DESIGN OF
EFFICIENT PARAMETER ESTIMATORS
FOR DECENTRALIZED

LOAD BALANCING POLICIES!

Spiridon Pulidas?, Don Towsley®, Jack Stankovic*

University of Massachusetts
Ambherst, MA 01003

COINS Technical Report 87-79
August 20, 1987

Abstract

In this paper we study the problem of efficiently determining the optimum parameter
values present in a decentralized threshold load balancing policy. The purpose is to improve
the performance of a distributed system (e.g. minimize the average response time of a job) by
using the processing power of the entire system. This is done by transfering jobs from heavily
loaded nodes to lightly loaded nodes. A distributed optimization algorithm, where each host
computes its own threshold value on-line is adapted to the selected load balancing policy. The
algorithm requires that each host computer be able to estimate the change in throughput and
expected queue length due to a change in either the threshold or the job arrival rate. Two
efficient estimation techniques are proposed for estimating the required gradient information.
These techniques are imbedded in the distributed threshold updating algorithm and simulation

results are obtained for its behavior in a static as well as in a changing system environment.

! This work was supported by RADC under contract RI-448896X.
2Department of Electrical and Computer Engineering.
3Department of Computer and Information Science.
4Department of Computer and Information Science.

N =

w

4

D O

Table of Contents

. INTRODUCTION

. A DECENTRALIZED LOAD BALANCING SCHEME
2.1. System Model
2.2. Load Balancing Policy
2.3. Optimal Load Balancing Problem

. GRADIENTS WITH RESPECT TO THRESHOLD
3.1. Introduction

3.2. Gradient Estimation in M/G Systems
3.3. Simulation Results
3.4. Gradient Estimation in G/M Systems

. GRADIENTS WITH RESPECT TO THE ARRIVAL RATE
4.1. Introduction

4.2. Gradient Estimation in Regenerative Systems

4.3. Simulation Results
4.4. Systems with two classes of jobs

. AN EXAMPLE
. CONCLUSIONS

REFERENCES

ii

DB B =

12
12
12

18
23

25
25
25

28
35

37
46
48

1. INTRODUCTION

We consider distributed computer systems consisting of multiple host computers
interconnected by a communication network. Jobs arrive at each host computer according
to some arrival process and can be processed either locally or at other hosts after being
transfered through the communication network. The results of jobs processed remotely
are returned to the origin host computer. Communication delays are incurred due to the
transfer of remote jobs and their results. In such an environment, load balancing attempts
to improve the performance of the distributed system (e.g. to minimize the mean response
time of a job) by using the processing power of the entire system to smooth-out periods of

high congestion at individual nodes. This is done by transfering jobs from heavily loaded
nodes to lightly loaded nodes.

Throughout this work we consider a class of threshold load balancing policies, that

have been shown to be useful in several studies (1,2,3,4,5,6,7]. Specifically, we adopt a

threshold policy studied by Eager, Lazowska and Zahorjan [5]. In this policy, jobs at each
host are divided into two classes; local and remote jobs. Local jobs are those processed
at the site of origination and remote jobs are those transfered for processing to another
node. A job arriving to a node from the external world is processed locally only if the
current queue length is less than a threshold parameter. Otherwise, the job is sent for
remote processing to another host selected according to some probability distribution.
Remote jobs are always accepted by the destination hosts and therefore jobs can move at

most once. Both local and remote jobs are processed according to a first-come-first-served
(FCFS) discipline at a given host.

Obviously, such a threshold policy has control parameters (e.g. threshold values and
transfer probabilities for every host computer), that require fine-tuning in order to yield
optimal or near-optimal performance. An efficient distributed algorithm for determining
the optimum values for parameters present in the decentralized threshold scheduling policy
has been proposed by Lee and Towsley [1]. The algorithm is iterative in nature and at each
iteration the load balancing parameters at each host are updated. This algorithm requires
that each host computer be able to estimate the change in throughput and expected queue

length due to a change in either the threshold or the job arrival rate. The host computers

exchange this gradient information with each other and use these quantities to update

the load balancing parameters for the next iteration of the algorithm.

Our approach towards estimating the gradients with respect to the threshold relies
on the assumption that the arrival process is exponentially distributed. By adding a small
perturbation to the observed parameter (i.e. a small decrease in the threshold), the esti-
mator we have developed determines the effect of the change on the performance metric
of interest (i.e. throughput, expected queue length), taking advantage of the memoryless
property of the arrival process distribution. The estimator is originally presented for a
system with Poisson arrivals and then is modified, so that it can be applied to a system
with general distribution of arrival times but exponentially distributed service time. The
arrival rate is estimated during the execution of the algorithm. The memory requirements
necessary for the implementation of the estimation algorithm (i.e. number of counters re-
quired) are very low. The major advantage of this technique is its on-line potential, since
it effectively attempts to provide performance sensitivity information while the actual
system is running. The proposed estimation technique has been evaluated through sim-

ulations and the results were very accurate when compared to the analytically obtained
results.

A different estimation method is proposed to obtain estimates with respect to the

arrival rate. The method is based on a class of theorems derived from Likelihood Ratios
and is extremely well suited to regenerative systems. A busy cycle of the processor has

béen used as the regeneration period. We have used the estimator in simulations with a

very low increase in running time or memory requirements.

In Section 2, we describe the system model and the Load Balancing policy in detail.
We consider the problem of determining optimum values for the parameters present in the
load balancing policy and we adapt the distributed optimization algorithm developed by
Lee and Towsley [1]. The necessary gradient information required by the above algorithm
is also identified in this section. In Section 3, we present FEstimator-A, which provides es-
timates of gradients with respect to the threshold. Simulation results from the application
of the proposed estimator on various kinds of systems are also presented. The main exam-
Ple, considered in this section, is the application of Estimator-A on a processor modeled

as a single-server queueing system with two classes of jobs (local and remote jobs), where

only one of these classes is governed by the threshold policy. In Section 4, Estimator-B
is introduced in order to provide gradient information with respect to the arrival rate.
The accuracy of the estimated gradients, as well as the convergence properties of the pro-
posed estimator are evaluated through simulations. In Section 5, both Estimators A and
B are imbedded in the decentralized threshold scheduling policy discussed in Section 2.
Simulation results are presented for a system with five host computers modeled as single
server queueing systems. It turns out that after a finite number of algorithm iterations,
the behavior of the system, in a static environment is confined in a neighborhood of the
optimal performance. Furthermore, a great improvement in the performance measure
(average response time of a job in the system) has been observed in the system executing

the distributed load balancing algorithm, compared to a system with no load balancing

at all. Finally, we summarize our work in Section 6.

2. A DECENTRALIZED LOAD BALANCING SCHEME

2.1. System Model

The system considered in this work consists of N autonomous host computers in-
terconnected by a communication network (Figure 2.1). Jobs arrive at each host from
the external world according to some arrival process with rate A, 1=1,2,3,...,N. Jobs
originating at host 7 can be processed either locally or at any other host j # i. For the
sake of simplicity, it is assumed that jobs processed at each host have the same service
time distribution, regardless of the origin host. The results of a job transfered for remote
service are returned to the origin host computer. Communication delays are incurred

during both transfers. Each host has a communication server that takes care of the job

transfers between computers.

2.2. Load Balancing Policy

Jobs at each host computer are divided into two classes; namely local and remote
jobs. Local jobs are those that are processed at the site of origination and remote jobs are
those that have been transfered from other hosts for remote processing. Let L; denote the

total number of jobs at host computer i. The following threshold load balancing policy is
considered:

e If a job arriving at host i from the external world finds that L; < T;, where T; is a

threshold parameter associated with host i, it is processed locally.

o If an external job arriving at host i finds L; > T, then this job is transfered for
remote service to a host j # i with probability P;;, where iz P =1

¢ Remote jobs arriving at host i from other hosts are always accepted.

® Jobs arriving at each host are processed according to a first-come-first-served (FCFs)
basis.

A4

Y

Commuyicatioy

Network

Fig. 2.1 - The System Model.

2.3. Optimal Load Balancing Problem

The threshold policy described in section 2.2 has control parameters (i.e. threshold
value and transfer probabilities for each host computer) which require fine-tuning in a
changing system environment. We select the mean response time of a job as the perfor-
mance measure. Each host computer is modeled as a single-server queueing system with
two classes of jobs (Figure 2.2). Let A{") and A{”) be the throughput of local and remote
jobs respectively at host 7. Let also f;(/\?), Aﬁ") and g(A(")) denote the mean queue length

at node ¢ and the communication network respectively, where A(r) = >N, z\s'). The mean

response time E[R] of a job in the system is given by the following formula [2]:

) T r

where A = ¥ \;. Under the described threshold policy the optimization problem can
be stated as follows [1):

MINIMIZE AE[R)
with respect to
Ts and Py’s,
under the constraints
T; is non-negative integer, i=1,2,...,N,

YisbPi=1, i=12..,N.

This is an integer optimization problem with respect to integer and real variables. This
kind of problem cannot be solved exactly and a heuristic algorithm is required for its

solution. Such an approach is proposed in [1], where a distributed optimization algorithm

1s used.

to other hosts

5 2 R0

JEL

Fig. 2.2 - Host 7 as a single server queueing system

with two classes of jobs.

> j x; (j)
J#L
@ . ,
A = x; () . Jier 7{‘
host-(A

By distributed algorithm we mean that each host computer performs a portion of the
whole computation (it does not solve the entire optimization problem) and collaborates

with each other to solve the problem by exchanging some information.

Let z;(j) denote the flow of jobs originating at host i and processed at host j.
Obviously, z;(i) = A{") and Yz 2i(i) = A (Figure 2.2). For given values of T}’s and
P;;’s, the steady state flows z;(j)’s can be computed. However, it may not be possible to
compute integer T;’s for arbitrary values of z;(j)’s. We ignore this consideration and treat

z;(j)’s as non-negative real variables. The optimization problem can be reformulated as

follows:

MINIMIZE AE[R]

with respect to
zi(3)’s,
under the constraints
YY.z() =X, i=1,2,..,N,

zi(j) >0, i=1,2,..,N.

Necessary conditions for the optimal solution of the above problem can be derived from
the Kuhn-Tucker conditions [8] as follows. For all js,
df; d =C;, forz;(7)>0
i. +(1- 5;,')—9—. { ’ (J) (2.2)
dzy(5) dzi(§) | > C;, for zi(j) = 0

where C; is some constant (Langrange multiplier), and §;; denotes the Kronecker delta
function. This is true for each host computer i, i = 1,2,...,N. Note that (1 — §;;) has
been introduced since local jobs do not experience communication delay. The derivative
df;/dz:(j) represents the incremental delay incurred for jobs processed at host j due to
the job flow from host i to host j. The derivative dg/ dz;(j) represents the incremental
delay incurred at the communication server for jobs originating at host ¢ but transfered

for remote service at host j. Relation (2.2) indicates that from host i’s point of view the

incremental delay incurred for jobs processed at host J, due to the flow from host 7 to
host j, should be equal for all j if there is a positive job flow from host i to host j. On

the other hand, if there is no job flow from host % to host J, the incremental delay should
be no less than the above value.

Using relation (2.2) Lee and Towsley developed a distributed algorithm for decen-
tralized load balancing. In this algorithm each host compares its own incremental delay
to the minimum incremental delay of the other hosts to determine whether to increase or
decrease its threshold parameter. The algorithm is iterative in nature and the threshold
and transfer probability parameters at each host are updated at each iteration. Initially,
each host i sets T;’s and P,;’s to some arbitrary values. At each iteration of the algorithm,

host i executes the following.

Algorithm

o Host i computes the incremental delay information df;/dz;(:) and df;/dz;(i) for
j=1,2,...,N and j # . It reports the incremental delay information, due to jobs

originating at a host j # i but transfered for remote service at host 7, to every host
7,7=12,..,N.

o Using the incremental delay information

df;/dzi(5) + dg/dz:(5) (23)
reported by every host j # i, host i computes the quantity
A(2) = gr;l;rg{df,-/dz.-(j) + dg/dz;(5)}. (2.4)

e Host ¢ compares its own incremental delay to the minimum incremental delay re-
ported by the other hosts:

If dfi/dzi(3) > A())+0 = Ti:=T:-1,
If dfg/dz;(i) < A(i) -0 = Ti:=T;+1,
else T;:=T;,

where 4 is a non-negative constant, which must be tuned to prevent threshold change
due to a slight imbalance to the incremental delays.

o Update P;;’s using the following formula:

P, = — #i—zi5)
T Tanwi{pre — zu(k)}

(2.5)

where p; denotes the maximum processing rate of host j.

In order to implement the above algorithm, the incremental delay information at each
host must be computed. We shall assume that the delay incurred due to the transfer of jobs
through the communication network is an exponential random variable with parameter
pe. Therefore, the incremental delay due to the job transfer can be approximated by
the mean communication delay p.. Recall that each host computer has a communication
server that takes care of the job transfers between computers. Consequently, there are
two categories of incremental delays; namely, those which are due to local job flow (i-e.
df;/dz;(i)) and those which are due to remote job flow (i.e. dfj/dzi(j)). Incremental
delays of the former category are affected by the integer threshold constraints, since local
job flow is directly controlled by the threshold parameter. On the other hand, we assume

that incremental delays of the latter category are not affected by the integer threshold
constraints.

The incremental delay due to local job flow corresponds to the derivative of the mean

queue length with respect to the throughput of local jobs (since z;(i) = /\st), Figure 2.2).

The following backward difference formula can be used to approximate the incremental
delay due to local job flow:

dfi _ dB[Li] _ E[Lir, — E[Li]r
dai) P PO - My

(2.6)

where E[L;|r, and [z\?)]r,. denote the mean queue length and the local job throughput at
host ¢ when the threshold is T; (Figure 2.2). The purpose of Estimator-A, introduced in

10

the next section, is to provide on-line estimates of E[L;]r,_; and [A\{]5,_,, given that the
system is operating at threshold T;. The estimates are based on real data gathered from
the actual system during an observation interval.

The incremental delay due to remote job flow corresponds to the derivative of the
mean queue length at host j with respect to the arrival rate of remote jobs z\g') as can be

easily seen from relation (2.2) and Figure 2.2. Hence,

&f; _ dE[L;)
&(7) .

(2.7).

Estimator-B, described in Section 4, provides on-line estimates of the above gradient

information, based on a class of theorems derived from Likelihood Ratios.

11

3. GRADIENTS WITH RESPECT TO THRESHOLD

3.1. Introduction

In this section we introduce an estimator, whose the purpose is to provide estimates
of gradients with respect to the threshold in systems involved in the decentralized thresh-
old scheduling policy described in section 2. The estimator we developed determines the
effect of a change in the threshold parameter on the performance metric of interest (i.e.
throughput and expected queue length). The assumption is made that either the arrival
process or the service time are exponentially distributed. The algorithm uses the memo-
ryless property of the exponential distribution in order to efficiently estimate the desired
gradients. The major advantage of the proposed estimator is the fact that effectively
provides performance sensitivity information while the actual system is running (on-line

estimation).

A relatively new approach towards estimating gradients with respect to continuous-
valued parameters is referred to as Perturbation Analysis. The basis of Perturbation
Analysis methodology is extensively described in [9,10]. An extension of this technique to
systems where estimation of gradients with respect to integer-valued parameters is desir-
able, has been attempted in [11], where a Perturbation Analysis algorithm is presented,
which provides sensitivity information with respect to a threshold parameter. However,
the state memory required by the algorithm in [11] grows to infinity. On the other hand,
the estimator introduced in this section requires only four counters in order to provide

on-line estimation of gradients with respect to a threshold parameter.

3.2. Gradient Estimation in M/G Systems

We assume that each host computer of the distributed system described in 2.1. can
be modeled as a two class M/G/1/T system, where T = (T, o) since jobs belonging to
the second class (remote jobs) are always accepted. Only jobs of the first class (local jobs)
are governed by the threshold parameter T. For the sake of simplicity in exposition, we

first consider a single class M/G/1/T system with Poisson arrival rate A and finite queue

12

capacity T', and then we show how the estimator can be very easily extended to a two
class system. Let L be the queue length and TPUT the throughput of the system. The
physical system will be referred to as the nominal system. What we actually need is to
estimate the derivative dE[L]/dTPUT while the nominal system is running, using the

backward difference formula:

dE[L] _ _ BE[Llr — E[L]r_,
dTPUT ~ [TPUT|r — [TPUT|r_,

(3.1)

We shall refer to the system with threshold value T — 1 as the perturbed system. The
nominal system observes itself and after an observation interval estimates the average

queue length and the throughput as if it had a threshold value equal to T — 1.

Fig. 3.1a illustrates the portion of a nominal sample path for a single class M/G/1/T
system, with T' = 3. Let q; be the time of the i —th arrival and d; be the time of the j—th
departure. Figure 3.1b represents the corresponding portion of the perturbed system with
threshold parameter T = 2. We assume that the service time s; of the k — th customer
(k = 1,2,...) depends only on k. Arrivals ¢; and a; are accepted by both the nominal
and the perturbed system. However, arrival a3 is accepted by the nominal system while
it is rejected by the perturbed one. In general, every time the nominal system reaches
its threshold T the corresponding arrival is shipped out by the perturbed system with
threshold value T' — 1. Obviously, every arrival rejected by the nominal system is also
rejected by the perturbed one. As soon as an arrival accepted by the nominal system is
rejected by the perturbed one, the latter system has one less customer than the former
one. The two systems will continue to differ by one customer until an idle period appears

in the nominal path. This is the case with the idle period just before the arrival as in
Figures 3.1a and 3.1b.

The first two departures in both the nominal and the perturbed paths of Figure 3.1a
and 3.1b occur at times dy and d; (d; = d}, d; = d;). Departure d; leaves the nominal
system with just one customer. Since the perturbed system has one less customer than
the nominal one (due to the rejection of arrival a3), a new idle period will appear in the

perturbed path. This idle period is terminated by arrival a,.

13

& dy dy dg dis
¥ < LY 1\~ - (d).
d d \\ ' d \ de \ \
1 2 \ \ 5 \ [\ \
o \ \\ \\ \ \ o
A \ . \ \ s
‘ 2] \ d4 \\ \ \
‘ \ \ \ AN \
. v \\ \.. \\ \
) " \
, N N R S (b)
’ , / y
/ ’
/ ’
A, 2 dg / dg /

Fig. 3.1 - Estimation of gradients with respect to
the threshold.

14

Therefore, the major effect of the perturbation §T = —1 on the perturbed path is the
generation of new idle periods, due to the rejection of arrivals which are accepted by the
nominal system. Since all the jobs rejected by the nominal system are also rejected by the

perturbed one, it is not possible that an idle period that appeared in the nominal path
be eliminated in the perturbed path.

The nominal system observes itself and can trace the case where the nominal and
perturbed paths are out of phase (i.e. their queue lengths differ by one). This happens
every time an arrival accepted by the nominal system is rejected by the perturbed one.
When a departure leaves the nominal system with only one job and the two systems are
out of phase, then the nominal system knows that the perturbed one starts an idle period
waiting for the next customer. Instead of waiting for that next arrival, we generate an idle
period terminated by a ficticious customer and we assign to that customer the currently
available service time. This new idle period is derived from an exponential distribution
with parameter A; this is permissible because of the memoryless property of the Poisson
arrival process. All the subsequent events in the perturbed path are shifted in time by
the introduced idle period. The above situation is illustrated in Figure 3.1c, where aj is

the ficticious arrival terminating the introduced idle period.

Actually, although the sample path shows a specific idle period length, it is not re-
quired by the algorithm performing the estimation. We only need to keep a counter of how
many idle periods have been introduced in the perturbed system during the observation
interval. During that interval the nominal system can estimate the rate Aest Of its arrival
process. At the end of the observation interval, it can use this value to estimate the total

idle time introduced in the perturbed system, using the formula:

(# idle periods)

idle time = (3.2)
/\eat .

In the following we describe the proposed Estimator-A more formally. We make the
assumptions that the arrival process is a Poisson process and that the nominal system

monitors its average queue length E[L] and its throughput TPUT. The following four
counters are required by the algorithm:

15

o PHASE: It indicates whether the nominal and the perturbed system are out of

phase. It is 0 when both systems have the same number of customers; otherwise it

is 1.
o PLAST: 1t indicates the last time the PHASE changed from 0 to 1.

¢ TLESS: Total time during the observation interval that the perturbed system has

one less customer than the nominal one.

o IDLE: Total number of idle periods introduced in the perturbed path during the

observation interval.

Estimator-A

e Initially the counters PHASE, PLAST, TLESS and IDLE are set to 0.

o At the i — th arrival the following instructions are executed:

If (L(a;) = T) and (PHASE =0) then

begin
PHASE :=1;
PLAST := a;;
end

where a; denotes the time of the i — th arrival and L(a;) the number of customers

right after the 7 — th arrival.

o At the j — th departure the following instructions are executed:

If (L(d;) = 1) and (PHASE = 1) then

begin

IDLE :=IDLE + 1;

PHASE :=0;

TLESS :=TLESS +d; — PLAST;
end

16

where d; denotes the time of the j—th departure and L(d;) the number of customers

right after the j — th departure.

The nominal system observes itself for an observation interval 7. At the end of that inter-
val knowing the statistics E[L]r and [T PUT]z, it is able to estimate the corresponding

statistics for the perturbed system using the following formulas:

[TPUT)r_, = - +T([?11)D LU g /]it) (3.3)
Bl = 1 - TLESS DB b -

where IDLE/),,: denotes the total idle time introduced in the perturbed path. The
minimum length of the observation interval 7 necessary to obtain a good estimate for
E[L)y_, and [TPUT]r_, depends on the specific application of the system and can be
determined empirically. As it turns out from the simulation results it depends on the
utilization of the system. Section 3.3. contains simulation results to demonstrate the

performance of the proposed estimator and discusses the convergence properties of the
algorithm.

Estimator-A can be very easily used in the case of an M/G/1/T system with two
classes of jobs (local and remote), where T = (T,00). Note that this is the model of
the host computers, in the decentralized threshold scheduling policy described in Section
2. Remote jobs are always accepted by both the nominal and the perturbed system.
Therefore, only local jobs can be accepted by the nominal system and rejected by the
perturbed one, as a result of the change in the threshold value. Let Aest be the arrival

rate of jobs coming in from the external world and /\‘(,','2 be the arrival rate of remote jobs,

estimated during the observation interval. Then the idle time introduced in the perturbed

system is given by the formula:

idle time = _IDi (3.5)

Aut + Agz .

17

The rest of the algorithm works exactly in the same way as in the single class M/G/1/T
system.

3.3. Simulation Results

In this section, we present simulation results to demonstrate the performance of
Estimator-A. As an example, Tables 3.1 through 3.6 contain simulation results for a
single class M/M/1/3 system with service rate yu = 1.0 jobs/sec and different values of
arrival rate: A = 0.2,0.5 and 0.8 jobs/sec. Estimator-A is used to provide on-line estimates
of the average queue length E[L] and throughput TPUT of the perturbed system with
threshold T = 2. The estimated values are compared to the actual ones which are
computed analytically. In order to point out the convergence properties of the estimation

technique, the simulation results are presented for different observation intervals.

Tables 3.7 and 3.8 contain simulation results for an M/H,/1/3 system with one class
of jobs, hyperexponential service time with parameters u = 1.0 and C, = 2 and Poisson
arrivals with parameter A = 0.5 jobs/sec. The “actual” values of E[L]r—; and [T PUT]y—,
are obtained by simulating the corresponding system with threshold 7' = 2.

| #completions | [TPUT|3, | [TPUT]gE, | %error | #runs| o, |

50 0.426 0.450 5.33 10 0.064
100 0.426 0.440 3.28 10 0.042
200 0.426 0.438 2.81 10 0.035
500 0.426 0.430 0.94 10 0.015

1000 0.426 0.426 0.00 10 0.007
2000 0.426 0.426 0.00 10 0.007
5000 0.426 0.426 0.00 10 0.003
10000 0.426 0.426 0.00 10 0.003

Table 3.1 - Estimation of [T PUT]r—; for an M/M/1/3 system with A/p = 0.2.

18

| #completions | E[L]3%, | E[L]g,

| Zerror | #runs| o, |

50 | 0.571 0.599 4.90 10 0.114
100 [0.571 0.590 3.33 10 0.093
200 | 0.571 0.553 3.15 10 0.069
500 | 0.571 0.554 2.97 10 0.039

1000 | 0.571 0.560 1.92 10 0.021
2000 | 0.571 0.564 1.22 10 0.015
5000 | 0.571 0.565 1.05 10 0.006
10000 | 0.571 0.567 0.70 10 0.005

Table 3.2 - Estimation of E[L]r—, for an M/M/1/3 system with A/p = 0.2.

| #completions | [T PUT|3, | [TPUT)sE, Lﬁerroﬂ #"ﬂ‘fJ 0s |

50 0.194 0.212 9.27 10 0.042
100 0.194 0.201 3.61 10 0.027
200 0.194 0.199 2.57 10 0.019
500 0.194 0.195 0.52 10 0.006

1000 0.194 0.194 0.00 10 0.004
2000 0.194 0.194 0.00 10 0.003
5000 0.194 0.194 0.00 10 0.002
10000 0.194 0.194 0.00 10 0.002

19

Table 3.3 - Estimation of [T PUT]r—, for an M/M/1/3 system with A/p = 0.5.

| #completions | E[L]3%, | E[LIgE, | Ferror | #runs | 0. |

50 | 0.225 0.239 6.22 10 0.065
100 | 0.225 0.220 2.22 10 0.044
200 | 0.225 0.217 3.55 10 0.029
500 | 0.225 0.219 2.66 10 0.014

1000 | 0.225 0.220 2.22 10 0.010
2000 | 0.225 0.221 1.77 10 0.005
5000 | 0.225 0.222 1.33 10 0.003
10000 | 0.225 0.222 1.33 10 0.003

Table 3.4 - Estimation of E[L]r—, for an M/M/1/3 system with A/p = 0.5.

| #completions | [TPUT)s, [[TPUTJSE, | Zerror | #runs| o, |

50 0.590 0.644 9.28 10 0.091
100 0.590 0.602 2.12 10 0.055
200 0.590 0.600 1.70 10 0.046
500 0.590 0.595 0.84 10 0.021

1000 0.590 0.591 0.17 10 0.009
2000 0.590 0.590 0.00 10 0.006
5000 0.590 0.590 0.00 10 0.006
10000 0.590 0.590 0.00 10 0.003

20

Table 3.5 - Estimation of [T PUT|r-, for an M/M/1/3 system with A/p = 0.8.

| #completions | E[L]3%, | E[L]gE, | %error | #runs | o, |

50 | 0.855 0.943 10.29 10 0.147
100 [0.855 0.901 5.38 10 0.069
200 | 0.855 0.880 2.92 10 0.055
500 | 0.855 0.874 2.22 10 0.035

1000 | 0.855 0.868 1.52 10 0.020
2000 | 0.855 0.865 1.17 10 0.016
5000 [0.855 0.862 0.82 10 0.011
10000 | 0.855 0.860 0.58 10 0.008

Table 3.6 - Estimation of E[L]r=; for an M/M/1/3 system with A\/p = 0.8.

| #completions | [TPUT|3Z, | [TPUTJSE, | Jierror | #runs | o, |

50 0.406 0.460 13.30 10 0.114 |
100 0.406 0.413 1.72 10 0.058
200 0.406 0.417 2.70 10 0.032
500 0.406 0.412 1.47 10 0.020

1000 0.406 0.404 0.49 10 0.012
2000 0.406 0.406 0.00 10 0.007
5000 0.406 0.407 0.24 10 0.007
10000 0.406 0.406 0.00 10 0.004

Table 3.7 - Estimation of [T PUT|r=; for an M/H;/1/3 system with A/p = 0.5, C, = 2.

21

| #completions | E[L]3%, [E[LEE, | Zerror | #runs| o, |

50 | 0.593 0.605 2.02 10 0.155
100 | 0.593 0.592 0.17 10 0.067
200 | 0.593 0.602 1.52 10 0.056
500 | 0.593 0.584 1.54 10 0.054

1000 | 0.593 0.580 2.19 10 0.044
2000 | 0.593 0.584 1.54 10 0.025
5000 | 0.593 0.584 1.54 10 0.023
10000 | 0.593 0.588 0.84 10 0.015

Table 3.8 - Estimation of E[L]r—, for an M/H,/1/3 system with A\/u = 0.5, C, = 2.

Tables 3.9 and 3.10 contain simulation results for an M/M/1/(3,00) system with two
classes of jobs, where only jobs belonging to the first class are governed by the threshold
parameter. Note that this is the model of each of the host computers involved in the
decentralized scheduling policy described in Section 2. In our experiment the arrival

rate of the first class (jobs coming in from the external world) is A = 0.5 jobs/sec, the
arrival rate of the second class (remote jobs) is A(") = 0.25 jobs/sec and the service rate is

p = 1.0 jobs/sec. The estimated parameters are the local throughput [TPUTW)p_; and
the average queue length E[L]r_; of the perturbed system.

| #completions | [TPUTW]et, T[T PUTW|GE, | %error | #runs | o= |

100 0.350 0.365 428 10 [o0.167 |
500 0.350 0.365 428 | 10 |o0.017
1000 0.350 0.365 428 | 10 |0.010
5000 0.350 0.360 2.86| 10 |0.004
10000 0.350 0.356 171 | 10 | 0.004

22

Table 3.9 - Estimation of [T PUT()]r; for a 2-class M/M/1/(3,00) system.

| #completions | E[L]3Z, | E[L[5%, | %error | #runs | o, |

100 | 1.000 0.670 33.00 10 0.121
500 | 1.000 1.055 5.50 10 0.110
1000 | 1.000 1.041 4.10 10 0.041
5000 | 1.000 1.016 1.60 10 0.023
10000 | 1.000 1.015 1.50 10 0.019

Table 3.10 - Estimation of E[L|r—; for a 2-class M/M/1/(3,00) system.

3.4. Gradient Estimation in G/M Systems

Estimator-A can be used to provide gradient estimates for G/M systems. In this
case we take advantage of the memoryless property of the service time distribution. The
nominal system observes itself for an observation interval 7 and during that interval it
counts the number of jobs rejected by the perturbed system, as a result of the perturbation
0T = -1 in the threshold parameter. We assume also that the nominal system can
monitor its throughput and average queue length. Four counters are required for the
implementation of the algorithm; namely PHASE, TLESS, PLAST and NREJ. The
first three counters have exactly the same meaning as in the M/G case, while the fourth

denotes the number of jobs rejected by the perturbed system but accepted by the nominal
one. The algorithm can be described as follows:

e Initially the counters PHASE, PLAST, TLESS and NREJ are set to 0.

e At the i — th arrival the following instructions are executed:

I (L(a;)=T)and (PHASE = 0) then do

begin
PHASE :=1;
PLAST := q;

23

NREJ := NREJ +1;

end

where a; denotes the time of the i — th arrival and L(a:) the number of customers

right after the 7 — th arrival.

o At the j — th departure the following instructions are executed:

If(L(dj)=1)and (PHASE =1) then do

begin
TLESS :=TLESS +d; — PLAST;
PHASE :=0;

end

where d; denotes the time of the j —th departure and L(d;) the number of customers

right after the j — th departure.

We can compute the estimated quantities by using formulas analogous to those of the

M/G case. For example the [TPUT|r_, of the perturbed system can be calculated as
follows:

[TPUT|;_, = [TPUT]y — NVREJ

(3.6)

where T is the observation interval.

24

4. GRADIENTS WITH RESPECT TO THE ARRIVAL RATE

4.1. Introduction

In this section we introduce an estimator, whose the purpose is to estimate perfor-
mance sensitivities with respect to the arrival rate in systems involved in the decentralized
threshold scheduling policy described in section 2. The estimator we have developed de-
termines the derivative of mean values (e.g. average queue length) with respect to an
arrival rate. The method is based on the work done by Reiman and Weiss [12], who used
likelihood ratio techniques to prove their theorems. This is a typical result: if Ex(¥) is

the mean value of quantity % as a function of a Poisson rate A then

SE(#) = B(Y - T (4.1)

where T is the duration of the observation interval and N is the number of Poisson

events in time T [11]. Therefore, using the idea that derivatives of expectations are them-
selves expectations, we can have a consistent estimate of dE(v)/dA by simply estimating
E[(N/A—T)+] during the observation period T. Reiman and Weiss assume in their work
that the Poisson rate A is known; we have slightly modify their method so that the Pois-
son rate A can be estimated during the observation interval . The method is extremely
well suited to regenerative systems and can be implemented with very little increase in
running time and memory requirements. Note also that the method is suitable for any
parameter (not only Poisson rates) which does not change the possible sample paths, but
merely changes their probability [12]. We will use this method to estimate the incremental

delay due to remote job flow at host i of the distributed system considered throughout
this work.

4.2. Gradient Estimation in Regenerative Systems

In this section we will show how the theorems derived in [11] can be used in re-

generative systems for automatically estimating derivatives. Our discussion is based on

25

regenerative process theory which shows that steady state expected values can be obtained
as ratios of expected values over a regenerative cycle. We assume that our queueing system
can be modeled as an M/G/1 system with Poisson arrival rate A.

We consider the initiation of a new busy cycle as the regeneration point. Let 0 be
the number of customer initiating the i — th busy cycle, N; be the number of the first
customer to encounter an empty system (indicating the initiation of the (24 1) — th busy
cycle) and T; be the duration of the i —th busy cycle. Assume that we observe the system

for a number of busy cycles and W; is the total waiting time in the i — th busy period.
We then have:

Ew)

= Zm

(4.2)

where E[L] is the average queue length over the total observation period. What we really
want to compute, is the quantity dE[L]/d). The quotient rule combined with (4.2) yields

dE(L) _ TR E(T) - SEEW]
d ~ E[T] '

(4.3)

Now we can use the results derived by Reiman and Weiss [11] to represent the derivatives

appearing on the right hand side of (4.3) as

d N
S EW] = E[(- T)W] (4.9)

and

d N
FEIT] = B{(- - T)T) (4.5).

The expectations at the right hand side of equations (4.4) and (4.5) can be very easily

computed as averages over n busy cycles. Thus,

B3 -l = 23X - myw, (46)

=1

26

Bl(3 -)T = 23X pyr, (7).

=1

Therefore, by substituting (4.6) and (4.7) in (4.3) we have

4 iz = ZE BT (5~ T)W] - (22, WISk, (% - T

dA [Er. T

(4.8).

As we can easily see from equation (4.8) we only need to keep track of N;, T; and W; and

update the corresponding counter at the end of each busy cycle.

Although the above analysis implies that the Poisson arrival rate is known, we can
slightly modify it so that it can be applied to a system which estimates its arrival rate

simultaneously with its evolution. Actually, we only need to update the following counters

at the end of each busy cycle:

C'1 = ETi, Cz ='E VVi, 03 = EN,-VV,-,

i=1 i=1 =1

Ce=3TW;, C:=)(T), Cs=Y NT.

i=1 i=1 i=1
At the end of the observation period (i.e. after n busy cycles) we can use the above

counters and the estimated arrival rate A, to compute the derivative of the average

queue length with respect to the arrival rate as follows:

Ci(E — C4) — Co(£ - Cs)

d
ol = (AL

(4.9)

A similar analysis can be applied for estimating derivatives of other mean values with
respect to a Poisson rate. As an example, we refer to the estimation of the derivative

of the average response time E[R] of a job with respect to the arrival rate A using the

formula

27

Elw]

E[R) = B[] (4.10)

where E[W] is the average total waiting time and E[N] is the average number of arrivals

over n busy cycles.
4.3. Simulation Results

To investigate the performance and convergence of the sensitivity analysis method
described in the previous sections, we applied it to a regenerative simulation of an M /M/1
system with a single class of jobs. The choice of an M/M/1 queue was made because the
simulation itself was very easy to write, and theoretical results are available, making it
possible to check the numerical results. We investigate the performance of the estimation
algorithm for three different values of the utilization, namely p = 0.25, 0.5 and 0.9, and
for different lengths of the observation period. We also compare the convergence of the
original algorithm which considers a known arrival rate to the convergence of the modified
algorithm which uses the estimated arrival rate over the observation period. As it turns
out from the simulation results the modified algorithm behaves as good as the original
one.

Figures 4.1 to 4.6 show the behavior of the algorithm for the three different values
of utilization mentioned above with respect to the length of the observation interval (in
number of busy cycles). The first three figures (4.1 to 4.3) present simulation results fqr
observation intervals in the range 100 to 1000 busy cycles. Figures 4.4 to 4.6 contain
the corresponding results for observation periods in the range 1000 to 50000 busy cycles.
Each figure consists of two parts. Part-a shows the estimated derivative of the average
response time of a job with respect to the arrival rate A for both the algorithms with
known and estimated arrival rate. The resulting data points are the average over 20 runs.

Part-b shows the standard deviation over the 20 runs.

28

dE(R}
p=90.25

d2
2.3 —¢—+- actua? vafue
estiuated 2

20 -===--- FEwown 2

{8

¥4

L4

2

{.0 /
08 t
0.6 /

00 200 300 400 S00 600 F00 800 Qoo 4000

busy cycles

(a)-

Ox E =0.25

2 =+ estiwated

%) A

[o a-bkuowq

5.0

2.5

2.0

415

{0

0.3

100 200 300 400 500 €00 Y00 8o Qoo 4000

(b).

Fig. 4.1 - Estimation of dE[R]/d) for an M/M/1 system with p = 0.25
(observation period: 100 to 1000 busy cycles).

29

e=0.5

E(RT
da — e+ — - octuof value
estiwailed 2
----- twowy 12

40

3.5

3.0

2.5

2.0

[}

busy cycts

100 200 300 400 S00 600 Foo 800 900 1000

Ox eéo.ﬁ

2 - estlwaied

4.0 » ———— A~ k“ow“

35 1
3.0
a5
a0

15

» busy cycles

400 200 300 400 500 600 ¥0O %00 o 4000

(b).

Fig. 4.2 - Estimation of dE[R]/d\ for an M/M/1 system with p = 0.5
(observation period: 100 to 1000 busy cycles).

30

de(r]

da

qo

Ox

e =04
o —o— octuo? valfus
estinated 2

—~=--- kuowy 1

busy cycles

400 200 M0 400 0 600 ¥oo 80 Foo {000

(a).

p= 04

— 2 > eshwated
----- 1~ kwowy

Fig. 4.3 - Estimation of dE[R]/d) for an M/M/1 system with p = 0.9

(observation period: 100 to 1000 busy cycles).

31

= 0,29
dE(R] €

da

..... adctua? vafue
2~ estinated

{.80

L.¥8

(%6

.32

{%

busy cycles
Cx4000)

s 0 4 320 25 30 35 4o 45 So

Ix
i 0,a5
0.28

2~ estiwated
0.26

0.24 1

0.22 1

0 T

0.1

0.16

0.12

(b).

Fig. 4.4 - Estimation of dE[R]/d) for an M/M/1 system with p = 0.25
(observation period: 1000 to 50000 busy cycles).

32

e=0.5

dE(R3 —emem olctual value
da 7 ~ estinated
- === 2+ kuowu
4.02
4.00
dag
3.96
594 |
S.92
3.9%
» busy cy:.&s
Cx {000)
S o 5 20 25 o 35 4o 45 So
(2).
Ox
A (S 0.5
4.00 ‘\
\ —_—— A ~ cstiwated
0.4 - === 2~ kvown
0.8
0.¥
0.6
es t
0.4
0.3
busy cycles
9] 1 20 25 30 35 4o 4'5 so (x{000)

(b).

Fig. 4.5. - Estimation of dE[R]/d) for an M/M/1 system with p = 0.5
(observation period: 1000 to 50000 busy cycles).

33

= 0.9
dECRT e
2} L —.= actug? velue
2 = eshwatled
,/\\ ------ 2~ kyowy
04
{02
400
q8
Q%
busy cycles
(x 4000Y)
§ 4 45 20 2 Jo I 4o 45 So
(a).
eno.q

Oy 2 ~ estimated

30

25

20

F 2

{o

q

s

¥

#busy cycles
5 1 45 20 25 Bo 35 40 45 So (x 40003

(b).

Fig. 4.6 - Estimation of dE[R]/d\ for an M/M/1 system with p = 0.9
(observation period: 1000 to 50000 busy cycles).

34

The actual values of dE[R]/d) for the different utilizations, indicated in all the Figures,
can be computed very easily. We can notice that the observation period must be long
enough in order for the algorithm to give consistent estimates of the desired gradient. If
the observations take place over a short period of time, the system does not have the
time to respond to the arrivals and furthermore, the variability of arrivals is relatively
high over short periods of time. However, we believe that the method can be effectively
applied in the distributed threshold scheduling policy described in Section 2. The reason
is that we only need to compare derivatives without worrying about their absolute value.
Therefore, the estimate derived even over a small number of busy cycles (e.g. 200 cycles

or less) is probably good enough for that purpose.

4.4. Systems with two classes of jobs

So far, we have discussed a method (Estimator-B) for estimating derivatives of mean
values with respect to a Poisson arrival rate in systems with one class of jobs. However,
the systems involved in the decentralized threshold scheduling policy adopted in this work
have two different classes of arrivals; namely local and remote jobs. In this section we
show that we can very easily extend the method described in section 4.2 so that we are
able to estimate the gradient of the average queue length with respect to the arrival rate of
remote jobs. We recall that this gradient represents the incremental delay due to remote

job flow and is required by the threshold updating algorithm described in section 2.3.

We assume that each host computer of the distributed system described in 2.1. can
be modeled as a two class M/G/1/T system, where T = (T, 00) since jobs belonging
to the second class (remote jobs) are always accepted. Only local jobs are governed
by the threshold parameter T. The purpose of Estimator-B is to estimate the gradient

dE[L]/d)\), where A() is the arrival rate of remote jobs. Using equation (4.2) and the
quotient rule we have

dE(L] _ FHE[T) - ZEEW] (4.11)
A" E[T]? ' '

Using equation (4.1) we can represent the derivatives in the right hand side of (4.11) as

35

d

dA(')E[W] E[(,\() - T)W] (4.12)
and

d

Do Pl = Bl ,\() — T)T] (4.13)

where N(") corresponds to the number of remote arrivals and A") to the arrival rate of
remote jobs. All the other variables have the same meaning as in equations (4.4) and
(4.5). The same method as in section 4.2 can be used to compute the expectations in the
right hand side of equations (4.12) and (4.13). We can also use the same modification as

in section 4.2 to apply the method to a system which estimates the arrival rate of remote

jobs while it runs.

Table 4.1 contains simulation results for an M/M/1/(3, 00) system with two classes of
jobs, where only jobs belonging to the first class are governed by the threshold parameter.
In our experiment the arrival rate of the first class (jobs coming in from the external
world) is A = 0.5 jobs/sec, the arrival rate of the second class (remote jobs) is A(") = 0.25
jobs/sec and the service rate is u = 1.0 jobs/sec. Estimator-B is used to estimate the
derivative of the average queue length with respect to the arrival rate of remote jobs. It
can be derived analytically that the actual value of the above derivative for the particular
system is dE[L]/dA(") = 2.70.

| #busy cycles | [dE[L]/d\")|° [[dE[L]/dA™)]* | Zerror | #runs| o, |

1000 2.700 2.446 9.40 5 0.277
5000 2.700 2.748 1.77 5 0.200
10000 2.700 2.690 0.37 5 0.157
20000 2.700 2.693 0.26 5 0.134

Table 4.1 - Estimation of dE[L]/dAl") for a 2-class M/M/1/(3,00) system.

36

5. AN EXAMPLE

In this section we consider a simple example where host computers are intercon-
nected through a communication network and execute the distributed load balancing al-
gorithm described in section 2. The estimation techniques described in sections 3 and 4
are imbedded in the decentralized threshold scheduling policy to provide the necessary
gradient information. Each host computer is modeled as a single-server queueing system
with two classes of arrivals; namely local and remote jobs. In such a system we study the

behavior of the algorithm in a static as well as in a changing environment.

The service time at host i is exponentially distributed with mean 1/p; for i =
L,2,...,N. The interarrival times of jobs coming in a host from the external world are
exponentially distributed with mean 1/); fori = 1,2,..., N. The communication delay of
a job due to its transfer for remote service is assumed to be an exponentially distributed
random variable with mean 1/p.. Recall that jobs can move only once through the com-
munication network, since remote jobs are always accepted. Whenever a host rejects a job
because it reaches its threshold, it sends this job randomly to any one of the other hosts
for remote service. This last assumption is reasonable in the case where all the hosts are

homogeneous with the same utilization.

We have simulated a distributed system with five host computers which can be
easily expanded to a system with N hosts. Each host executes the threshold updating
algorithm independently to each other. All of them start the execution of the algorithm
at time 0. Initial thresholds values for each host are drawn randomly from a uniform
distribution. Each host observes itself for a number of busy cycles and at the end of the
observation period computes the derivatives of its average queue length with respect to
the local and remote job flow. Then, it sends the necessary gradient information to the
other nodes and uses the currently available gradients reported by the other nodes, as
well as its own gradient information to update its local threshold. Threshold updating
completes an iteration of the algorithm at that node. Another observation period can
start immediately and the host computer will execute the balancing policy with the new
threshold value until the next iteration. Each host computer has a communication server

that takes care of the job transfers between computers. The incremental delay due to job

37

transfers, required by the threshold updating algorithm, is approximated by the average

communication delay p..

We can make the following interesting observation regarding the application of the
estimation techniques discussed in sections 3 and 4 in the decentralized threshold schedul-
ing policy. If the initial threshold value at a particular node is large enough, so that this
host never reaches its threshold during the observation period, then the incremental de-
lay with respect to the local job flow cannot be determined using formula (2.6). If this
derivative is assumed to be 0, due to the lack of information, this will probably lead to
unnecessary increase of the threshold value during the next iteration. Therefore, a heuris-
tic modification must be made; namely, if a host does not hit its threshold during the

observation interval, then it automatically decrements its threshold value by one.

We present numerical examples for a particular set of system parameters. However,
we have observed similar results for a wide range of system parameters. We first consider a
system with five host computers with the same utilization u; = uy = u3z = ug = ug = 0.5.
All the processors have the same job processing rate (#1 = ... = ps = 1.0). The average
communication delay of a job is assumed to be 10% of the mean job service time. The
initial threshold values are Tj™* = ... = Tj™* = 10. Figure 5.1 shows the threshold value
at host 1 of the simulated distributed system with respect to the number of iterations
of the algorithm at that host. Each observation period consists of 50 busy cycles. We
observed similar behavior of the algorithm for all the host computers of the system. It
turns out that the algorithm converges very quickly to the optimal (or near-optimal)
threshold value. Obviously, when the initial thresholds are large, it takes more iterations
for the algorithm to converge and this is due to the fact that the optimal thresholds are
usually small values [2]. Figure 5.2 shows the average response time of a job in the system
of the five hosts as a function of time. The two curves correspond to different initial
threshold values. The solid curve is derived for initial values Tjmt = ... = Tinit = 10
while the dotted curve is derived for initial threshold values Tint = .., = Tinit = 15. As
we can expect the system with the larger initial threshold values converges slower. A
comparison is made with a system with no load balancing at all (NLB), where all the
hosts are modeled as M/M/1 systems with utilization 0.5.

In Figures 5.3 and 5.4 we consider experiments where host computers have different

38

utilizations. In Figure 5.3 hosts 1, 2 and 3 have utilization 0.9 and hosts 4 and 5 have
utilization 0.5. The average response time of a job is shown as a function of time. Two
curves are presented corresponding to different initial threshold values and a comparison
is made with a system with no load balancing. The same experiment is repeated for
utilizations u; = u3 = u3 = 1.2 and ug = uz = 0.5 (Fig. 5.4). Obviously, hosts 1, 2 and 3
are saturated without load balancing. Since these three nodes are overloaded, a busy cycle
termination occurs very rarely and so does a threshold update. Therefore, starting with
large initial threshold values at the overloaded nodes results in larger average response
time of a job (Fig. 5.4).

We next study the adaptivity of the threshold updating algorithm in a dynamically
changing system environment. In such a case, when there is an imbalance in incremental
delays due to a change in the system environment, we expect that the algorithm corrects
the imbalance properly so that the system performance may be improved. Figures 5.5
and 5.6 consider an example where hosts in the system have the same processing power
(1 = ... = ps = 1.0). Initially all the five hosts have the same utilization of 0.5. Right
after the 2500-th time unit (simulation time) the utilization of hosts 1, 2 and 3 changes
to 0.9 (Figure 5.5) and 1.2 (Figure 5.6) respectively. Right after the 5000-th time unit
(simulation time) the utilization of hosts 1, 2 and 3 returns to 0.5. As it turns out from the
simulation results, the algorithm adapts smoothly to a change of increasing or decreasing
workload. After a short transient time the average response time converges to the value
we had observed for the corresponding system in a static environment (Figures 5.2, 5.3
and 5.4). In Figure 5.6 the solid curve indicates the behavior of the algorithm in a system
changing environment when the initial threshol values are 10 for all the nodes. The dotted
curve represents its behavior in the same environment but in this case threshold value is
kept constant T' = 2 for all the nodes.

39

.Am.o =n=""=1In
PU® O = il =" = yuil)

81807 G [}lM WId}sAs panquUIsTp ® Jo [-350]
je wgjuole Sunepdn ploysaiy) oY) jo Iotavyag - TG 81

F-4SOU 3o ShOI4RIN
3o 4qmnh sz oT Sh Oy G

<

o}

v MMM_W

40

E(R]

2.0

45

4.0

0.5

it it
T‘u‘l - Tbtﬂ < io
lﬂl.{ awid
..... T‘ T ... - rsm = 415

—+—+— NoO-load- quewldna.

NLB

— e)) m—
-

time uyits
(x 500)

Fig. 5.2 - Average response time a job in the system of five hosts

as a function of time (u; = ... = ug = 0.5).

41

(44

\ ——— Initiaf threshofds - {0

\ ==-=-= InitieQ thresholds = {5

5 ' 10 15 20 25 time wuits
(x 500)

Fig. 5.3 - Average response time a job in the system of
five hosts as a function of time
(u1 =1U3 = U3 = 0.9 and Uy = Ug = 0.5).

44

iuit Lt "
———x Tf = Tz Feee =% F
mid mit it
T‘ = T2 L 4 5 - ‘o
inrd init inid
TTss—- T‘ - TZ - - Ts = ‘fs

{0 15 20 25 30

Fig. 5.4 - Average response time of a job in the system of

five hosts as a function of time

(#1 =13 = u3 = 1.2 and u4 = us = 0.5).

time uyits
(x500)

44

E(RT

3.0
a9
.0
1.5
1.0

0.5

{0 15 20 25

Fig. 5.5 - Behavior of the threshold updating algorithm
in a changing system environment

(utilization at nodes 1, 2 and 3 changes from
50% to 90% and back to 50%).

30
Lime wyits

(x 250)

4

Threshold Upduﬁug Angrithw (T
L — Coustout threshold (T=3)
M\ for ol the hosts-

. tiwe-unis
(x 250)

Fig. 5.6 - Behavior of the threshold updating algorithm
in a changing system environment
(utilization at nodes 1, 2 and 3 changes from
50% to 120% and back to 50%).

init

i

10)

6. CONCLUSIONS

In this work we considered the problem of improving the performance of a distributed
system by using load balancing techniques to smooth-out periods of high congestion at
individual nodes. Specifically, we adopted a class of load balancing techniques, that use
a threshold policy at each host to make decisions for job transfers. We put emphasis
on the problem of determining the optimum values of threshold parameters in order to
yield optimal or near-optimal performance. An efficient distributed algorithm has been
adapted to the specific load balancing policy for that purpose. The algorithm is iterative
in nature and threshold parameters are updated at each iteration. Between updates, each
host computes and exchanges with other hosts gradient information. This information is

then used to update load balancing parameters in the next iteration.

Obviously, the above distributed algorithm is based on the knowledge of performance
sensitivity information. Each host must be able to estimate the change in throughput and
expected queue length due to a change in either the threshold or the job arrival rate. Two
different methods towards estimating the above gradients have been proposed in this
work. Both of them effectively provide performance sensitivity estimates while the actual
system is running (on-line estimation), by using real data gathered during an observation

interval. In both the methods the arrival rate is estimated during the execution of the

estimation algorithm.

Our approach towards estimating the gradients with respect to the threshold relies
on the assumption that either the arrival process or the service time are exponentially
distributed. The performance of the proposed estimation technique has been investigated
through simulations. As it turns out from the simulation results, the estimation algo-
rithm converges very fast even for short observation periods (i.e. 200 job completions).

Furthermore, the memory requirements and the increase in running time are very low.

A different technique is proposed for estimating gradients with respect to the arrival
rate. The method is extremely well suited to regenerative systems. In our case, the
beginning of a new busy cycle is considered as the regeneration point. By evaluating the
above estimation technique through simulafions, we realized that the observation period

must be long enough (e.g. 2000 busy cycles) in order for the estimator to give consistent

46

estimates of the desired gradient. However, the method can be effectively applied to
systems involved in the decentralized threshold scheduling policy discussed in this work,

where we only need to compare derivatives without worrying about their absolute value.

Both the proposed estimation techniques have been imbedded in the updating thresh-
old algorithm and simulation results have been produced for a system with five host com-
puters modeled as single server queueing systems. It turns out that after a finite number
of algorithm iterations, the behavior of the system, in a static environment is confined
in a neighborhood of the optimal performance. A great improvement in the performance
measure (average response time of a job) has been observed in the system executing the
distributed load balancing algorithm compared to a system with no load balancing at
all. Although we used short observation periods (50 or 100 busy cycles) in most of our
experiments, the performance of the algorithm was not affected. It appears that accuracy
in gradient estimation is not very crucial, since it is the relative values of the gradients,
not their absolute values, which are more significant. Since the optimal thresholds are
usually small values (e.g. less than six), it takes more iterations for the algorithm to
converge if the initial thresholds are large. A heuristic modification has been made in
order to improve the performance of the technique estimating gradients with respect to
threshold, when the initial threshold values are large enough so that the nominal system
does not even reach its threshold. It is interesting to notice that the overhead of exchang-
ing gradients between the hosts of the distributed system is small since they are not an
istantaneous information such as queue length. An interesting problem, is the adaptivity
of the algorithm in a dynamically changing system environment. In such a case, when
there is an imbalance in incremental delays due to a change in the system environment,
we expect that the algorithm corrects the imbalance properly so that the system per-
formance may be improved. Simulation results pointed out that the algorithm adapts
smoothly to a change of the workload. When the system environment changes over time,
this algorithm can run in the background so that it can track the system variation in a

quasi-static manner [2].

47

REFERENCES

(1. K. J. LEE, D. TOWSLEY, “Quasi-static decentralized load balancing with site con-
straints”, submitted to ACM Sigmetrics Conf., 1987.

[2]. K. J. LEE, Load Balancing in Distributed Computer Systems, Ph.D. Thesis, Dept.
Elect. & Comp. Eng., Univ. of Massachusetts, 1987.

(3]. K. J. LEE, D. TOWSLEY, “A comparison of priority-based decentralized load bal-
ancing policies”, Proc. of Performance 1986 and ACM Sigmetrics Conf. 1986.

[4]- K. J. LEE, D. TOWSLEY, “Distributed Algorithms for decentralized load balancing
in star-configured systems”, submitted to IEEE Trans. on Computers, 1986.

[5]. D. EAGER, E. LAZOWSKA, J. ZAHORJAN, “Adaptive load sharing in homogenious
distributed systems”, IEEE Trans. on Sofiware Eng., SE-12, pp. 662-675, May 1986.

(6]. A. TANTAWI,D. TOWSLEY, “Optimal static load balancing in distributed computer
systems”, Journal of ACM, vol. 32, pp. 445-465, April 1985.

[7]. Y. WANG, R. MORRIS, “Load sharing in distributed systems”, IEEE Trans. on
Computers, vol. C-34, pp. 204-217, March 1985.

[8]. D. LUENBERGER, Introduction to Linear and Nonlinear Programming, Addison-
Wesley, 1973.

[9]. C. CASSANDRAS, Y. HO, “An event domain formalism for sample path perturbation

analysis of discrete event dynamic systems”, IEEE Trans. on Automatic Control, AC-30,
pp. 1217-1221, 1985.

[10]. R. SURI, M. ZAZANIS, “Perturbation Analysis gives strongly consistent sensitivity
estimates for the M/G/1 queue”, Operations Research, 1985.

[11]. C. CASSANDRAS, “On-line optimization of a flow control strategy”, IEEE Trans.
on Automatic Control, AC-31, Feb. 1986.

(12]. M. REIMAN, A. WEISS, “Sensitivity Analysis for Simulations via Likelihood Ra-
tios”, AT&T Bell Labs Report, 1987.

48

