need not perform
rigid sets of actions in rigid and unspecified order to
achieve goals. By permissive, we mean that students
may do anything reasonable and that multiple ways
should exist for taking action. By consistent, we mean
that moving from one application to another (for
example, from editing text to developing graphics)
should not require learning new interfaces. All tools
should be based on similar interface devices, such as
pull-down menus or single and double mouse clicks.

No environment is appropriate for every domain:
We must study each domain to determine how experts
function in that domain, how novices might behave
differently,?®*' and how novices can be helped to
attain expertise.

The teaching expert. Acquiring sufficient and cor-
rect teaching expertise is a long-term problem for
builders of tutoring systems—in part because sophisti-
cated knowledge about learning, teaching, and domain
knowledge remain active areas of research in most
domains. For the machine tutor, designing decision
logic and rules to guide tutorial interaction is a process
of successive iteration—a process that can be
improved continuously.

Tools to facilitate inclusion of long-term teaching
knowledge are just beginning to emerge. For example,
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Figure 10. A framework for managing tutoring discourse.

we have developed a framework for managing dis-
course in an intelligent tutor that reasons dynamically
about discourse, student response, and tutor moves
(see Figure 10).” This is a flexible and domain-
independent framework that is portable to various
machine tutors. Also, it can be rebuilt—decision
points and machine actions are modifiable for fine-
tuning system response.

The framework reasons about which pedagogical
responses to produce and which alternative discourse
moves to make. It custom-tailors feedback to students
in the form of examples, analogies, and simulations.
Discourse schemas have been defined as collections of
discourse activities and response profiles. Discourse is
planned by passage through the schemas. The number
and type of schemas selected depend on context.

We used empirical criteria to define these schemas:
Tutoring responses were analyzed from empirical
studies of teaching and learning,” other responses
appeared as effective teaching strategies in research on
misconceptions in physics,”** others obeyed felicity
laws, 2 and still others obeyed general rules of dis-
course structure.”’*® General rules and fundamental
remediation strategies have been incorporated into our
discourse schemas and included in our teaching
framework.

By continuously adjusting to real-time changes in
cither the knowledge base or the user, the discourse
framework allows the tutor to remain flexible while
cooperatively engaged in conversation. The framework
views discourse as navigation through a set of possible
discourse situations (see Figure 10). We are now using
this framework to improve the physics tutor’s response
to idiosyncratic student behavior. The structure is
preliminary in the sense that it’s designed to be
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rebuilt; response decisions and machine actions,
explicitly represented in the system, can be modified
through a graphics editor. Appropriate machine
response can be assessed and continuously improved
through the editor. In the long term, we intend to
make this reasoning process available to human
teachers, who can then modify the tutor for use in a
classroom.

No single teaching strategy is appropriate for every
domain: Each domain and each student must be
assessed to determine an appropriate teaching strategy.
For example, Anderson et al. built geometry and Lisp
tutors that respond immediately to incorrect student
answers.'" These authors argued that they needed
immediate computer feedback to avoid fruitless stu-
dent effort. They suggested that erroneous solution
paths in geometry and Lisp might be so ambiguous
and delayed that errors would not be recognized by
students if tutor therapy were delayed.

This pedagogy is opposite to that used by Cunnin-
gham et al.® and Woolf et al.” These tutors were pas-
sive (not intrusive) advisors. Their strategy was to
subordinate teaching to learning, allowing students to
experiment while developing hypotheses about the
domain. They guided students toward developing stu-
dent intuitions, but did not correct students so long as
student performance appeared to be attaining a pre-
cise goal.

In industrial settings, particularly, trainees must
learn to generate multiple hypotheses and to evaluate
their performance based on how their actions affect
the industrial process. No human tutor is available
during normal boiler operation. Thus, the machine’s
teaching strategy encouraged students to trust their
own observations about the industrial process—
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helping them to learn through animated simulations,
trend analyses, and real-time, dynamically updated
meters. In addition, textual dialogue (1) assured that
operators would extract as much information as possi-
ble from data, and (2) established a mechanism to
redirect them if they did not.

The cognitive expert. At present, the role of the
cognitive scientist is incompletely understood; in part,
this researcher seeks to discover how people learn and
teach in a given domain. For example, cognitive
science research in thermodynamics will enable sys-
tems to recognize common errors, tease apart probable
misconceptions, and provide effective remediation.
Cognitive science research provides the tutor with a
basis for selecting instructional strategies. The impor-
tance of addressing common errors and misconcep-
tions in physics is well documented, and the tutor’s
intelligence hinges on making that knowledge
explicit. 2+

We want a tutoring system to help students (1) to
generate those hypotheses that are necessary precur-
sors to expanding their intuition, and (2) to develop
their own models of the physical world, while dis-
covering and “‘listening to’’ their own scientific intui-
tions. To do this, we rely on work done by cognitive
scientists, who study how students reason about
qualitative processes, how teachers impart propaedeu-
tic principles (or the knowledge needed for learning
some art or science),” and what tools are being used
by experts working in the field.

For example, the cognitive science experiments that
must be performed to build our thermodynamics tutor
include (1) investigation of real-world tools currently
used by physicists, (2) examination of studies that
focus on cognitive processes used by novices and
experts, and (3) comparison of novice with expert
understanding of physics problems. Cognitive science
can define such knowledge—knowledge that eluci-
dates actions taken by experts to make measurements
or perform transformations in a domain. We call this
“‘heuristic knowledge’’ and define it as knowledge
about how to solve domain problems. Heuristic
knowledge differs from procedural knowledge in that
it adds neither content nor concepts to the domain,
but describes actions taken by experts using their con-
ceptual and procedural knowledge. Such knowledge,
rarely included in tutoring systems, must be included
if tutors are to monitor student problem-solving
activities and experiential knowledge about how to
work in the field.

RBT articulates this knowledge by explicitly record-
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ing student attempts to solve emergencies. It shows
students their false paths and gives reasons behind
particular rule-of-thumb knowledge used to solve
problems. RBT also provides students with various
examples from which they can explore problem-
solving activities—showing students their own paths,
preferred paths, and (perhaps, in time) their own
underlying cognitive processes. Simply elucidating
these operational problem-solving components in a
domain, and the rules applying to their use, is not
sufficient to understand how one learns in a new
domain. By using such knowledge, however, a tutor
can help students learn how to learn. We are compil-
ing such data and expect that it (along with cognitive
studies) will elucidate some processes behind problem-
solving behavior.

The domain expert. An in-house domain expert is a
critical requirement for building intelligent tutoring
systems. By “‘in-house,”’ we mean that the domain
expert must join the project team for anywhere from
six months to several years while domain knowledge is
being acquired. Less commitment than that—that is,
any role less than that of full-fledged team member—
suggests a less-than-adequate transfer of domain
knowledge.

In the tutors described above, domain experts were
(and are) integral to the programming effort. The pro-
grammer, project manager, and director of RBT were
themselves chemical engineers. More than 30 years of
theoretical and practical knowledge about boiler
design and teaching strategies were incorporated into
the system. Development time for this project would
have been much longer than 18 months if these experts
had not previously identified the boiler’s chemical,
physical, and thermodynamic characteristics and col-
lected examples of successful teaching activities.

An instructor holding an ESL graduate degree
(English as a second language) developed the second-
language tutor. This instructor (the second author of
this article) has more than seven years teaching experi-
ence. She has used the Silent Way to teach intensive
English courses to foreigners living in America, and to
train Nepali language instructors who in turn taught
Nepali to future American Peace Corps volunteers.

The physics tutor is being built after more than 18
months of work with member physicists and
astronomers. In addition, potential users of the system
(high school and college physics teachers) are con-
tributing environmental and teaching knowledge.
Their overall effort produced more than 100 pages of
rules, processes, screen designs (including help activi-
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ties about physics), and cognitive studies (identifying
educational goals, potential errors and misconcep-
tions) before any code was built.

For domain knowledge, expert shells can be used
effectively. Anderson' used Grapes™ to represent the
rules programmers use for solving problems, to
describe Lisp functions, and to represent higher level
programming goals. He used buggy rules to represent
misconceptions that novice programmers often
develop during learning. Streibel et al.'? used OPSS to
write rules for genetic problem solving and to encode
teaching strategies.

Based on the various expert systems that have been
built, the following criteria for acquiring domain
knowledge are well understood:

(1) Domain experts should be true experts—if pos-
sible, the best in the field.! Dendral, for example, an
expert system for generating and testing hypotheses
about chemical structures and spectroscopic data, was
built by a team including Joshua Lederberg (a Nobel-
prize-winning geneticist), Carl Djerassi (a world-class
expert on mass spectral analysis), and other profes-
sional chemists and computer scientists.*

(2) Domain experts are expensive. Gaining the
attention of knowledgeable people in any domain is
expensive and time consuming. However, the willing-
ness and availability of such experts to participate is
critical to the knowledge-engineering process. Assign-
ing the expert role to someone of lesser ability (or
worse, to persons with ‘‘time on their hands’’) might
doom a project to failure. On the other hand, enthusias-
tic support from funders and supervisors—including
sufficient allocation of resources, human and
otherwise—are prerequisite to success.

(3) Certainly, individual domain experts can have
incomplete knowledge or conceptual vacuums. Multi-
ple experts are needed for testing and modifying
domain knowledge throughout the tutor’s life.

(4) Similarly, domain knowledge can be overly dis-
tributed."'® That is, knowledge can be spread so
diffusely among different research projects and
experts as to leave any system unfinishable that uses
only a single expert (or even several experts). Thus
domain knowledge must be acquired incrementally
and must be prototyped, refined, augmented, and
reimplemented. The time needed to build a tutoring
system “‘should be measured in years, not months, and
in tens of worker years, not worker months.”’!

_ (5) Domain knowledge found in textbooks is
incomplete and idealized.! In an intelligent tutoring
system, textbooks are inappropriate as a primary
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source for either domain or teaching knowledge. Text-
books rarely contain the commonsense knowledge—
the know-how used by expert tutors or professionals in
the field—to help choose a next-teaching strategy or
solve difficult problems. Books tend to present clean,
uncomplicated concepts and results. To teach or solve
real-world problems, tutors must know messy but
necessary details of real and perceived links between
concepts and unpublished rules of teaching and
learning.

ntelligent tutors can neither cure all educational

problems nor totally answer the dilemma facing

education. They seem incapable of achieving

the very difficult, let alone the impossible.
However, they do provide exciting possibilities—and
of these, one of the most exciting is that of providing a
community memory for teaching and learning
research. This community memory would provide a
focus for articulating distributed knowledge in an
intelligent tutor. It would include recent as well as
historical research about thinking, teaching, and
learning. Evaluating such an articulation would, in
itself, contribute to education—and ultimately, to
communication between experts.

Compiling diverse research results from environ-
mental, teaching, cognitive, and domain experts is cur-
rently hampered by the lack of explicit methodologies
and technologies to help authors transfer their knowledge
to a system. This article has specifically addressed the
issues of what further knowledge we need and where
we should apply human and financial resources to
build future intelligent tutoring systems.[8
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