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Because no two students answer questions in
the same way, an effective computerized tutor must customize
its response to the individual student.

Building a Computer Tutor:
Design Issues

Beverly Woolf and David D. McDonald

University of Massachusetts

An effective tutor must deal with a fundamental prob-
lem of communication: to determine how messages are
received and understood, and to formulate appropriate
answers. A human tutor, therefore, takes the time to
double-check and review a student’s knowledge to find
out whether or not he understands what the tutor has said.
Compounding the situation is the fact that a student is
generally unaware of what he does not know. This means
that a tutor, more than a typical speaker, must verify that
both parties know what information has been covered,
what is missing, and which communication might be er-
roneous.

In this article we discuss how a deep understanding of a
student can be constructed in an artificial intelligence pro-
gram and how this understanding, coupled with a facility
for language generation, can be used to build a flexible
machine tutor.

The nature of tutoring

Tutoring is a linguistic exchange whose goal, in general,
is to clarify a body of knowledge to which the student has
already been exposed—for example, knowledge obtained
through lectures or reading. It involves directing a dialog
so that the responses remain appropriate even in the face
of errors. Not every activity we might normally associate
with “tutoring” is, in fact, an effective tutoring tool.
Classroom activities such as pretests, posttests, and drill-
and-practice exercises are a good case in point; they have
developed over time in the context of classroom teaching
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because the ratio of students to teachers is large and one-
on-one ‘‘sensitive’’ tutoring has not been possible. In
short, these activities do not represent the “‘essence’ of
tutoring. One of our purposes in developing competent
machine tutors is to reduce the large student-to-teacher
ratio and to establish one-on-one interaction as the norm,
not the exception.

To give you an idea of what an effective tutor does, we
have borrowed this example (Example 1) from Stevens! of
an exchange between an expert human tutor working with
a student on understanding rainfall:

Tutor: Do you know what the climate is like in
Washington and Oregon?

Student: Is it cold?

Tutor: No, it is rather mild. Can you guess about the
rainfall there?

Student: Normal, I guess.

Tutor: Well, the Japan Current, which starts in the
Southeastern Pacific, goes along the coast of
Japan and across the North Pacific, ending
up off the coast of Washington and Oregon.
How do you think that current affects the
- climate there? '

Student: It’s probably rainy.

Tutor: It is indeed very wet; there are rain forests in
both Washington and Oregon. What does
that tell you about the temperature of the
Japan Current?

Student: It’s warm. 1)

0018-9162/84/0900-0061501.00 © 1984 IEEE

61

o2




62

The protocol of the exchange is taken from an earlier in-
vestigation of human tutoring behavior! and shows how
the expert remains responsive and sensitive to the student’s
knowledge level. We suggest that the tutor began to ques-
tion the student about general topics, in this case
“climate” and “‘rainfall,”” in an attempt to assess his
«frontier”’ of knowledge. Since the student answered the
first two questions incorrectly, we feel that the tutor
decided to change his strategy and therefore elected to pro-
vide the student with additional information from which
he might be able to infer the correct information. The
strategy worked—the student answered the next two ques-
tions about *‘rainfall’’ and the ‘‘temperature of the Japan
Current”’ correctly. -

The tip of the iceberg in discourse. Designing a machine
tutor that can display the amount of flexibility shown by
the example above presents some very interesting prob-
lems. For example, how is the machine going to recognize
a speaker’s unspoken problems or intentions? We call this
the *“tip of the iceberg’’ problem, by which we mean that
the words spoken by the student or the teacher are only a
small portion of what they know about each other and
what they are communicating in the dialog. This problem
has been analyzed by Allen, who built a systerm to model
the knowledge needed by an effective agent at a train sta-
tion.2 The discourse we have created is in the style of
Allen’s examples. It is predicated on the agent anticipating
or predicting the traveler’s problem and on handling this
unspoken problem:

Traveler: Is this the gate for the train to New York?

Agent: No, you want gate number 44 and the train

leaves at 6:33.” (3)

If the answer to the traveler’s question had been “‘yes,”
that by itself would have been enough and would have
solved the traveler’s problem. Since the answer was “no,”
however, a simple “‘no”’ by itself would not be a sufficient
answer as it would not have addressed the traveler’s actual
problem. By giving the additional information, the agent
showed that he recognized that what the traveler was say-
ing was only a small part—only the tip of the iceberg—of
what he actually intended to communicate.

The “tip of the iceberg problem” in tutoring is to
recognize the student’s unspoken confusions and
misconceptions. By maintaining a record of the student’s
previous errors or by directly questioning him about his
misconceptions, a machine tutor can acquire the same
kind of information used above by our train agent. Yet,
even with such information, a machine model of the stu-
dent can never be entirely accurate and must be continual-
ly modified and updated.

Earlier tutoring systems

Below we describe several tutoring systems® organized
around the four types of knowledge that a tutor—human
or computer—must have in order to teach effectively: the
subject area, the student’s information, how to teach, and

*Many of the carly tutoring systems were built as laboratory experiments
and few have been used extensively with students.

how to communicate. Though a tutoring systen{ must han-
dle each of these aspects of tutoring, it need not allocate a
separate module to each aspect. For purposes of this arti-
cle, however, we shall refer to each type of knowledge as
though it had been built into its own module and shall
describe systems in which one module was, at least in part,
the focus of the research project.

Part 1: the expert module. The first module in any
tutoring system contains knowledge of the subject area
and covers the possible rationales for the student’s
answers. It is used to translate the student’s input intoa
usable form—one that can be evaluated against the

“expert’s knowledge. In some cases, this module provides
- problems to solve or topics to discuss. It may not be ableto

solve the problems it presents to the student, but it must at
least recognize an incorrect solution. This component was
first addressed by the artificial intelligence community
early in its efforts to build intelligence into tutoring
systems. When heuristics began to be included in this
module, tutoring systems began to respond to a broader
range of input and, in some cases, to understand and
generate natural language. Intelligent heuristics in this
module gave it more flexibility to interpret theanswers of a
nontraditional student—that is, the student who has the
correct answer, but expresses it in a fundamentally dif-
ferent way. These heuristics also enhanced the system’s
ability to express its own knowledge, enabling it, for exam-
ple, to explain its problem-solving reasoning.

Currently, there are two outstanding examples of sys-
tems that incorporated intelligence into the expert module:
Sophie? and Guidon.? Sophie, the Sophisticated Instruc-
tional Environment, is a landmark effort in the develop-
ment of languages for expert modules. It is designed for
electronic troubleshooting and allows a student to test and
debug a hypothetical malfunction in a simulated electrical
circuit. The tutor evaluates a student’s hypotheses about
the circuit failure, considers the data available to him, and
advises him about his analysis, often proposing its own
fixes. The tutor also refuses to carry out any probes or to
answer any queries that it does not consider appropriate
for solving the problem. The following (Example 3) is a
sample interaction with the Sophie system. The circuit
components referred to in the example (such as, resistor 8
[R8], node connection 1 [N1}, and transistor [Q1]) have
been presented to the student in a schematic diagram of
the circuits.

Welcome to Sophie, a reactive learning environment.
The piece of equipment you are studying is a regulated
power supply.

Would you like to start with a faulted instrument that
needs fixing?

>> Yes

The instrument has a fault and its present control settings
are

CC 1.0 CURRENT CONTROL

CR HIGH CURRENT RANGE SWITCH
LOAD 2.0 LOAD RESISTANCE IN OHMS
vC 1.0 VOLTAGE CONTROL

VR HIGH HIGH VOLTAGE RANGE SWITCH
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> > What is the output?

The output voltage is 11.7 volts.

> > What is it in a working instrument?

In a working circuit the output voltage is 19.9 volts.
>> What is the voltage between R8 and Q1?

The voltage at N1 is 47.6 volts. (&)

Sophie can perform sophisticated reasoning when it ex-
amines a student’s inquiries. For instance, it can answer a
question like ““If the base-emitter junction of the voltage-
limiting transistor opens, then what happens to the output
voltage?”’ It does this through two mechanisms: a *‘se-
mantic’’ natural language facility and a general-purpose
simulator. The natural language facility uses a semantic
grammar that replaces the usual syntactic categories, such
as noun, verb, and adjective, with semantically mean-
ingful categories, such as transistors, resistors, and
voltages. For each concept there is a grammar rule that
gives alternative ways of expressing or understanding that
concept. The general-purpose simulator interprets and ap-
plies the modifications suggested by the student to the ex-
isting simulation of the circuit. The result of the final
simulation is the production of a voltage table that
represents voltages at each terminal in the modified cir-
cuit. The student’s question is then answered in terms of
the hypothesized voltages.

A second example of a system, in which intelligence is
built into the expert module, is the Guidon system.?
Guidon helped demonstrate the need for a cognitive base
to the expert module and defined the importance of plac-
ing logical and relational abstractions, both of which are
important in learning and tutoring, into the expert knowl-
edge base. The goal of Guidon is to tutor the knowledge
from an expert system. To date, its primary focus has been
Mycin, a medical expert system that suggests treatment for
infectious diseases. The example below (Example 4) is of
an interaction with the Guidon system. In it, the medical
student chooses from a menu of over 30 options and, for
instance, can request data (for example, results of lab
tests), ask for an evaluation of the medical situation, ques-
tion the rule being discussed, request assistance, or suggest
an hypothesis.

> > Factors
+ The student asks for the factors or subgoals
3 of the rule being used to determine the
s nature of the infection.

The following factors will be useful to determine the
type of infection:
3a. whether the meningitis is partially treated
3b. whether a lumbar puncture has been performed
on Patient 538
3c. the duration of the neurological signs
3d. the CSF protein
3e. whether Patient 538 has a rash consistent with
Herpes Zoster
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Based on what we have already mentioned, you should
be able to conclude about 3b.

s Guidon keeps track of what has been discussed

: and conjectures about what the student should know

> > Use 3¢

The duration of the neurological signs is 7.2 hours.
Using other information available to you now, the dura-
tion of the neurological signs enables you to conclude
that the type of the infection is bacterial viral.

+ The student asked how the datum in 3¢ can be
s used in this case. He is given information specific
i 10 this case and then a summary of its use as a part
s of the rule under consideration.
> > [ know
s The student indicates that he has determined
; a particular subgoal. In this example Guidon
+ will supply the correct subgoal.

Good. Mycin has also made a decision.

The site of Culture-1 is evidence that a lumbar puncture
has been performed on Patient 538. @«

Guidon was originally implemented by “‘reversing”” the
450 rules of Mycin, its expert system. This implementation
was ineffectual, its author said, largely because medical
diagnosis is not made “‘cookbook’ style—that is, medical
practitioners do not diagnose diseases by using perfect
recall on hundreds of medical facts and rules, nor do they
use rules such as those originally implemented in the
Mycin system. Subsequent psychological research into
medical problem solving suggests that the rules used by
practitioners to diagnose diseases are embellished with
knowledge about causal reasoning and cross-referencing,
which, for instance, causes a rule to be brought to mind at
the appropriate time.

The suggestion has been made that the original rules of
the Mycin System represent ‘‘compiled’” knowledge de-
void of the low-level detail and relations necessary for lear-
ning or tutoring. In order to use these same rules for tutor-
ing, Guidon would have to ‘‘decompile’’ and augment
them with the data and diagnostic hypotheses that the
medical practitioner uses implicitly. The resulting
*‘augmented™ teaching system required, for instance, pro-
cedural knowledge about how to use the rules for problem
solving—for example, users were sometimes advised to try
searching the rules by using top-down refinement. It also
included aspects of the rules by which the problem-solving
strategies were to be brought to the student’s mind at the
appropriate time, as well as took into account rules that
helped the student to remember a particular rule and to
focus on one set of “‘associated” rules over another. The
original list of 450 rules was amerided; to include such rela-
tions between rules, and a newer version of Guidon, one
based on these kinds of design changes, has had increased
success as a tutoring system.

Part 2: the student model. The second part of a tutoring
system contains information about the individual student.
This is used to predict the student’s level of understanding
or to recognize his particular learning style. For ex-
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ample, a student may use an uncommon, though not less
valid, set of rules and processes in solving a problem and
the tutoring system ought to recognize this kind of learn-
ing and find a way to work with it. For instance, the system
might provide extensive questions to identify and track the
anomalies in the student’s knowledge or thought pro-
cesses.

Early systems had almost no student model. At best,
they used a stereotypical representation of the knowledge
domain that was tagged according to topics that were
presumed to be ‘‘known"’ or ‘“‘unknown’’ by the student.
This type of system was later called an overlay modeler.
Other modelers have emerged. For instance, a skill
modeler is an overlay model in which knowledge of the ex-
pert is represented as skills and the student is tested on
whether he has mastered the set of skills. A bug modeler
encodes information about bugs and misconceptions. It
may, or may not, be an overlay modeler. Two systems ex-
emplify the use of Al techniques to build intelligence into
the student model: West,S a skill modeler, and Buggy®a
bug modeler.

West is a coaching environment for a Plato game. It
evaluates and suggests improvements to a student’s skill in
using elementary-level arithmetic constructs like paren-
theses and exponents. The object of the game is for the
student to move a player across an electronic game boarda
distance determined by the solution to an algebraic expres-
sion that the student must write and then solve. At each
move, the student’s skill in writing the algebraic equation
is compared to the expert’s solution for the same skill,
and, if the two solutions differ, a friendly coach can in-
tervene and provide the student with helpful hints about
how to improve his game or make better moves.

Buggy is an intelligent student modeler without being an
overlay modeler. It models the bugs made by students
solving simple arithmetic problems and presents computa-
tional evidence that such errors result from explicit and
systematic deviations from correct procedures. The
bizarre nature of arithmetic bugs, as represented in the
Buggy system, suggests that no subset of expert knowledge
would ever be appropriate as a student model because no
subset would contain the incorrect procedures used by
novice students. In addition, Buggy demonstrates that in-
correct student behavior is not a modification nor a
simplification of expert behavior—previously acommonly
held belief among authors of tutoring systems. It pro-
poses, instead, that errors result from correctly following
incorrect procedures rather than from incorrectly follow-
ing correct procedures.

The Buggy system is designed to give a teacher ex-
perience in diagnosing incorrect arithmetic procedures and
practice in discovering the underlying causes of student er-
rors. The following (Example 5) is a sample of an interac-
tion with Buggy:

Welcome to Bugland. I have chosen a bug.
Here is an example of the bug.
17
+3
13
Now you can give me problems to determine the bug.

; BUGGY asks the teacher to suggest problems
; for it to solve in order to deduce the bug.
>> 51 9 68
>> +1707 +99 +9
21 36 23
s The teacher enters the numbers to add and
: BUGGY gives the answers that correspond to the bug.
> > Got the Bug!
Please describe the bug you think I have:
> > The student is adding all the digits together.
< BUGGY does not “read”’ the description of the bug
< because it does not have natural language understanding
; abilities. Instead it generates additional
; problems for the team to solve.
Here are some problems to test your theory about the
bug. -
What are:
33 1091 8 28 90
+99 460 +34 470 46
>> 24 17 15 17 15
: Now the teacher gives Buggy the answer to the problems
; posed by the system.
Very good. My description of the bug is: The student
always sums up all the digits, with no regard to col-
umns. (5)

Buggy can reproduce several hundred ‘‘bugs’ that
might appear in a student’s solution of an addition or sub-
traction problem. The system represents human arithmetic
skills, such as “add 1 to the next column,’ as procedures
linked into a network. If the procedure specified by the
student is correct, then Buggy performs the addition or
subtraction problem correctly. If the procedure is incor-
rect, the solution contains systematic errors of the kind
shown in Example 5.

Part 3: the tutoring component. The third part of a
tutoring system contains the strategies, rules, and pro-
cesses that govern the system’s interactions with the stu-
dent. It includes, for instance, how to tutor, what instruc-
tional tools to try, and why and how often to interrupt the
student. Some of the reasonableness or intrusiveness of a
system is determined by this knowledge. This part of a
teaching system is applied after the expert and student
modules have been accessed and some assessment made
about the level of the student’s knowledge.

For instance, a reasonable teaching rule is to correct a
student when he makes a mistake. However, when this
mistake follows a series of wrong answers about the same
subject and when the student has demonstrated weakness
in the subject area, we believe that a more appropriate
response might be to briefly acknowledge the incorrect
response and to move on to new data that might supple-
ment the student’s knowledge and help him answer the
initial question.

This part of the tutoring system is not responsible for
text generation, discourse management, or input/output
behavior of the machine. These activities, required of any
interactive discourse system, rightly belong in their own
fourth component, called the communication module (see
below), which determines the syntactic and rhetorical
features of the discourse. The tutoring module, on the
basis of the tutoring objectives of the system, handles only
how to respond; it makes decisions about which material
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to present and which questions or examples to suggest, but
should leave questions of form and low-level coherency to
the communications module.

Part 4: the communication module. The communica-
tion module is limited to generating grammatically correct
and rhetorically effective output to (1) help the tutoring
component do its job and (2) to interpret the student’s
responses in terms of the categorizations that the tutoring
component is sensitive to. Historically, the communica-
tion module has been the last to receive the attention of Al
researchers, and today it reflects the fewest additions of
heuristic knowledge and techniques from the Al field
(with one notable exception mentioned below).

An effective tutoring system demands an intelligent
communication module. Once we learn how to ask the
right questions and how to focus on the appropriate issues,
we will have come a long way toward building a tutor that
acts as a partner, rather than a ruler. As we have said, ef-
fective communication does not mean natural-language
understanding or generation; natural-language processing
has been achieved to some degree. Rather, effective com-
munication requires looking beyond the words that are spo-
ken and determining what the tutor and student should be
communicating about. This problem becomes particularly
acute when the student organizes and talks about knowl-
edge in a different way from the way the expert does it.

As we said, few systems have developed intelligence in
the communication module. Guidon is an exception; it
carries on a flexible dialog with the student because it uses
inference techniques to ‘‘tease apart’’ the student’s knowl-
edge. It also selects which dialog is most appropriate to use
in a given situation and makes the selection based on the
tutor’s inferences about the previous interactions and the
student’s current information. Guidon can switch its dis-
cussion to any point based on an AND/OR graph, which
represents the rules of the expert system. It can also re-
spond to a student’s hypothesis using a variety of tech-
niques—such as “‘entrapment,”” which forces the student
to make a choice leading to incorrect conclusions—as a
means of revealing some aspect of his (mis)understanding.

Discourses produced by Meno-tutor

Meno-tutor is an example of a machine tutor that uses
intelligence within the tutoring components. Currently
under development at the University of Massachusetts,’
Meno-tutor has the ability to examine earlier discourses
with a student and adapt its discourse appropriately; for
instance, it will engage the knowledgeable student in a way
that is fundamentally different from the way it engages the
confused one. We call this kind of system *‘context-depen-
dent” and contrast it with what we call “‘retrieval-ori-

. ented"”’ systems, such as Sophie3 and West.5 Note that

while we have emphasized guiding the learner based on
what the tutor knows about him, other systems have
placed their emphasis on retrieving the correct answer.
Our approach has been to consider the most flexible and
most appropriate response, given the context. The other
systems often had the goal of retrieving the correct answer,
with the 1/0 routine acting merely as a front end to a
knowledge retrieval system.
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Meno-tutor actually produced the text in the first
human tutoring discourse of this article (Example 1); that
is, a computer tutor was built that reproduced the dis-
course in Example 1. This was done by analyzing the high-
level transitions and common speech patterns of this and
12 other human dialogs. The system was then “‘reverse
engineered’’; that is, it was given the. structures and
knowledge necessary to make the same transitions and to
produce the same text.8 For instance, the tutoring system
in Example 1 recognized that the student made two wrong
answers, and it inferred that his knowledge was limited.* It
then ‘‘decided’ that the question/answer approach,
which had been used until then, was ineffective and should
be changed. It also judged that a new topic, the *‘Japan
Current,’ " should be discussed because it is a dominant in-
fluence behind the region’s climate. The system decided to
supply the additional data in a descriptive rather than in-
terrogative style because the student seemed confused and
might profit from the addition of supplemental data. This
first discourse was generated by Meno-tutor in such a way
that all the decisions, topics, and tutoring styles available
to the system were not only explicit to us (discussed later),
but also that we could modify them. This flexibility allow-
ed us to generate additional discourses.

But we have moved beyond the reverse-engineering in
this first discourse and have begun to explore the ‘‘tutor-
ing space’’ our apparatus defines by varying both the do-
main and the particulars of the rules. The discourse in Ex-
ample 6, for instance, is based on the same domain as the
first discourse, but is done in an alternative tutoring
style—one brought about by modifying the ‘“‘meta-rules”
that govern whether the tutor explores the student’s fron-
tier (Example 1) or probes the student’s misconceptions
about the current topic as soon as the first mistake is made
(Example 6):

Tutor: Do you think it rains much in Oregon?

Student: No.

Tutor: Why do you think it doesn’t rain much in
Oregon?

Student:  Because the neighboring states are dry.

Tutor: The neighboring states are dry, but you can
not generalize from that. In fact, it does rain a
lot in Oregon. Can you guess what causes the
rain there?

Student:  Well, there are high mountains in the region
and the states border the Pacific Ocean.

Tutor: Yes. The Pacific borders Oregon. How do you
think it is involved in the heavy rainfall there?

Student: Ocean air rises and cools upon reaching the
land.

Tutor: That isright. ©)

Two meta-rules from Example 1 were modified to
achieve the discourse in Example 6. The first rule, as
modified, caused the tutor to change its tutoring strategy.
In the earlier discourse, this rule was used conservatively;
the transition was made only after several topics were com-

*It’s not that thosc answers were simply *‘wrong, ' rather that they reflected
reasonable default assumptions about the weather in *‘northern states.”” An
atempt 10 probe the student’s default assumptions is made in the next
discourse (Example 6).
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pletely discussed and the tutor had some confidence about
the student’s knowledge (or lack of it). In this discourse,
however, the modified rule was applied after a single incor-
rect answer, thus shifting the focus of the discourse
abruptly at its very beginning.

The second modified rule caused the tutor to question
the student about misconceptions. Typically, this rule is
triggered after all topics are complete, either by the ques-
tions about them having been answered correctly or by the
student having been corrected by the tutor. In the second
discourse (Example 6), however, the rule was modified to
eliminate that requirement. The effect was that the rule
was activated after the student’s first incorrect answer that
the tutor recognized as being linked to a common miscon-
ception. -

In our second exploration of the tutoring space, we
substituted a new knowledge base for the facts about rain-
fall—namely, a knowledge founded on base elementary
Pascal looping concepts. The focus of this Pascal tutor is
on the misconceptions behind the student’s explicit pro-
gramming errors (see Examples 7 and 8). The model for
the misconceptions drew on the results of extensive
cognitive studies about how novices learn Pascal con-
structs.® These cognitive studies, and Meno-tutor itself,
were part of a larger research effort directed at building an
on-line, runtime support system for novice Pascal users. 10
As a part of this effort, the “Bug Finder,” was also
developed and used for four semesters in classes of several
hundred students at the University of Massachusetts. The
Bug Finder detected runtime semantic errors in Pascal
programs and passed messages on to the tutor about the
location of the error, the names of variables associated
with the error, etc. The Bug Finder has since been retired,
and the discourse in Example 8 below was generated based
on simulated messages from the Bug Finder and simulated
student input.

This program (Example 7)
1 PROGRAM LESSONI(INPUT, OUTPUT);
2 VAR
3 SUM,GRADES,ST! UDENTS:INTEGER;
4 MEDIAN:REAL;
5 BEGIN
6 SUM:=0;
7 STUDENTS: =0;
8 READ(GRADES);
9 WHILE GRADES>0 DO
10 BEGIN
11 SUM: = SUM + GRADES;
12 STUDENTS: =STUDENTS + 1;
13 GRADES: =GRADES +1
1(should be READ(GRADES))
14 END;
15 MEDIAN: = SUM/STUDENTS;
16 WRITELN -
17 (THE MEDIAN GRADE IS, ME-
DIAN:8:3)
18 END. M

was submitted by a novice programmer, and the dialog it
engendered from Meno-tutor is reproduced below in Ex-
ample 8:

Tutor: Do you know that GRADES, inline 9, is
a control variable for the WHILE loop?
Student: Yes
Tutor: Does that mean that GRADES should be
a) Initiated before the loop?
b) Added into SUM within the loop?
¢) Modified within the loop?
d) Both a) and ¢)
Student: C
Tutor:  You seem to understand about the control
variable of the WHILE loop. Now let’s talk
about some other command statements.
What do you think READ (GRADES) in line
8 does with the value of GRADES?
a) Reads all values of GRADES at
one time.
b) Reads in a single value of
GRADES.
c) Assigns several new input values to
GRADES.
Student: A
Tutor:  Then do you think that GRADES: = =
GRADES + 1 updates the next of those
values?
Student: Yes
Tutor:  There is your misconception.
Adding one to a variable is a common way to
step through a range of values. But it cannot
apply here because your READ instruction in
line 8 retrieves only a single value. You should
replace line 13 with a second call to READ
(GRADES). @)

Given the program in Example 7 and the parts of the
WHILE loop that were programmed correctly, the tutor
inferred that the student understood the basics of loop
programming. To be certain that the tutor and the student
shared a common vocabulary, the tutor asked two ques-
tions; both were answered correctly, suggesting that the
student understood the rudiments of looping constructs
and the role of the control variable. In the third question,
the Meno-tutor analyzed the student’s grasp of deeper
programming concepts. Prior studies? have linked several
explicit programming errors with conceptual misunder-
standings of looping constructs. For instance, the pro-
gramming error in this student’s program has been linked
with a belief that either (1) asingle call to READ will access
all the values of a variable at once or (2) that updating the
control variable (line 13) will do a tacit READ through
each value of the variable each time through the loop. The
tutor’s third and fourth questions discriminate between
these two misconceptions and indicate, as is often the case,
that the student had both misconceptions (both answers
were wrong). The tutor’s last response is an example of the
**grain of truth” speech pattern—it confirms and rein-
forces the student’s correct knowledge about program-
ming while pointing out the inappropriate components of
that answer.

The changes required to produce each discourse are
described in Woolf.8 Though the number of discourses
produced is still small, the fact that our architecture al-
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lowed us to produce varied, but still quite reasonable,
discourse as we changed the particulars of the rules,
substantiates the overall effectiveness of our design.

Meno-tutor architecture

Meno-tutor provides a general framework within which
tutoring rules can be defined and tested. It is not a fully
capable tutor for any one subject, but rather a vehicle for
experimenting with tutoring in several domains. At this
point, its knowledge of the two domains on which it has
been defined is shallow.* However, the mechanism for
managing student-tutor interactions is generalizable and
applicable to new domains—that is, tutoring rules and
strategies can be held constant while the knowledge base is
altered to effect a change in domain of discourse. Meno-
tutor is thus a generic tutor, but is not committed by design
to a single subject.

*Meno-tutor had been developed without a full-scale natural language
generator or a means to fully understand natural-language. The conceptual
equivalent of a student’s input is fed by hand to the tutor (that is, what
would have been the output of a natural-language comprehension system),
and the output is produced by standard incremental replacement tech-
niques. We have not yet worked with Mumbte, !! our surface language

Meno-tutor separates the planning and the generation
of a tutorial discourse into two distinct components: the
tutoring component and the surface language generator.
The tutoring component makes decisions about what dis-
course transitions to make and what information to con-
vey or query; the surface language generator takes concep-
tual specifications from the tutoring component and pro-
duces the natural-language output. These two components
interface at the third level of the tutoring component as
described below. The knowledge base for the tutor is a KL-
One network, annotated with pedagogical information
about the relative importance of each topic in the domain.

The tutoring component is best described as a set of
decision anits organized into three planning levels that suc-
cessively refine the actions of the tutor (Figure 1.) We refer
to the network that structures these decisions, defining the
default and meta-level transitions between them, as a
discourse management network, or DMN. The refinement
at each level maintains the constraints dictated by the

generator, because we haven't yet invested in building a large enough
knowledge base that could then be translated into portions of Mumble's
dictionary. Our intent is to develop a complex knowledge base, possibly in
the domain of Pascal, to extend the surface-language generator to deal with
the domain and to build a simple natural-language parser to interface with
the student.

/ PEDAGOGIC STATES J

(NTRODUCE TUTOR HACK COMPLETE
1 [t %
STRATEGIC STATES ] \ / \
& N
INTRODUCE PROPOSE REPAIR
CONTINGING TOPIC TEACH DATA MISCONCEPTION MISCONCEPTION
TTI T\ A I
NTR AN = EXPLORE VERIFY
Q0UCE 00 LR CY DESCRIGE COMAIN Y CEPTION COMPLETE TOPIC
T IS N
4 TACTICAL STATES I \\ \\\\\ \ \ \
T 11
QUESTION IS CORRECT PROPOSE
SPECIFIC INTRO BEPENDENCY AND ELABORATE MISCONCEPTION
I 1 | Py | ARENY 3y 1\
EXPLICIT CORRECT GUESTION VERIFY
GENERAL INTRO ACKNOWLEGGMENT \ REFLEXIVE FACTOR MISCONCEPTION
[ 4 JUH NN ) |
EXPLORATORY IMPLICIT CORRECTION DESCRIBE GRAIN OF TRUTH
QUESTION ACKKOWLEDGMENT GENERAL KNOWLEOGE CORRECTION
| i1 21\ L
ROLE EXPLORATORY EMPHATIC CORRECT DESCRIBE " REPAIR
QUESTION ACKNOWLEGGMENT SPECIFIC KNOWLEDGE MISCONCEPTION
Jum T T
TEACH EXPLICIT INCORRECT | + OESCRIBE . SUGGEST
SPECIFIC KNOWLEDGE ACKNOWLEOTMENT DEPENDENT KNOWLEDGE NEW TOPIC
11 3\ 1
TEACH IMPLICIT INCORRECT
GENERAL KNOWLEDGE ACKNOWLEDGMENT PROPOSE ANALOGY COMPLETE TOPIC
& b
TEACH
A ENT KNOWLEDGE EVALUATE INPUT SUGGEST EXAMPLE

N\

Figure 1. The discourse management network used by the tutoring component.
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previous level and further elaborates the possibilities for
the system’s response.

At the highest level, the discourse is constrained to a
specific tutoring approach that determines, for instance,
how often the system will interrupt the student or how
often it will probe him about misconceptions. At this level,
a choice is made between approaches that would diagnose
the student’s knowledge (sutor) or introduce a new topic
(introduce).

At the second level, the pedagogy is refined into a
strategy, specifying the approach to be used. The choice
here might be between exploring the student’s competence
by questioning him, or by describing the facts of the topic
without any interaction. At the lowest level, a tactic is
selected to implement the strategy. For instance, if the
strategy involves questioning the student, the system can
choose from a half-dozen alternatives—for example, it
can question the student about a specific topic, the
dependency between topics, or the role of a subtopic.
Again, after the student has given his answers, the system
can choose from among eight ways to respond, three of
which are correcting the student, elaborating on his
answer, or, alternatively, barely acknowledging his
answer.

The tutoring component presently contains 40 states
similar to the state of an augmented transition network, or
ATN. Each state is organized as a Lisp structure with slots
for functions that are run when the state is evaluated. The
slots define such things as the specifications of the text to
be uttered, the next state to go to, or how to update the
student and discourse models. The DMN is traversed by
an iterative routine that stays within a predetermined space
of paths from state to state.

The key point about this control structure is that its
paths are not fixed; each default path can be preempted at
any time by a meta-rule that moves Meno-tutor onto a new
path, which is ostensibly more in keeping with student
history or discourse history. The action of the meta-rule
functionally corresponds to the high-level transitions

observed in human tutoring. Figure 2 represents the action
of two meta-rules, one at the strategic and one at the tac-
tical level. The ubiquity of the meta-rules—the fact that
virtually any transition between tutoring states may poten-
tially be preempted—represents an important deviation
from the standard control mechanism of an ATN. For-
mally, the behavior of Meno-tutor could be represented
within the definition of an ATN; however, the need to in-
clude arcs for every meta-rule as part of the arc set of every
state would miss the point of our design.

The system presently contains 20 meta-rules; most
originate from more than one state and move the tutor to a
single, new state. The preconditions of the meta-rules
deterniine when it is time to move off the default path.
They examine such data structures as the student model
(for example, Does the student know a given topic?), the
discourse model (for example, Have enough questions
been asked on a given topic to assess whether the student
knows it?), and the domain model (for example, Do
related topics exist?). Two meta-rules are described in
more detail in the next section and in the following in-
formal notation (Example 9):

S1-EXPLORE—a Strategic Meta-Rule
From: teach-data
To: explore-competency

Description: Moves the tutor to begin a series of shallow
questions about a variety of topics.

Activation: The present topic is complete and the tutor
has little confidence in its assessment of the student’s
knowledge.

Behavior: Generates an expository shift from detailed
examination of a single topic to a shallow examina-
tion of a variety of topics on the threshold of the stu-
dent’s knowledge.

T6-A.IMPLICITLY—a Tactical Meta-Rule
From: explicit-incorrect-acknowledgment
To: implicit-incorrect-acknowledgment
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Figure 2. The action of the meta-rules.
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Description: Moves the tutor to utter a brief acknowl-
edgment of an incorrect answer.

Activation: The wrong answer threshold has been
reached and the student seems confused.

Behavior: Shifts the discourse from an explicit cor-
rection of the student’s answer to a response that
recognizes, but does not dwell on, the incorrect
answer. ()]

An example of discourse planning

Here we provide an explicit view of the way the decision
units and meta-rules interact in the tutoring process. We
describe the generation of a portion of the discourse in Ex-
ample 1, which is reproduced here in Example 10:

Tutor: No, it is rather mild. Can you guess about
the rainfall there?

Student:  Normal, I guess.

Tutor: Well, the Japan Current, which starts in
the Southeastern Pacific, flows along the
coast of Japan and across the North
Pacific, ending up off the coast of Wash-
ington and Oregon. How do you think that
current affects the climate there? (10)

The example discourse begins after the student’s second
incorrect answer. Figures 3 through 5 show six ‘“‘Snap-
shots’” of Meno-tutor’s passage through a small portion of
the discourse management network as it plans and
generates the sample discourse.

The tutor begins in the state explicit-incorrect-acknow!-
edgment (snapshot 1, Figure 3); this is a tactical state, the
principal action of which is to say something, in this case
“No."” Having said this, the tutor still has “‘control”” of
the discourse and can continue to elaborate its response to
the student’s wrong answer. In the present design, there is
no default path out of explicit-incorrect-acknowledge at
the tactical level. With a different set of rules, the tutor
might, for example, continue speaking, or it might rein-
force the student’s answer, perhaps by repeating it or
elaborating a portion of it. But because our rules say that
the best thing to do at this point is to move to a higher
planning level and to consider reformulating either the
strategy or the pedagogy of the utterance, the tutor returns
to the strategic level and to the parent state, teach-data
(indicated by the ““up” arrow in snapshot 1 of Figure 3).

Once in feach-data, we take the default path down to

the tactical level to teach-specific-data. In general at this
point, a different meta-rule might have applied to take the
tutor to a more particular tactical state, but in this case,
that did not happen. At teach-specific-data, as in any tac-
tical state, the tutor says something, and, in this case, it ex-
tends the utterance already begun with ‘“No.” The ut-
terance is constructed from the specification built into this
decision unit and individualized by the values its elements
have in this domain and at this point in the discourse. The
specification is specific-value (current-topic), where
current-topic has been carried forward from the previous
ply of the discourse and is still “‘the climate in Washington
and Oregon.”” The attribute value of this topic is ‘‘rather
mild” (a canned phrase) and Meno-tutor renders it in this
discourse context (that is, *‘full sentence"’) as *“It’s rather
mild.”

September 1984

TUTOR
| I |
1 1
EXPLORE TEACH DESCRIBE
COMPETENCY DATA BOMAIN
ROLE EXPLORATORY DESCRIBE SPECIFIC
QUESTION KNOWLEDGE
EXPLORATORY DESCRIBE GENERAL
.. QUESTION KNOWLEDGE
EXPLICIT INCORRECT
ACKNOWLEDGMENT
“'CORRECT
k]
X0... YMENT
CORRECT
& ELABORATE
TEACH SPECIFIC
KNOWLEDGE

NEXT
STATES

UTTER
ELMTS

## SPECIFIC TEACH l I

¢ CURRENT ROLE NiL

¢ 181D ROLE

SNAPSHOT 1
TUTOR
] !
1
EXPLORE TEACH DESCRIBE
COMPETENCY DATA DOMAIN
ROLE EXPLORATORY DESCRIBE SPECIFIC
QUESTION KNOWLEDGE
EXPLORATORY BESCRIBE GENERAL
QUESTION KNOWLEDGE
EXPLICIT INCORRECT
ACKNOWLEDGHMENT
IMPLICIT INCORRECT
ACKROWLEDGMENT
IS CORRECT
& ELABORATE
TEACH SPECIFIC
. KNOWLEDGE SNAPSHOT 2

Figure 3. Movement of the tutor through the DMN during the planning
and production of the utterances in Example 10. The tutor explicitly
acknowledges the student’s first wrong answer and then teaches
about a specific topic in the knowledge base (snapshot 1). After the
fault movement to the strategy teach-data, the system moves to ex-
plore the student’s competency (snapshot 2).
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From teach-specific-knowledge there is no default path
and the tutor moves up again to teach-data (Figure 3,
snapshot 2). This time, however, the context has changed
and before teach-data can be evaluated, a meta-rule takes
the tutor to a different decision-unit. The context has
changed because the topics brought up until this point in
the discourse have been answered or resolved.

In detail, what happened was that, when the tutor sup-
plied the correct answer to its own question (i.e., “It's
rather mild”), the DMN register *question_complete® was
set, satisfying one of the preconditions of the meta-rule,
S1-EXPLORE (see Example 9). The other precondition
for this meta-rule was already satisfied, namely, that some
topics related to the current topic remain to be discussed
(as indicated by another register). When SI-EXPLORE is
triggered, it moves the tutor to explore-competency, in ef-
fect establishing that previous topics are complete and that
a new topic can be explored. The next most salient topic in
the knowledge base is “‘rainfall in Washington and
Oregon,” and it becomes the current topic.

Once in explore-competency, the tutor takes a default
path to the tactical level and to exploratory-question
(Figure 4, snapshot 3). Once again, at the tactical level the
tutor says something, in this case, further questioning
topics on the threshold of the student’s knowledge. This
time the utterance is constructed from the specification
built into exploratory-question, which has been individ-
ualized by the values at this point in the discourse. The
specification is question-model (current-topic), where
current-topic has been changed to “‘rainfall in Washington
and Oregon’ at the time the meta-rule was enabled, as
mentioned above. The utterance put out by Meno-tutor is
““Can you guess about the rainfall there?”

At this point, Meno-tutor moves to a default path and
enters the tactical state evaluate-input, which receives and
evaluates the student’s answer (not shown). His answer is
wrong a second time, and the default path moves the tutor,
once again, to explicit-incorrect-acknowledge, where it
would normally correct the student, as before. However,
this state is not evaluated because the context is different
and a new meta-rule, T6-A.IMPLICITLY (Example 9),
fires, moving the tutor to a new decision-unit (Figure 4,
snapshot 4). The context change is two-fold: First, the stu-
dent seems confused, and second, the test for wrong-
answers-threshold is met.

Recognizing a confused student is admittedly a subjec-
tive and imprecise inference for a machine tutor. In this
implementation, we chose to measure the student’s confu-
sion as a function of the number of questions asked, the
number of incorrect responses given, and the extent to
which the student’s frontier of knowledge has been ex-
plored. In the example discourse, two questions were
asked, two answered incorrectly, and the student’s fron-
tier of knowledge barely explored. Therefore, the student
was judged to be confused and the meta-rule T6-A.IM-
PLICITLY triggered, forcing the system to move to the
tactical state implicit-incorrect-acknowledgment. This
move causes the tutor to utter a refinement of its default
response; instead of correcting the student, as the default
response of the previous utterance did, text generated
from this state implicitly recognizes, but does not dwell on,
the incorrect answer and the tutor says “Well, . . .”
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There

is no default path from implicit-incorrect-

acknowledgment and the tutor moves up to feach-data
(snapshot 5, Figure 5). Once again, a meta-rule takes the
tutor to a new strategic decision unit, describe-domain.
The context in this case is that the threshold of wrong
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Figure 4. The tutor moves to a tactical state inthe DMN and questions
the student about a topic on the threshold of his knowledge (snapshot
3). After the student’s second wrong answer, a meta-rule moves the
system to a tactical state which utters an implicit acknowledgment of
the incorrect answer (snapshot 4).
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answers has been met (as recorded by a register) and at
least one topic exists in the knowledge base (‘‘Japan Cur-
rent”’) that is linked to the major topic (the “climate in
Washington and Oregon’’). Based on the first fact, the
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Figure 5. Default movement back to the strategy of teach-datais inter-
rupted by a meta-rute, which moves the system to a new strategy, that
of describing topics in the knowledge bases (snapshot 5). The system
moves, by default, to the tactic of describing a specific topic related to
earlier discourse topics (snapshot 6).
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system infers that the present strategy, teach-data, has
been inceffective; based on the second fact, it infers that an
undiscussed geographical factor remains in the knowledge
base, which, if described, could enable the student to infer
the answer to the original question. S3-DESCRIBE is
therefore triggered, moving the tutor to describe-domain.
The action of this meta-rule terminates the interactive
question/ answer approach and begins a lengthy descrip-
tive passage about the single topic, the *‘Japan Current.”
From describe-domain, the tutor takes the default path
to the tactical level to describe-specific-knowledge (Figure
S, snapshot 6) and prepares to speak. The utterance speci-
fication in this state is specific-describe (current-topic). As
mentioned-above, current-topic is now “‘Japan Current”
and speeific-describe has the effect of enunciating each at-
tribute value of a specific topic in the knowledge base.
Thus, the description realized by Meno-tutor is ‘“‘the
Japan Current, which starts in the Southeast Pacific, goes
along the coast of Japan and across the North Pacific,
ending up off the coast of Washington and Oregon.”

We have suggested that because tutoring can be af-
fected by problems in communication, customization of a

-system’s response to the individual student is central to its

effectiveness. We have also described how the author of a
tutoring system might begin to adapt a system’s response
to the student’s level of knowledge. The data and control
structures of Meno-tutor were described to show how a
tutoring system can use Al techniques to model the stu-
dent, a domain, and the teaching strategies in the planning
and generation of its discourse. %
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