Test Data Selection Using
the RELAY Model of Error Detection

Debra J. Richardson
Margaret C. Thompson

COINS Technical Report 87-78
August 1987

Software Development Laboratory
Computer and Information Science Department
University of Massachusetts
Ambherst, Massachusetts 01003

This research was supported in part by the National Science Foundation under grants DCR-83-18776 and DCR-
84-04217 and by the Rome Air Development Center grant F30602-86-C-0006.

Abstract

RELAY, a model for error detection, defines revealing conditions that guarantee that a fault
originates an error during execution and that the error transfers through computations and data
flow until it is revealed. This model of error detection provides a criterion for test data selection.
The model is applied by choosing a fault classification, instantiating the revealing conditions for the
classes of faults, and applying them to the program being tested. Such an application guarantees
the detection of errors caused by any fault of the chosen classes. In this paper, we summarize the
RELAY model of error detection and its instantiation. RELAY is then applied to a sample program
to illustrate its use as a test data selection criterion.

1 Introduction

The goal of testing a program is the detection of errors. This is typically done by attempting to
select test data for which execution of the program produces erroneous results. Many testing tech-
niques [Bud81,Bud83,Ham77,How82,How85,Mor84,Zei83,Wey81] are directed toward the detection
of errors that might result from commonly occurring faults in software. These “fault-based” testing
techniques assume that the program being tested is “almost correct”, which might be determined
by successfully passing some high-level functional testing phase. If a “comprehensive” set of test
data is selected by a fault-based technique and the program executes correctly, then the tester gains
confidence that the program does not contain specific types of faults.

This paper reports on a new model of error detection called RELAY, which provides a fault-
based criterion for test data selection. The RELAY model builds upon the testing theory introduced
by Morrell [MH81,Mor84], where an error is “created” when an incorrect state is introduced at some
fault location, and it is “propagated” if it persists to the output. We refine this theory by more
precisely defining the notion of when an error is introduced and by differentiating between the
persistence of an error through computations and its persistence through data flow operations.
We introduce similar concepts, origination and transfer!, as the first erroneous evaluation and
the persistence of that erroneous evaluation, respectively. The RELAY model defines revealing
conditions that guarantee that a fault originates an error during execution and that the error
transfers through all affected computations until it is revealed.

The next section summarizes the RELAY model and briefly describes its instantiation to develop
revealing conditions for a class of faults; more detail is provided in a related paper|RT86b|. In the

third section, we present an example of the application of RELAY as a test data selection criteria.

I'We have chosen the term “originate” rather than “create” or “introduce”, because we feel it better connotes the
first location at which an erroneous evaluation occurs and does not imply the mistake a programmer makes while
coding. We have chosen the term “transfer” over “propagate” so as to avoid the connotation of an “increase in
numbers” and instead of “persist” so as not to conflict with Glass’s notion [Gla81], where an error is persistent if it
escapes detection until late in development.

2 RELAY: A Model of Error Detection

The primary use for the RELAY model of error detection is as a test data selection criterion.
RELAY is capable of guaranteeing the detection of errors that result from some chosen class or
classes of faults. In addition, given test data that has been selected by another criterion, RELAY
can be used as a measurement technique for determining whether that test data detects such
errors. Before describing the RELAY model of error detection, we first introduce a terminology

within which we define the RELAY model.

2.1 Terfninology

We consider the testing of a module M that implements some function Fas : Xy — Zm. A
module M can be represented by a control flow graph Gar = (N, E), where N is a (finite) set of
nodes and E C N x N is the set of edges. N includes a start node n,qare and a final node nginat;
each other node in N represents a simple statement? or the predicate of a conditional statement in
M. A subpath in a control flow graph Gp = (N, E) is a finite, possibly empty, sequence of edges
p = [(n1,n2), ..., (ypp; Rjpj41)] in E; note that the last node nyyjyy has been selected by virtue of
its inclusion in the last edge but is not visited in the subpath traversal. An tnitial subpath p is a
subpath whose first node is ngyqp. A path P?3 is an initial subpath whose last node is nginat-

A test datum t for a module M is a sequence of values input along some initial subpath. For
any node n in Gy, DOMAIN(n) is the set of all test data ¢ for which n can be executed. A
test datum ¢ may be an incomplete sequence of input values in the sense that it cannot execute
a complete path. This may be because: 1) additional input is needed to complete execution of
some path; or 2) the initial input ¢ may cause the module to terminate abnormally (before n final)

or possibly never to terminate. The possibility of incomplete input sequences allows for testing

3Single statements are considered here for the clarity of the presentation; a simple extension allows nodes to
represent a group of simple statements.

3Where the distinction between a subpath and a path is important, we will use an upper case letter (P) to signify
a path and a lower case letter (p) for a subpath (or initial subpath).

criteria that consider invalid test data, which are not in the domain of M but for which M may
initiate execution. The test data domain Dpg for Gps = (N, E) is the domain of inputs from which
test data can be selected. * Dy = {t|In € N,t € DOMAIN(n)}.

A testing method typically specifies some subset of the test data domain for execution. A test
data set Tps for a module M is a finite subset of the test data domain, Thy C Dps. A test data
selection criterion S, is a set of rules for determining whether a test data set T satisfies selection
requirements for module M.

To reveal errors by testing, there is usually some test oracle that specifies correct execution of
the module [How78,Wey82]. A test oracle might be a functional representation, formal specification,
or correct version of the module or simply a tester who knows the module’s correct output. In any
case, an oracle O(Xo, Zop) is a relation, O = {(z,2)} C Xo x Zo, where Xo and Zo are the domain
and range, respectively, of the oracle. When (z,z) € O, z is an acceptable output for z. Execution
of a module M on input z reveals an output error when (z, M(z)) ¢ 0.

A “standard” oracle judges the correctness of the module’s output for valid input data. Testers
often have a concept of the “correct” behavior of a module, however, and not just its correct output.
Rather than waiting until output is produced to find errors, the tester might check the computation
of the module at some intermediate point, as one does when using a run-time debugger. This
approach to testing can be performed with an oracle that includes information about intermediate
values that should be computed by the module; this information might be derived from some
correct module, an axiomatic specification, run-time traces [How78|, or monitoring of assertions.
Let us associate with the execution of an initial subpath p on some test datum t a contezt Cp(y),
which contains the values of all variables after execution of p(t). A contezt oracle O¢ is a relation

Oc = {((t,P),Cp(r))}, that relates a test datum and an initial subpath (t, p) to one or more contexts

Cy(t) that are acceptable after execution of p on t5. Execution of a path p on test datum ¢ reveals

4Dasr does not include data that would result in an invalid call of the module.

5For simplicity, the granularity of the context oracle is assumed to be the same as that of the control flow graph,

a contezt error when ((t,p),Cp(y)) ¢ Oc-

2.2 RELAY

The errors considered within the RELAY model are those caused by some chosen class or classes
of faults in the module’s source code. The fault-based approach to testing relies on an assumption
that the module being tested bears a strong resemblance to some hypothetically-correct module.
Such a module need not actually exist, but we assume that the tester is capable of producing
a correct module from the given module and knowledge of the errors detected. As currently
formulated, RELAY is limited to the detection of errors resulting from a single fault.

A node containing a fault may be executed yet not reveal an error; the module appears correct,
but just by coincidence of the test data selected. It is also possible that the tested module produces
correct output for all input despite a discrepancy between it and the hypothetically-correct module.
In this case, the module is not merely coincidentally correct, it is correct. Thus, a discrepancy is
oﬁly “potentially” a fault. Likewise, incorrect evaluation of an expression is only “potentially” an
error since the erroneous value may be masked out by later computations before an erroneous value
is output. A potential fault, denoted f,, is a discrepancy between a node n in the tested module
M and the corresponding node n* in the hypothetically-correct module M* — that is, n # n*. The
evaluation of some expression EXP® in M, which contains a potential fault, and the corresponding
expression EXP* in M* results in a potential error when ezp # ezp*. To discover a potential
fault, erroneous results must appear for some test datum as a context error or as an output error,
depending on the type of oracle used.

RELAY is a model that describes the ways in which a potential fault manifests itself as an error.
Given some potential fault, a potential error originates if the smallest subexpression of the node

containing the potential fault evaluates incorrectly. Consider the module in Figure 1 for example.

although this is not necessary.

SUpper case [EX P is used here to denote the source-code expression, while lower case [ezp] denotes the evaluated
expression. :

Suppose that the statement X := UV at node 1 contains a variable reference fault and should be
X := B+V. A potential error originates in the smallest expression containing the potential fault,
which is the reference to U, whenever the value of U differs from the value of B.

It is not only important to originate an error but also to ensure that it is not masked out by
later computations. A potential error in some expression transfers to a “super”—expression that
references the erroneous expression if the evaluation of the “super”-expression is also incorrect.
Take another look at Figure 1; if V holds the value zero, the potential error in U that originates
in node 1 does not transfer to affect the assignment to X; the potential error transfers, on the
other hand, whenever V' is nonzero. To reveal a context error, a potential fault must originate a
potential error that transfers through all computations in the node thereby causing an incorrect
context. This is termed computational transfer. To reveal an output error, a potential fault
must cause a context error that transfers from node to node until an incorrect output results. This
transfer includes data flow transfer, whereby a potential error reaches another node — that is,
the potential error is reflected in the value of some variable that is referenced at another node — as
well as computational transfer within the nodes that an erroneous value reaches. Using the example
of Figure 1 again, the potential error in X must transfer through data flow to a use, say at node
7, transfer through the computations at node 7 to produce an error in W, and then transfer to
the output of W at node 8. We know unequivocally that the module is incorrect only if an output
error is revealed. Thus, a potential fault is a fault only if it produces incorrect output for some
test datum.

Figure 2 illustrates the RELAY model of error detection and how this model provides for the
discovery of a fault. The conditions under which a fault is detected are 1) origination of a potential
error in the smallest containing subexpression; 2) computational transfer of that potential error
through each operator in the node, thereby revealing a context error; 3) data flow transfer of that
context error to another node on the path that references the incorrect context; 4) cycle through

(2) and (3) until a potential error is output. If there is no single test datum for which a potential

false

1:X:=U=xV

2:Z =V *x2

Y = (X +3)++Z

4

TW . =X=+B

4if A< B

true

5W : =Y xZ

6:output X

8:output W

Figure 1: Module for Test Data Selection

output
error

potential potential
fault error

computational
transfer

data flow
transfer

Figure 2: RELAY Model of Error Detection

error originates and this “total” transfer occurs, then the potential fault is not a fault, and the
module containing the potential fault is equivalent to some hypothetically-correct module.

As shown in Figure 3, the RELAY view of error detection has an illustrative analogy in a
relay race, hence the name of our model. The starting blocks correspond to the fault location.
The take off of the first runner, as the gun sounds the beginning of the race, is analogous to the
origination of a potential error. The runner carrying the baton through the first leg of the race
is the computational transfer of the error through that first statement. The successful completion
of a leg of the race has a parallel in revealing a context error, and the passing of the baton from
one runner to the next is analogous to the data flow transfer of the error from one statement to
another. Each succeeding leg of the race corresponds to the computational transfer through another
statement. The race goes on until the finish line is crossed, which is analogous to the test oracle
revealing an output error.

Our goal, of course, is to complete the relay race — that is, to detect errors. To this end, the
RELAY model proposes the selection of test data that originates an error for any potential fault of

some type and transfers that error until it is revealed. RELAY uses the concepts of origination and

potential
error

£ ORIGINAT AN

potential N
Jault \

conlext

error

3 data flow

transfer CONTEXT co::‘lg:nst:tl.’lonal
\ ORACLE
conlext
eryror
I
B S ~

computauonal data ﬂow'
transfer tranafer/

7

oulput P
error -
Bhse—om---
(o o~

_~__OUTPUT ORACLE __—

Figure 3: The Testing Relay

transfer to define conditions that are necessary and sufficient to guarantee error detection. When
these conditions are instantiated for a particular type of fault, they provide a criterion by which
test data can be selected for a program so as to guarantee the detection of an error caused by any
fault of that type.

Given an oracle and a module M with Gy = (N, E) that contains a potential fault f, at node
n € N, a test data selection criterion S is said to guarantee detection of a fault f, if for all test
data sets Ty that satisfy S, there exists ¢t € Tis such that f, originates an error for M(t) that
transfers until it is detected by the oracle. If a context oracle exists, the potential fault must reveal
a context error for some test datum in every test data set. Note that guaranteeing detection of a
context error does not necessarily mean that an output error will result for this execution, since
it is possible that the context error is masked out by later statements and not transferred to the
output. If error detection is done by a standard output oracle, then a context error revealed by the
fault must also transfer to the output for some test datum in every test data set.

Here, we define origination, transfer, and revealing conditions that are necessary and sufficient
to guarantee that an error is revealed. Sufficient means that if the module is executed on data that
satisfies the conditions and the node is faulty, then an error is revealed. Necessary, on the other
hand, means that if an error is revealed then the module must have been executed on data that
satisfies the condition and the node is faulty.

These conditions are defined for a potential fault independent of where the node occurs in
the module. The test data selected, however, must execute the node within the context of the
entire module. Thus, for a potential fault at node n, such test data are restricted to DOMAIN(n).
Because these conditions are both necessary and sufficient, if the conditions are infeasible within
DOMAIN(n), then no error can be revealed and the potential fault is not a fault. Although, in
general, the feasibility problem is undecidable, in practice, it can usually be solved.

First, suppose that we are attempting to detect a particular fault f,, in a node n. This is

somewhat unrealistic, since if one explicitly knew the location of a fault, one would fix it. We will

address this issue in a moment, after some groundwork is laid.

To reveal an output error, we must first generate a context error at the node containing the
fault; thus, let us first consider the conditions required to guarantee the detection of a context
error. By requiring test data to distinguish the faulty subexpression from the correct one, the
origination condition for a potential fault f, guarantees that the smallest subexpression con-
taining f, originates a potential error. A potential error originating at the smallest subexpression
containing a potential fault must transfer to affect evaluation of the entire node. By requiring test
data that distinguishes the parent expression referencing a potential error from the parent expres-
sion referencing the correct subexpression, the computational transfer condition guarantees
that a potential error transfers through a parent operator. To affect the evaluation of a node, test
data must satisfy the computational transfer condition for each operator that is an ancestor of the
subexpression in which the potential error originates thereby producing a context error. The node
transfer condition is the conjunction of all such computational transfer conditions. To guarantee
a fault’s detection through revealing a context error, a single test datum must satisfy both the
origination and node transfer conditions. The revealing condition for a context error resulting
from a potential fault f, occurring in node n is the conjunction of the origination condition and
the node transfer condition for f, and n.

As an example of these conditions for error detection, consider again the module in Figure 1. If
the statement X := U *V at node 1 should be X := B*V, then the origination condition is [u # b].
This originated potential error must transfer through the multiplication by V'; the corresponding
computational transfer condition is (u * v # b * v), which simplifies to (v # 0). This value must
then transfer through the assignment to X, which is trivial. Thus, the revealing condition for a
context error reéulting from this potential fault is [(u # b) and (v # 0)].

Testing is primarily concerned with the generation of an output error as the manifestation of
a fault and not only with incorrect values at intermediate points in the module. Thus, we must

guarantee that a context error transfers to affect execution of the module as a whole. A context

10

error is evidenced through a potential error in at least one variable. By requiring test data that
causes the execution of a statement referencing a variable that contains a potential error and
that causes the smallest subexpression containing that reference to result in a potential error, a
data flow transfer condition describes the requirements for transfer of a context error from one
statement to another. To reveal an output error, we must execute a def-use chain that begins with
the node containing the potential fault and ends with the output of a variable. A def-use chain
is a chain of alternating definitions and uses of variables, where each definition reaches the next
use in the chain and that use defines the next variable in the chain. Satisfaction of the data flow
transfer conditions will force execution of such a chain. In addition, the subsequent node transfer
conditions for the references forced by data flow as well as the context error revealing condition
at the location of the fault must be satisfied. A chain transfer condition for a def-use chain is
the conjunction of the data flow transfer conditions for all pairs in the def-use chain and the node
transfer conditions for all uses in the def-use chain. The revealing condition for an output error
is the conjunction of the context error revealing condition and the chain transfer condition for the
def-use chain from the fault location to the output.

Consider again the potential variable reference fault at node 1 in Figure 1. One def-use chain
from the fault location to an output consists of the definition of X at node 1, followed by a use
of X at node 7, where W is defined, followed by a use of W in the output statement at node 8.
The potential error in X transfers through data flow to node 7 whenever the false branch of the
conditional at node 4 is taken; thus, the data flow transfer condition is (a > b). Reference to the
potential error in X must transfer through the multiplication by B to the assignment of W at node
7, which entails a node transfer condition of (b # 0). Thus, for this def-use chain, the chain transfer
condition is [(a > b) and (b # 0)]. Recall that the context error revealing condition is [(u # b) and
(v # 0)], creating an output error revealing condition for this chosen def-use chain of [(u # b) and
(v #0) and (a > b) and (b # 0)).

As currently defined, derivation of revealing conditions is dependent on knowledge ‘'of the correct

11

node. Since this is unlikely, an alternative approach is to assume that any node, in fact any
subexpression of any node, might be incorrect and consider the potential ways in which that
expression might be faulty. By grouping these potential faults into classes based on some common
characteristic of the transformation, we define conditions that guarantee origination of a potential
error for any potential fault of that class. A class of potential faults determines a set of alternative
expressions, which must contain the correct expression if the original expression indeed contains a
fault of that class. To guarantee origination of a potential error for a class, the potentially faulty
expression must be distinguished from each expression in this alternate set. For each alternative
expression, then, our model defines an origination condition, which guarantees origination of a
potential error if the corresponding alternate were indeed the correct expression. For an expression
-and fault class, we define the origination condition set, which guarantees that a potential error
originates in that expression if the expression contains a fault of this class. The origination condition
set contains the origination condition for each alternative expression.

For each alternative expression, a potential error that originates must also transfer through each
operator in the node to reveal a context error and through data flow and subsequent computations
to reveal an output error. The transfer conditions, which are determined by these subsequent
manipulations of the data, are independent of the particular alternate. Thus, for a fault class,
each alternate defines a revealing condition, which is the conjunction of the origination condition
and the transfer conditions. The revealing condition set contains a revealing condition for each
alternate in the alternate set and is necessary and sufficient to guarantee that a potential fault of
a particular class reveals an output error.

Once again, consider the module in Figure 1 and the statement X := U * V', but now suppose
that the reference to U might be faulty but we do not know what variable should be referenced.
To guarantee origination of a potential error for an incorrect reference to U, we must select test

data such that for each alternative variable, U 7 , T contains a test datum where the value of U

7We use the bar notation to denote an alternate.

12

is different from the value of U at node 1. The possible alternates depend on what other variables
may be substituted for U without violating the language syntax. If we assume that all variables
referenced in this module are of the same type, then there are seven alternates and hence seven
origination conditions. The origination condition set is {[u # @] | U € {4, B,V,W, X,Y, Z}}. The
node transfer condition for node 1 is [v # 0]. The chain transfer condition for the use of X to define
W at node 7 and the output of W at node 8 is [(a > b) and (b # 0)]. Thus, the set {[(u # @ and
(v#0) and (a > b) and (b#0)] | U € {A, B,V,W, X,Y, Z}} is a sufficient revealing condition set
for this potential fault. This set is sufficient but not necessary because all def-use chains are not
considered.

The RELAY model of error detection is based on the generic revealing condition sets just
defined. The model is applied by first selecting a fault classification. Given a particular class of
faults, the generic origination and transfer conditions are instantiated to provide conditions specific
to that class. We have instantiated the model for six classes of faults: constant reference fault,
variable reference fault, variable definition fault, boolean operator fault, relational operator fault,
and arithmetic operator fault [RT86b|. For a module being tested, the instantiated origination and
transfer conditions are evaluated for the nodes in a module’s control flow graph to determine the
actual revealing condition sets. Satisfaction of these sets guarantees the detection of an error for
any fault in the chosen classification. The actual revealing conditions for a module can be used to
measure the effectiveness of a pre-selected set of test data and/or to select a set of test data. A

simple example of RELAY as a test data selection criterion is presented in the next section.

3 Use of RELAY for Test Data Selection

As an example of how RELAY can be used to select test data, consider the potential faults
at node 1 in the example shown in Figure 1. If we assume that the module is “almost correct”,
then the statement at node 1 might have a variable reference fault, a variable definition fault, or an

arithmetic operator fault. These classes are three of six for which RELAY has been instantiated thus

13

variable referenced origination condition set
12 {[v # v|V is a variable other than V
that is type-compatible with V|}

Table 1: Origination Condition Set for Variable Reference Fault

far. Both the origination conditions for these three classes as well as the applicable computational
transfer conditions are reported in this paper. Let us first consider the conditions that must be
satisfied to guarantee that a context error is revealed at node 1 for these three classes of faults.
Then, we construct the chain transfer conditions necessary to reveal an output error. Finally, we
append each transfer condition to each origination condition to provide the output error revealing

condition.

3.1 Context Error Revealing Conditions

Consider first a potential variable reference fault at node 1; either the reference to U or the
reference to V' could be incorrect. The origination condition set for this class of faults is shown
in Table 1. When evaluated for the reference to U at node 1 8 , the origination condition set is
{lu#14]|ue {A,B,V,W,X,Y,Z}}. The transfer condition for multiplication is shown in Table 2;

when evaluated for node 1, this requires (v # 0).

Thus, the context error revealing condition set is {[(u # @ and (v # 0)] | T €
{A,B,V,W,X,Y,Z}} (as constructed in the previous section). A similar condition set must be
satisfied to reveal a context error for a potentially incorrect reference to V; it is {l(v # v and
(v#0)] |V €{4,B,U,W,X,Y,2)}}.

Next, consider a potential arithmetic operator fault. The multiplication operator at node 1

could potentially be any other arithmetic operator. The origination condition set for an incorrect

®These conditions refer to values before execution of the node since they are requirements on test data selected
for the node.

14

operator expression * transfer conditions
+ exp) + expr # €IP; + exp; true
* ezp * expy # €TP] * exp; expz # 0
* eTpi**exp; # €ipi*+expy | (expy # 0) and (exp; # —éEpy or ezp; mod 2 # 0)

Table 2: Transfer Conditions through Arithmetic Operators

expression “origination condition set
(ezpl*expﬂ {[(ezpl*eng) # (ezpl'*'ezPZ)]»
[(ezp1*exps) # (ezp1—ezp2)],
[(ezp1*exps) # (exp1/ezps) or
[(expi*ezps) # (expy*+ezps)|}.

Table 3: Origination Condition Set for + Operator Fault

multiplication operator, where the alternative operators are +, —, /, %, is shown in Table 3. Thus,
to guarantee origination of a potential error for a potential arithmetic operator fault in this node, a
test data set must satisfy the origination condition set {[(u*v) # (u+v)}, [(u*v) # (u—v)], [(u*v) #
(u/v)), [(u*v) # (u**v)]}. The potential error originated by a potential arithmetic operator fault
in this statement must transfer through the assignment operator in order to reveal a context error;
this requires no additional conditions. The context error revealing condition set is, therefore, the
same as the origination condition set.

Now, consider a potential variable definition fault. The origination condition set for this class of
faults is shown in Table 4. Again assuming all eight variables are of the same type, the origination
condition set is {[(z # T or (u+v # z)| | X € {A,B,U,V,W,Y,Z}}. There are no transfer condi-
tions required to reveal a context error for this potential fault once a potential error is originated.
Thus, the context error revealing condition set for this potential fault is the same as the origination

condition set.

15

assignment | origination condition set
V := EXP | {|(¥# v) or (exp # v) | V is a variable other than V
that is type-compatible with V]}.

Table 4: Origination Condition Set for Variable Definition Fault

3.2 Chain Transfer Conditions

We are now in a position to consider the additional requirements necessary to guarantee rev-
elation of an output error for the potential faults discussed above. There are two paths in this
module, and for each path, we must construct the chain transfer condition for each def-use chain,
where the definition at node 1 reaches an output.

Let us first consider the path [(1,2),(2,3),(3,4),(4,7),(7,8)], where the false branch of the
condition at node 4 is taken. Along this path, the only def-use chain consists of the definition of X
at node 1, the use of X at node 7 to define W, and the output of W at node 8. The corresponding
chain transfer condition (as described in the previous section) is [(a > b) and (b # 0)].

Now, consider the second path ((1,2)(2,3)(3,4),(4,5), (5,6), (6,8)], along which there are two
def-use chains beginning with the fault location and ending with an output statement. One such
def-use pair consists of the definition of X at node 1 followed by the use of X in the output
statement at node 6. The data flow transfer condition to force this def-use pair is (¢ < b) and
no other node transfer conditions are required. Thus, the chain transfer condition for this def-use
chain is [(a < b)).

The other def-use chain along this path consists of the definition of X at node 1, followed by the
use of X at node 3 where Y is defined, followed by the use of Y at node 5 to define W, followed by
the use of W in the output statement of node 8. The transfer from node 1 to node 3 is sequential,
so there is no data flow transfer condition required. At node 3, the potential error in X must

transfer through the addition and the exponentiation to the assignment of Y'; this is defined by

16

the node transfer condition for node 3. The transfer conditions for addition and exponentiation
are shown in Table 2. The transfer condition for + is trivial — that is, (true). There are several
possible ways, however, in which exponentiation could mask out a potential error in the expression
(X + 3). The most obvious way is if the value of Z is zero; thus one transfer condition is (z # 0).
Another possibility is if Z is even and the potential error expression containing X is the negation
of the potentially correct expression. It is sufficient, but not necessary, to simply constrain Z to
be odd. Thus, a sufficient node transfer condition for node 3 is ((z # 0) and (0dd(z))) ® . The
potential error must also transfer from this definition of Y at node 3 to the use of Y at node 6,
which is defined by the data flow transfer condition (a < 5). Within node 6, the potential error in
Y must transfer through the multiplication by Z to the definition of W, which requires satisfaction
of the node transfer condition (2 # 0). Thus, revelation of an output error for this def-use chain is

achieved by satisfying the following chain transfer condition — [(z # 0) and (odd(z)) and (a < b)].

3.3 Output Error Revealing Conditions

We can now construct the output error revealing condition sets for the potential faults of node
1. A context error at node 1 may transfer to an output error through any of the def-use chains
discussed above. This is described by the disjunction of the chain transfer conditions for each
def-use chain — [((a > b) and (b # 0))] or [(a < b)] or [((z # 0) and odd(z)) and (a < b)]. To
construct the revealing condition set for a particular fault class, we conjoin each condition in the
context error revealing condition set with this disjunction of the chain transfer conditions. For the

fault classes considered above, this results in the following output error revealing condition sets.

®For simplicity, we will continue to use this sufficient constraint.

17

incorrect reference { | (u # 1) and (v # 0) and
toU ((a > b) and (b # 0)) or (a < b) or
((e < b) and (2 # 0) and odd(z))]
|U € {A,B,V,W,X,Y,Z} }

incorrect reference { [(v # ¥) and (u # 0) and
toV ((a > b) and (b# 0)) or (a < b) or
((a < b) and (z # 0) and odd(z2))]
|V € {A,B,U,W,X,Y,2} }

incorrect arithmetic { [((u*v) # (u+v)) and
operator ((a > b) and (b+# 0)) or (a < b) or
((a < b) and (= # 0) and odd(z))],
[((wro) # (u-v)) and
((a > b) and (b # 0)) or (a < b) or
((a < b) and (z # 0) and odd(z))],
[((wwo) # (u/v)) and
((a >) and (b# 0)) or (a < b) or
((a < b) and (z # 0) and odd(2))],
[((wwo) # (uxv)) and
((a > b) and (b # 0)) or (a < b) or
((a < b) and (z # 0) and odd(2))] }

incorrect variable {[(z # %) or (usv # z) and
definition to X ((a = b) and (b # 0)) or (a < b) or
((a < b) and (z # 0) and odd(2))|

| X € {A,B,U,V,W,Y, 2} }

3.4 Test Data Selection

If we blindly select test data to satisfy these revealing condition sets, then we might potentially

select 25 test data. There is much overlap, however, between these condition sets. In fact, selection

of a single test datum such that

Y VAR € {A,B,W,Y,Z}| [(v# v # = # var) and (u # v # 0) and
((a > b) and (b # 0)) or (a < b) or ((a < b) and (z # 0) and odd(2))]'°

'Because this is the first node in the module, no additional conditions restrict the domain from which the test
data are selected.

18

satisfies the revealing condition sets for both potential variable reference faults and the variable
definition fault. The single test datum (¢ = 2,b =3, u = 4,v=5,w =6,z =T,y = 8,z = 9)
satisfies this sufficient output error revealing condition for these two fault classes and transfers an
error along the chain through the definitions of X at node 1, Y at node 3, and W at node 5. Upon
examination of the revealing condition set for an arithmetic operator fault, we see that this test
datum satisfies each condition in that set as well. This single test datum, therefore, is sufficient
to guarantee detection of any fault in node 1 of these classes. This means that if execution of the
module on this test datum provides correct results, we know that node 1 does not contain any fault
of these classes. While we could have selected test data that executes all def-use chains, execution
of such data would not provide any additional information about the presence or absence of faults
at node 1 for the chosen fault classes. Under the assumption that the module is “almost correct”,
we have guaranteed that node 1 is correct with respect to the fault classes considered. This testing
process must, of course, be undergone for all nodes in the module to guarantee detection of any

such fault in the module.

4 Conclusion

In this paper, we present the RELAY model of error detection and demonstrate its use as a
criterion for test data selection. The model itself defines generic origination and transfer conditions
that must be satisfied to guarantee the detection of an error. To use RELAY as a test data selection
criterion, a fault classification is chosen and the origination condition sets and the applicable transfer
conditions are instantiated for that fault classification. For each node in a module, these origination
condition sets are then evaluated for the potential faults. To develop the revealing condition sets, the
applicable computational and data flow transfer conditions are added to each origination condition
in the origination condition sets. Test data selected to satisfy these revealing condition sets is
capable of guaranteeing detection of an error for any fault in the chosen fault classification.

This paper provides an example of the selection of test data for a chosen fault classification.

19

Test data is selected for one node, which potentially has faults in three classes. The application
of the origination condition sets is straightforward, and it is relatively easy to determine the data
flow and computational transfer conditions for all def-use chains from the potential fault to output.
In general, finding a sufficient output error revealing condition set is not difficult since it requires
determining only a single def-use chain from the potential fault to an output. When test data
is selected to satisfy a sufficient revealing condition set for some fault class, correct execution
guarantees that the module does not contain a fault of the class. If that set is not satisfiable,
however, absence of a fault in the class is not guaranteed; the complete revealing condition set
must be considered. Determining the complete, necessary condition set, however, may be more
difficult since it requires determining all possible def-use chains from the potential fault to output.
This is particularly complex when a potential error transfers through a looping construct.

RELAY has also been used to evaluate the error detection capabilities of other testing
techniques|RT86a]. This analysis demonstrated how the rules of a test data selection criterion
must be carefully designed and tightly integrated to reveal an error for any potential fault by show-
ing how other techniques have failed to accomplish this precision. Without this precise analysis,
it is easy to arrive at test data selection rules that do not guarantee the detection of a fault and
may not even be sufficient to do so. Using RELAY, we have evaluated where previous criteria have
failed in this regard.

We continue to extend the RELAY model of error detection, to evaluate its capabilities by
instantiating it for other classes of faults, and to analyze other testing criteria using RELAY. In

addition, we are investigating the implementation of a tool to automate the selection of test data

based on the RELAY model.

REFERENCES
[Bud81] Timothy A. Budd. Mutation analysis: ideas, examples, problems and prospects. In B.

Chandrasekaran and S. Radicchi, editors, Computer Program Testing, pages 129-148,
North-Holland, 1981.

20

[Bud83]
[Gla81]
[Ham77]

[How78]

[How82]
[How8s|
[MHs1]
[Mors4]

[RT86a]

[RT86b]

[Wey81]
[Wey82)

[Zei83]

Timothy A. Budd. The Portable Mutation Testing Suite. Technical Report TR 83-8,
University of Arizona, March 1983.

Robert L. Glass. Persistent software errors. IEEE Transactions on Software Engineering,
SE-7(2):162-168, March 1981.

Richard G. Hamlet. Testing programs with the aid of a compiler. IEEE Transactions on
Software Engineering, SE-3(4):279-290, July 1977.

William E. Howden. Introduction to the theory of testing. In Edward Miller and
William E. Howden, editors, Tutorial: Software Testing and Validation Techniques,
pages 16-19, IEEE, New York, 1978.

William E. Howden. Weak mutation testing and completeness of test sets. IEEE Trans-
actions on Software Engineering, SE-8(2):371-379, July 1982.

William E. Howden. The theory and practice of functional testing. IEEE Software,
2(5):6-17, September 1985.

Larry J. Morrell and Richard G. Hamlet. Error Propagation and Elimination tn Computer
Programs. Technical Report 1065, University of Maryland, July 1981.

Larry J. Morrell. A Theory of Error-Based Testing. PhD thesis, University of Maryland,
April 1984.

Debra J. Richardson and Margaret C. Thompson. An Analysts of Test Data Selection
Criteria Using the RELAY Model of Error Detection. Technical Report 86-65, Computer
and Information Science, University of Massachusetts, Amherst, December 1986.

Debra J. Richardson and Margaret C. Thompson. A New Model of Error Detection.
Technical Report 86-64, Computer and Information Science, University of Massachusetts,
Ambherst, December 1986.

Elaine J. Weyuker. An Error-based Testing Strategy. Technical Report 027, Computer
Science, Institute of Mathematical Sciences, New York University, January 1981.

Elaine J. Weyuker. On testing nontestable programs. The Computer Journal, 25(4),
1982.

Steven J. Zeil. Testing for perturbations of program statements. JEEE Transactions on
Software Engineering, SE-9(3):335-346, May 1983.

21

