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Abstract

An object recognition system is presented that is designed to handle the compu-
tational complexity posed by a large model base, an unconstrained viewpoint and the
structural complexity and detail inherent in the projection of an object. The design
is based on two ideas. The first is to compute descriptions of what the objects should
look like in the image, called predictions, before the recognition task begins. This
reduces actual recognition to a 2D matching process, speeding up recognition time for
3D objects. The second is to represent all the predictions by a single, combined IS-A
and PART-OF hierarchy called a prediction hierarchy. The nodes in this hierarchy are
partial descriptions that are common to views and hence constitute shared processing
subgoals during matching. The recognition time and storage demands of large model
bases and complex models are substantially reduced by subgoal sharing: projections
with similarities explicitly share the recognition and representation of their common
aspects. The original contribution of this paper is the automatic compilation, from a
3D model base, of a prediction hierarchy that can be used to recognize objects. A pro-
totype-system based on these ideas is demonstrated using a set of polyhedral objects
and projections from an unconstrained range of viewpoints.
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1. Introduction

Object recognition is a central aspect of understanding visual information, helping us
to relate what we are seeing to what we have experienced in the past.

The general framework being adopted here is object recognition as a matching prob-
lem, specifically between models of 3D objects and 2D images. This is a clear, powerful
framework within which a wide range of image interpretation problems can be studied
[Haralick78, Kitchen80, Brooks81, Ballard82, Besl85]. The basic idea is to explicitly rep-
resent long-term knowledge of the physical world in the form of models and expected
model-to-data transformations. The models are collections of primitives and their rela-
tions that essentially describe expected scene structures; the transformations specify what
these structures may look like in the incoming data. The result of the matching process,
the actual model-to-data mapping, constitutes an interpretation of the data and hence the
system’s understanding of the current world. Within this framework, the general goals
of the system designer are to develop a rich and reliable representation of the objects,
an understanding of the transformation process, and an effective and efficient matching
algorithm to make use of all this information.

In spite of much progress in model matching, there are crucial problems that have not
received adequate attention. One is representing information about 3D objects in a way
that makes matching them to 2D image data efficient and reliable. That is, the geometric
analysis required to relate an arrangement of 2D image features to the structure and pose
of 3D objects should be sufficient and yet not involve a lot of computation during the
time-critical recognition task. Another problem is ensuring that storage and recognition

time costs grow only slowly with respect to the size of the model base and the complexity



of the models.

We emphasize these efficiency considerations because of the remarkable visual ability
of humans to rapidly recognize such a large number and variety of objects from a range of
viewpoints. For example, see Figure 1, which is a small sampling of the amazing assortment
of objects, differing in subject, structure and detail, that people are capable of readily
recognizing in the absence of any significant context. This ability is glaringly absent from
all computer vision systems to date. While there are other sources of information that
seem to be important, specifically scene context [Hanson78, Hanson85, Biederman85] and
model-independent understanding of 3D structure [Marr82|, these useful cues may quite
often be unavailable, unreliable, or merely a first step towards a full interpretation. Hence
it is of great importance to develop model-based systems capable of efficiently relating
image data acquired from variable viewpoints to large 3D-model bases.

It is proposed here that the computational complexity posed by a large number of
objects, an unconstrained viewpoint, and the structural detail inherent in even a single

view can all be handled by a design based on the following principles:

o Before the recognition task begins, compute descriptions, called predictions, of what
the objects should look like in the image, This reduces actual recognition to a 2D

matching process, substantially speeding up recognition time for 3D objects.

¢ Represent all the predictions by a single, combined IS-A and PART-OF hierarchy
called a prediction hierarchy. The nodes in this hierarchy are partial descriptions
that are common to views and hence constitute shared processing subgoals during
matching. The recognition time and storage demands of large model bases and com-

plex models are reduced by subgoal sharing: projections with similarities explicitly



share the recognition and representation of their common aspects.

¢ During recognition, if a prediction unique to an object is matched, determine the
pose of this object. The pose can be calculated by using iterative techniques, where
a typical view from the class of views associated with the matched prediction can
serve as an initial pose estimate. The typical view should, in general, produce an

initial estimate reasonable enough for simple refinement techniques to work.

The original contribution of this paper is the automatic compilation, from a 3D model
base, of a prediction hierarchy that can be used to recognize objects. The rest of this paper
is a review of the object recognition literature (Section 2) followed by a description of a
prototype system which is demonstrated using a set of polyhedral objects and projections
from an unconstrained range of viewpoints (Sections 3 to 6). This study is being performed
in conjunction with an investigation of the visual properties of continuous surfaces [Calla-
han85] for the purpose of recognizing objects with non-convex, curved parts. An expanded

recognition capability will come from the combination of these two lines of research.

2. Approaches to Object Recognition

Though recognition systems to date have only managed to address portions of the
problem of 3D object recognition from a large model base, there is much to learn from
them. This section is a review of some of the most relevant. ideas, organized along two key

aspects:

e Using 2D image data as evidence for the presence of 3D objects.



¢ Efficiently searching for matches hetween arrangements of image features and a large

amount of model information.

Approaches to the first aspect are reviewed in Section 2.1, Reasoning about 3D Objects

and 2D images, and the second is discussed in Section 2.2, Matching Strategies.

2.1 Reasoning about 3D Objects and 2D images

Existing techniques for relating 3D model information to 2D image data can be parti-
tioned into two basic approaches: prediction cycling and pre-recognition view analystis.

In the former, represented by ACRONYM |Brooks81|, the system cycles through a
process of prediction, deciding which projected model feature to search for in the image;
observation, searching for instances of the feature; and back constraining, using additional
properties of the feature instance to further constrain the possible imaging geometry (e.g.,
object pose and focal length) and structural variations in the object. The feature selected
during prediction is one that is most constant (i.e. constrained) in size, position and
nature under the currently possible variations in pose and object structure. The use of
more constrained features tends to reduce the number of actual image features that can
satisfy the prediction and hence reduce spurious matches. The back-constraining process
uses an algebraic constraint manipulation system (CMS) to narrow down the range in pose,
other parameters of the imaging geometry such as focal length, and structural parameters
of the object. If the back-constraining process produces an inconsistency (i.e. the CMS
determines that the resulting system of constraints is unsatisfiable) then the matcher may
abandon the current match and attempt to complete a different one.

Prediction cycling is advantageous in the sense that all the information required for the



recognition of a given object is represented only by its 3D model and some general principles
of projective transformation. This potentially makes the matcher fairly general and the
information required compact. Though utilizing 3D descriptions of objects during matching
has these advantages, it is computationally inefficient to have only 3D descriptions available
during recognition. Instead of always generating predictions during recognition, as in
ACRONYM, it may often be better to generate them before the recognition task begins.
The process of understanding what is quasi-invariant about the appearance of a general
class of objects from a range of viewpoints, and describing this in terms of features that
can be recovered in the image, could often be expensive. It seetns inappropriate to do this
at every step in the search for matches. This is especially true at the earlier stages when
one has not suffiently narrowed down the objects that may be present in the image, and
hence the sources of the predictions.

Similarly, the process of interpreting the match as a 3D object in a given pose should
often be done after much of the matching has occurred. In other words, it is often best
to wait until the matcher finds a reasonably supported mapping between the image and a
predicted, general view of an object. Then, the pose will be constrained to an extent that
a simple refinement process can do the rest. Calculating the back-constraints every time a
new piece of evidence is matched is unreasonable when the pose and model are not suffi-
ciently narrowed down. The difficulties of manipulating partially constrained poses during
matching has been emphasized by Lowe[85]: “the back-projection step is difficult from a
mathematical viewpoint, since there are no simple, closed form solutions for determining
the range of viewpoint parameters consistent with a given set of image matches”. Even

if such calculations could be done efficiently, they should only be done when the possible



* models have been sufficiently narrowed down.

In the alternative approach, pre-recognition view analysis, all expectations of what to
look for in the image are generated before the actual recognition task. Hypothesizing the
identity of an object then becomes a 2D matching problem and object pose analysis is
initiated later during a verification phase when the possible objects have been sufficiently
narrowed down. The characteristic-view based schemes of Chakravarty[82] and Wong|84],
the property spheres of Fekete[84], the SCERPO system of LoWe[SS], the principal views of
Cooper|87] and the image-based descriptions of the VISIONS system developed in [Wey-
mouth86| all roughly follow this method. Additionally, this approach has similarities with
the photometric stereo interpretation system of Ikeuchi[87].

An important concept in pre-recognition view analysis is that of a generic view [Koen-
derink?76|, [Callahan85| (also called a characteristic view in [Chakravarty82] and [Wong84]).
A generic view (GV) is a class of viewpoints that have the same set of features visible.
The features are typically projections of straight, physical edge segments; though they can
be more sophisticated, depending in part on the object surfaces considered [Callahan85].
Figure 2 shows an example of the GV’s for an object and a selection of views within a
single GV. The partitioning of the different views of an object into generic view classes is
a useful way of reducing the 3D-2D matching problem to one that is more manageable:
that of comparing 2D image data to 2D descriptions (one is valid for each GV). GVs not
only simplify the prediction analysis, but also allow one to generate rich, informative pre-
dictions. This is because the GVs in some sense maximize the number of simultaneously
visible features being considered together in the same description. Hence, a substantial

amount of what tends to be fairly constant visual structure is available for description.



Unfortunately, both Chakravarty and Wong do not take advantage of this richness. In-
stead, they describe the views using edge-edge connectivity (i.e. which edge is connected
to which) and junction type as the relations; little metric information is used to build
descriptions of the view. Such schemes tend not to be very descriptive of the projection’s
shape or structure, nor are they robust outside of controlled blocks-world domains. In
spite of this, the use of GVs as an initial step in the prediction process is a useful idea.

Lowe[85] suggests using non-accidental groupings of image features as object recognition
cues. This amounts to analyzing the model for subsets of physical edges whose projections
have view invariant aspects in their relative size, position or orientation. For instance,
the ideal orthographic projection of a rectangle contains segments that are always parallel,
as well as ones with always adjacent endpoints. This type of invariant analysis is useful
in the sense that the expectations are valid over wide‘ a range of viewpoints, giving one
a parsimonious use of features. Also, the relational features chosen tend to reduce the
number of false-alarms by accidental groupings. Though these are important goals, the
general method needs to be extended to a more complete process of describing what the
projections look like for the purpose of discriminating betweén a large number of objects
and views. In other words, analysis of invariance is not enough; it is also important to
describe the appearances in substantial detail. Specifically, there may be properties of the
projection that have a narrow range of values over a wide range of viewpoints, but they
are not strictly invariant. The process of compiling these descriptions into a data-base for
efficient storage and access could perhaps use aspects of the invariants analysis described
by Lowe.

The vision system described by Weymouth[86] constitutes a fairly rich collection of



representation and control strategies. Nevertheless, there is a major emphasis throughout
the work on what is called tmage-based description: that is, recognition by relating the
image to a primarily 2D description of a scene, followed by a verification process involving
3D interpretation. The rich description of object appearances used by Weymouth could
provide a useful starting point for scene analysis research. He stressed color, local texture
measures, location in the image, size, gross shape descriptors and relative position of
parts (and whole objects to each other). These aspects of an object’s appearance could be
fruitfully complemented and extended by incorporating the automatic methods for analysis
of GVs and invariants discussed above.

Once a reasonably confident and complete match is isolated between expected data and
actual image data, this mapping can be used to determine the position and orientation
(pose) of the object in space. This is done by finding the pose in which the accumulative
distance between the actual image and the projection of the object in this pose is mini-
mized. Lowe|[85] reviews both closed-form and iterative soluti.on techniques. He argues for
the use of iterative positional error minimization because it is currently standard practice
in photogrammetry and the best closed-form method to date [Fischler81] is quite complex,
with a quartic polynomial that “presumably must be solved by iterative methods” anyway.
Additionally, since the set of simultaneous equations implied by a match is augmented by
additional constraints (i.e., the system knows the rough view that the prediction is associ-
ated with) the solution neighborhood tends to be narrowed down considerably — enough to
provide a good starting approximation for an iterative method. His method uses Newton-
Raphson iteration which has quadratic convergence and corrects the rotational error by

composing the initial orientation estimate with incremental rotations about the camera
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coordinate axes. These particular correcting rotations are useful because the derivatives
of image position with respect to them can be expressed in a simple form. Lowe reports
that the algorithm converges rapidly: the error is typically reduced to a negligible amount
within 3 iterations (see Figure 3 for example results).

Before closing this section, it is important to note that there is an approach to pre-
recognition analysis that is somewhat different to those just described. Goad[83] used
prediction cycling as in ACRONYM, but pre-calculated and tabulated all calculations.
He designed a special-purpose (i.e. single object) matching system by precomputing the
predictions and back-constraints for an object from different poses and storing them in
tables. He also pre-pruned the search-tree using mutual invisibility considerations. Goad
finds a substantial speed-up in recognition time over ACRONYM, though it is not clear
from his published results how effective his system was at finding matches.

There is a key difference between Goad’s approach and the view analysis methods
discussed above. In the view analysis approaches, instead of a simple prediction step that
involves the estimate of the position of a single image segment, a much richer description is
generated of what is expected in the image (given the presence of the object), a description
that involves the arrangement of many segments. These substantially fuller descriptions
of the views can be organized into a conceptual hierarchy, as will be discussed in the next
section, to handle large numbers of objects and the complexity of the object itself, not
just variations under camera movement. Goad’s scheme is geared towards single-object
recognition and it is not clear how it can be extended to work with a large model-base. In
spite of this, his work stands as a good example of how pre-recognition analysis can spced

up recognition considerably.
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2.2 Matching Strategies

From the discussion above, it is clear that reducing the matching problem involved in
recognition to one that is essentially 2D-2D is a useful starting point. Yet, it is also clear
that this still leaves a task of some complexity. The predicted image must be effectively
and efficiently compared with the actual image data and there must be some process of
selecting the right prediction. In this section, existing matching methods will be reviewed,
which can be roughly categorized as one of the following schemes: 1) generalized Hough
transform, 2) local constraint-based relaxation, 3) one-shot selection, 4) iterative match
growing and 5) hierarchical representations. These categories are not sharp, and it is
also possible to combine the techniques; nevertheless this classification provides a useful
starting point. The different methods tend to emphasize different aspects of the matching
problem.

1) In generalized Hough transform approaches [Ballard81, Silberberg84], each image
feature votes for each possible combination of pose parameters and structural parameters
that could have generated it. These votes are accumulated in arrays indexed by the
quantized parameters, and the best matches are selected by looking for peaks in the vote
count. Such methods are useful in the sense that they tend to make the most out of the
feature as evidence, in spite of heavy fragmentation, occlusion and local measurement error.
The target object will tend to form a prominent peak in the parameter space in spite of such
disturbances because many features will still be present and in the right position to vote for
this peak. Yet, because the evidence for all possible parameter combinations is accumulated
exhaustively and stored explicitly, fhis method is geared towards problems with small

solution spaces. It is unlikely that such a small space could be used to differentiate between
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objects from a large model-base seen from a variety of poses.

2) Constraint-based relazation techniques essentially select the right model-image map-
pings by filtering out bindings that are inconsistent with others. The methods follow this
basic pattern: assign, as potential labels, all promising model elements to all data elements;
then, using measurable relations among the data elements and known relations (local con-
straints) between the model elements, iteratively rule out possible assignments. What
should be left are sets of mutually consistent assignments called interpretations. This gen-
eral idea has been incorporated into the designs of Davis|79], Kitchen[80], and Faugeras(84]
(See also association-graph techniques in [Ballard82] and [Bolles82]. In these techniques,
all the consistency analysis is done first and then cliques of consistent assignments are
explicitly searched for. This is more expensive but more complete than relaxation). The
relaxation process can be rather fast once all the initial associations are found: usually
only a few iterations plus some simple post-processing are required. Additionally, the fil-
tering generally involves testing local constraints, so that much of the processing can be
done in parallel. The problem with it is that, for a large number of possible models and
viewpoints, the initial assignment phase is prohibitively expensive. One must find a way
to avoid considering most of the assignments in the first place.

The technique does have a possible role in situations where the number of possible
labels is small and it is important to give exhaustive consideration to all possibilities.
These situations may occur as subgoals of some larger problem. For an example of this
type of design, see the hypothesis-generation step in Bolles|82].

3) There are several designs that have attempted to narrow down the possible objects

and poses associaled with the image data by a one-shot seleciion or ranking of the possible
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candidates. The basic idea is to measure a small set of features whose existence or values
essentially index into the model-pose space. Once a small number of models and poses
have been selected, these methods look for more detailed evidence that confirms one model
over the other and also refines the pose and other structural details. The focus-feature
method of Bolles[82], the compact model scheme of Shﬁeier[79], the model-selection process
of Nevatia|74|, the rule system of Hanson [85], the grouping processes of Lowe[84] and the
property spheres of Fekete[84] all basicaily follow this scheme. Though breaking up the
processing into these two phases is a useful idea, the single indexing step is not sufficient
to properly narrow down the possible models and their 2D projections. In the context
of matching a large number of 3D models, the necessarily small set of readily detectable
features would essentially have to be ideal invariants. That is, they would have to be
detectable almost all the time that the object is being viewed, but at the same time be
very object-specific. This can hardly be expected, especially for a large model base and an
unconstrained camera position.

4) The matching algorithm in Goad(83] follows a general approach that will be referred
to here as iterative match growing. He represents the matching process as a best-first search
through a space of single, partially complete interpretations. In other words, there are
partial, one-one mappings between image and model segments that the system l.{eeps track
of and tries to complete in a best-first fashion. There is a single operator: adding a new
image-model segment binding consistent with the partial match’s already existing bindings.
Branching points in the search occur when there are multiple possible instantiations (more
than one image segment to bind the model segment to) or alternative model segments to

search for in the image. This scheme is useful in the sense that most of the false bindings
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between image segments and model segments are not tested. This is because the search
for image and model segments to bind to at any given moment is constrained by the
bindings currently being entertained. This is in contrast to the exhaustive search of the
Hough techniques and the potentially involved initial assignment phase of the relaxation
approaches. Also, since the search involves testing for a variety of image features (in this
case, segments of different orientation, size and position, depending on the part of the
search space it is in), it does not rely on a fixed, small set of features to narrow down
the possibilities as in the one-shot cuing strategies above. In Section 2.1, it was concluded
that Goad’s overall 3D object recognition scheme may lack extendibility into multi-object
recognition. In spite of this, Goad’s idea of matching as a best-first search through a space
of partial matches is a useful concept that could be incorporated into a more complete
system.

5) One promising way of handling large numbers of models and views is by using hi-
erarchical representations (Marr|77|, Brooks[81], Mulder[85] and Weymouth(86]). These
representations are generally built up by using IS-A and PART-OF links. An example of
an IS-A hierarchy is Brooks’ restriction graph of increasingly more restrictive constraints
which supports the description of specific object structures as specializations of more gen-
eral ones. This in turn potentially facilitates an efficient search for instances of a large
family of different objects, since it allows the system to check some constraints once for all
objects characterized by them in the hierarchy. With respect to recognition in 2D images,
we consider it to be more effective to organize the predictions in this fashion, not just the
objects. The other type of hierarchy, the PART-OF hierarchy, describes models or their

projections in terms of their part and subpart decompositions. These parts and subparts
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can be used as intermediate interpretation subgoals in much the same way as the partially
constrained objects in the restriction graph: any time two objects, two views or even two
sections of the same view have parts in common, the processing for these parts can be
shared. For example many projections of a house will contain parallelogram subparts; in
fact, in some projections this part will occur several times as windows, doors, shutters,

roof and wall.

3. Overview of Project

The problem currently being studied is the compilation and use of a prediction hier-
archy to recognize polyhedral objects using straight-line segments detected in the image.
This is considered a good initial problem because polyhedra can be used to represent
approximately many objects in the world and, more important, polyhedra have sufficient
richness and complexity to fully test our ideas, without requiring the setting up of complex
machinary needed to represent say curved surfaces. Additionally, there exist reasonably
reliable techniques for extracting straight edges from images [Burns84|, [Boldt86]. The
actual objects used to demonstrate the design are shown in Figure 4. The objects have dif-
ferences and similarities in various dimensions and part of the problem is to take advantage
of both. The similarities in their visual structure, such as occurrences of parallelograms or
of certain types of line junctions, must be utilized by the recognizer to make the search for
a match efficient. The differences in visual structure, such as height-to-width proportions,
must be utilized to discriminate between the objects. Additionally, the variations in visual

appearance caused by variations in the camera must be taken into account while doing the

structural analysis.
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The camera geometry used is as follows. The viewpoint of the camera is taken to be the
position of the image origin in the object coordinate system. Currently, the projection is
taken to be orthographic (i.e. focal length at infinity). Also, since the objects are expected
in any pose, all predictions generated are invariant to re-scaling, translation and rotation
in the image plane. This means that there are only two degrees of camera variation that
have a significant effect on the projections being described by the predictions: the two
angular components of the viewpoint that sweep out a viewing sphere about the object.

As described in Section 1, our basic approach is to treat recognition as a 2D matching
problem. This is done by characterizing what the objects look like from different viewpoints
before the recognition task begins. In addition to view analysis, the pre-recognition phase
will also include extensive organization of the expectations in the form of a PART-OF/IS-A
hierarchy for efficient storage and matching.

A top-level view of the algorithm is blocked out in Figure 5 and proceeds as follows:

1. Compile the prediction hierarchy from the set of 3D models given. The hierarchy is
compiled by starting with a small set of simple and very general structural predictions
and then iteratively searching for commonly occurring combinations or specializa-
tions of these predictions across all objects and views, eventually isolating predictions

that characterize the projections of fairly specific objects from a range of views.

2. Match predictions to input tmage. During the recognition phase, look for matches be-
tween segment descriptions and actual sets of image segments by a combined search of
the prediction hierarchy and image data base. The hierarchy is used as an organized

network of recognition subgoals.
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3. Refine the pose estimate. For each promising match, calculate the pose more precisely
given the image-model mapping and an initial estimate of the pose implied by the
prediction matched (i.e., some typical viewpoint from the set of those that could
satisfy the prediction matched). For pose estimation refinement, the iterative method

described in [Lowe85] could be used.

The integration of these three processes could be more sophisticated: for instance, the
pose-refinement process could start up any time a reasonable match is generated, while
the matcher continues to search for new ones, possibly guided by the result of the pose
analysis. However, the pressing issue at this point concerns the basic design of these steps;
investigating further how they might fit together is outside the scope of this paper.

Following a description of the nature of the predictions and their representation (Sec-
tion 4), the processes that compile them and use them for matching are discussed and

demonstrated (Sections 5 and 6).

4. Predictions and Their Representation

A prediction is a statement concerning some structural aspect of the image of an object.
For example, this may be as simple and general as an assertion that there exists a pair
of parallel segments in the projection; or as complex as a description of an image unique
to some object. A prediction is represented here as a relational graph; the elements in
the graph are projected straight-line segments. The relations associated with arcs in the
graph mutually constrain the orientations, positions and sizes of pairs of segments. For
example, the relation parallel constrains two segments to having the same orientation. The

predictions can be viewed as conjunctions of these relations over formal segment arguments;
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for example, see the description of a parallelogram in Figure 6.

A relation between a pair of projected segments used in the predictions is represented
by ranges of four relational measures, u, v, @ and s (see Figure 7). Call one segment s,
and the other s;. The vector (u,v) is the position of segment s, relative to s;: it is the
displacement of an endpoint of s; from an endpoint of s, measured along s; and normal to
81, divided by the length of s,. The angle between them, a, is measured counterclockwise
from s; to s;; and s is the relative scale or length ratio of s; over s;. A relation is defined
as an extent boz, i.e. intervals in u, v, @ and s, in order to capture the variation over ranges
in viewpoint. For instance, projecting a pair of parallel object segments over all possible
viewpoints will generate a set of measurements that have a single value (zero) in the «
dimension but some non-trivial extent in the others. Similarly, the family of projections of
a pair of object segments that share an endpoint can be represented by a relation that has
the value zero in both position components (u,v). A relation between projected segments
is considered useful if it is valid over a wide range in viewpoints and its extent box is small
in volume (for example, consider the two view-invariant relations just mentioned). The
latter property is important if the relation is to help characterize an object’s projection
with a specificity sufficient to discriminate the object from a large number of other objects
and from chance arrangements of image segments. Although invariant relations are clearly
useful [Lowe85], they alone are in general not enough to fully characterize projections. For
instance, proportions are often strong characterizations of object structure, but the length
measurement ratios that represent them are often not strictly view invariant. For example,
the tall box in Figure 4 has a height to width ratio that is significantly different from the

cube over a large range in views and no other property can be used to differentiate them.
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It should be clear from the above discussion that a prediction, since it may he composed
of non-invariant relations, may only be valid over a restricted set of views for a given object.
A prediction instance is a set of model segments, a mapping from the model segments to
the segments of the prediction’s relational graph and a range of viewpoints from which the
prediction is valid for these segment bindings. See, for example, the Y junction prediction
of Figure 8. For a given model base, there is a set of such instances associated with each
prediction and a cumulative visibility that is the total area of all their visibility regions on
the viewing sphere, across all objects.

Any given prediction in the prediction hierarchy is implicitly some relational graph,
but explicitly it is almost always described as some combination or specialization of other
predictions (see Figure 9). In such cases, it is a derivative of the other predictions. A
prediction is a spectalization of another if it can be described by adding new relations or
narrowing the extent boxes of existing ones. For example, the rhombus can be described by
adding a relation between the bottom and side segments of the more general parallelogram
prediction that constrains their ratio of length to be one. A prediction is a combination
of other predictions if it can be described as a conjunction of these other predictions.
Predictions may be combined in various ways, depending on the segment mappings between
the whole prediction and its parts. See, for example, the triangular prism prediction of

Figure 9. The mappings are collectively called the arrangement of the combination.

5. Prediction Hierarchy Compiler

In Section 4 it was shown that a prediction hierarchy is composed of predictions that

are combinations or specializations of other predictions. The initial predictions of the
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hierarchy (those that all the other predictions are derivatives of) ought to be those that
are valid for very large numbers of objects and are essentially invariant to viewpoint (such
predictions are like the invariant binary relations discussed above and in [Lowe85]) — and
the final predictions ought to be valid for only a few objects and over a narrow enough
range of viewpoints that pose estimate refinement and verification can easily be performed.
A useful way to build such a structure is to start with a small set of simple, ubiquitous
structural predictions and then iteratively search for useful combinations or specializations,
eventually isolating predictions that characterize the projections of specific objects. By
using this iterative construction approach we limit the combinatorial complexity, and hence
processing time, to a manageable level. This is because the system is never performing
subgraph isomorphism analysis over large graphs: it is always comparing combinations of

small numbers of parts.

5.1 Criteria for Selecting Prediction Derivatives

In building the prediction hierarchy, it is important to understand which of the possible
combinations and specializations of simpler predictions are useful to explicitly represent as
nodes in the hierarchy. Considering the set of object projections that satisfy a given predic-
tion, useful derivative predictions are those that are also valid for some significant fraction
of this set. For the recognizer to efficiently search for possible objects and views, a deriva-
tive prediction should occur frequently enough that its satisfaction tends to dichotomize
the instances of the prediction it is derivative of.

The following is a more precise description of how the compiler selects derivatives

every iteration. Recall that an instance of a prediction is a mapping between the prediction

21



segments and some model segments — and the range of viewpoints from which this mapping
satisfies the prediction constraints (Fig. 8). Another useful concept for this discussion,
cover, is defined as follows. Consider a given prediction p and one of its derivatives, p. An
instance of p' (i,+) covers an instance of p (i) if the set of model segments that i,» maps
to is a superset of the segments that ¢, maps to (Fig. 10). A derivative, p', covers some
subset of the derivatives of p if for all instances in this subset there exists an instance of
p' that covers it.

The initial, simple predictions have a large number of instances across the objects, views
and even within a single view and the final predictions have only a few instances. For the
matcher to use the hierarchy to efficiently search for matches to these final predictions
given matches to the initial predictions, the derivatives p' selected each iteration for each

intermediate prediction p by the compiler should have the following properties:
1. The number of instances of each p' should tend to be much less than that of p.
2. Each instance of p should be covered by an instance of some p.
3. The number of derivatives, p', per prediction, p, should be low.

(1) The number of instances of p' should tend to be much less than that of p. This
is because a prediction’s set of instances represents the possible matches between image
segments that satisfy the prediction’s constraints and the models — and the recognition
process should be able to narrow down the set of possible models, views and model parts
at a reasonable rate each step in the matching process. Since p' always has constraints that
do not exist in p, it is not satisfiable everywhere that pis. In fact, the instances of p covered

by p' are usually a small set of the total. Unfortunately, this does not mean that most
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derivatives of p necessarily have fewer instances than p - there is a redundancy problem that
can actually increase the number of instances of p' over p. It often occurs that more than
one instance of p' covers a given instance of p. This happens sometimes when the derivative
p' is a combination of p with itself or other predictions and instances of these combinations
overlap heavily. For example, the view of a tetrahedron in Figure 11 contains 12 instances
of the coincidence prediction. Two derivatives of it, snake and trihedral junction, both
cover the coincidence instances, but the trihedral junction prediction does so with much
fewer instances (4 instead of 12). Selecting snake as a derivative of coincidence hardly
reduces the number of possible matches, and is thus a poor choice.

(2) Each instance of p should be covered by an instance of some derivative of p to
reduce dead-ends during the search for matches. Say that there is an instance of p that is
not covered, and the model segments that it maps the prediction segments to are {m,, m,,
m3}. Also say that the image includes the projection of {m,, m,, m3} from a viewpoint
such that the constraints in p are satisfied. If the recognition system matches p to the
projection of {m,, my, ms} it cannot use this match as a step in the process to matching
predictions unique to the model projected. This is because there is no path in the hierarchy
from p to such a goal prediction — no set of additional constraints that can be tested to
isolate that model and view from others possible given p.

(3) The number of derivatives per prediction should be low. This number represents
the branching factor at each node in the hierarchy. Large branching factors can slow the
match search process down. Picking devivatives that cover large subsets of a prediction’s
instances helps to reduce the number of derivatives necessary to ensure that all instances

of the prediction are covered.
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A derivative-selection procedure that approximates the general conditions above has

been incorporated into the compiler implemented and is described in the next section.

5.2 Iterative Hierarchy Construction

For the experiment reported here, parallelism and endpoint cotncidence are used as the
initial set of simple and general predictions; and the iterative process is stopped when all
of the predictions without derivatives (the ones at the top of the hierarchy) are either as-
sociated with single objects or, if they are satisfied by projections of more than one object,
there are no describable differences between their projections. The prediction hierarchy
compiler implemented iteratively combines predictions and then follows this up with spe-
cialization of predictions associated with multiple objects that are not distinguished by
combinations of parallelism and end-point coincidence relations alone.

For each iteration of the combination process, the system isolates useful combinations
by (1) finding predictions that often appear together in the same projections and then (2)
selecting a subset of these commonly occurring combinations that approximately satisfy
the criteria discussed in Section 5.1.

The co-occurrences are found in the following fashion. All instances of all predictions
are stored in data structures called visibility maps. There is a visibility map for each
object; the maps are arrays of cells indexed by the two viewpoint parameters, making a
discrete sampling of the view sphere about the object. Each cell lists prediction instances
visible from the associated viewpoint and object; and with each prediction is a list of
cells that contain it. To find frequent co-occurrences between some prediction p and

other predictions, the system looks for predictions that appear in the same cells as p
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and accumulates the total number of cells for each that do. To keep the number of
combinations analyzed down to a manageable size, we consider only co-occurring pairs in
whose arrangements the part-to-whole mappings overlap for at least one whole segment.
After finding commonly occurring combinations, the compiler tries to select a small
subset of them that collectively and efficiently cover the instances of the predictions that
they are derivatives of. Consider a prediction p and its derivatives p’. The derivatives are

iteratively selected in the following way:
1. The compiler keeps track of the instances of p not covered yet.

2. The next derivative selected is one the covers the largest number of previously uncov-
ered instances but does so with the fewest number of instances of its own. Specifically,

pick p' whose ratio of these two numbers is highest.

3. The selection process stops if only a few instances of p are left uncovered and the

derivatives thus far unselected have a large number of instances themselves.

Note that this iterative selection process is an inner loop to the iterative process that
is building up the prediction hierarchy level by level. This inner loop works within a level

to select a useful set of derivatives at that level.

5.3 Experiment

The prediction hierarchy compiler design was tested on the models in Figure 4. The
resulting hierarchy is shown in Figure 12. There are six levels of the hierarchy; the average
path length between the initial nodes and goal nodes (object matches) is 3.9. The total

number of nodes (predictions representled) is fifteen. Considering that the hierarchy is
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capable of being used to distinguish five objects from almost all viewpoints (with an average
of 8 segments per view) — and the predictions are represented efficiently as combinations
of simpler ones, this appears to be a reasonable result.

The iterative combination left the tall box and cube indistinguishable. This was cor-
rected by the specialization process by adding segment length ratio relations between two
pairs of segments. This conjunction of two proportional relations was satisfied by the tall
box projections over most of the view sphere, and satisfied by none of the projections of

the cube.

6. Recognition

The object recognizer finds correspondences between segments detected in a given im-
age and the segments of some model in the model base by an organized search of the
prediction hierarchy and image data base. Like parsing and other interpretation prob-
lems, there are many ways to perform such a search (e.g., top-down, bottom-up or some
combination of both). A fairly straight-forward method of search was implemented for
the purpose of demonstrating the usefulness of the prediction hierarchy. The search pro-
ceeds in a bottom-up fashion by iteratively selecting a previously satisfied prediction (an
image-prediction match), attempting to find additional evidence in the image to satisfy
its derivative predictions (i.e., testing new constraints on already matched image segments
for specializations and searching for parts for combinations), ana storing any new image-
prediction matches for further expansion. Figure 13 shows the results of this matching
process using the hierarchy in Figure 12 and a synthetically generated set of image seg-

ments.
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7. Conclusions

This report presents an approach to object recognition developed to handle the com-
putational complexity posed by a large model base, an unconstrained viewpoint and the
structural detail inherent in the projection of an object. The approach stresses extensive
pre-recognition view analysis and organization of the resulting expectations into a PART-
OF /IS-A structure called a prediction hierarchy. A major contribution of this report is
the design of a prototype system that automatically compiles a prediction hierarchy for
the recognition of polyhedral objects. The design was implimented and demonstrated on a
set of simple objects. Further experiments will involve larger model bases, more complex
models, and image noise. This research has been done in conjunction with studies of the
visual properties of piecewise smooth surfaces [Callahan85] for the purpose of recognizing
objects that may have curved and non-convex parts. An expanded recognition capability
will come from the combination of these two lines of research. Current design refinements
are centered on the cost/benefit analysis of adding a prediction to the hierarchy and the
matching control strategies ((Weymouth86] and [Draper87|), including the use of image

context for match selection.
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Figure 1: A sampling of the amazing variety of objects readily rec-
ognized by humans.



(b)

Figure 2: (a) GVs for a polyhedron, where 2 views are in the same
class if the same segments are visible and unfragmented.

(b) A sampling of views from a single GV.



Figure 3: An example of the pose refinement process developed
by Lowe working on a modeled airplane. The initial es-
timate of position and orientation is shown in the box
at the upper left. The program is also given the map-
ping between edges in the model and the displayed 2D
lines. The first three iterations of convergence towards a

least-square solution of viewpoint are shown in the other
boxes.
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3D MODEL BASE

PREDICTION
HIERARCHY
COMPILER

PREDICTION )
HIERARCHY

2D MATCHER

PROMISING
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VERIFICATION
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Figure 5: The basic recognition system design.
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= coincident endpoints
= parallel

(define parallelogram (sl s2 s3 s4)
(and (coincident sl-head s2-head)
(coincident s2-tail s3-head)
(coincident sl-tail s4-head)
(coincident s3-tail s4-tail)
(parallel sl-tail s3-tail)
(parallel s2-tail s4-tail)

)

Fig. 6. A parallelogram and its relational graph representation. In the internal
representation, the segments have arbitrary but fixed endpoint orderings (head/tail). This
is to differentiate the parallelogram from other, distinct structures such as a four-way

junction (which are otherwise identical).



€4

Relative measurements:

u = displacement of p3 from pl in direction along sl,
divided by the length of sl

v = displacement of p3 from pl in direction normal to sl,
divided by the length of sl counTHR

alpha = angle between sl and s2 measured 2§{0ckwise from sl

s = ratio of size, length(s2)/length(sl)

Relation as extent box in measurement space:

—— ——— ———— — — S — ——— ——— —— — T T G — — T — — —— - G = - - o

R(sl,s2) = (and (min-u € u € max-u)
(min-v € v € max-v)
(min-alpha € alpha € max-alpha)
({min-s € s & max-s)

)

Figure 7: Representation of image segment relations as an extent
box in space of relative position, orientation and size
measurements.



Y-junction:

Pseudo-code dzscription:

ine Y-junction (sl s2 §3) )

(Deftand (goincident sl—ta}l sZ—ta}l)
(coincident s2-tail sB—ta}l)
(coincident s3-tail sl-tail)
(0 £ alpha(sl,sZ) £ 180)
(0 & alpha(s2,s3) < 180)
(0 & alpha(s3,sl) < 180)
)

Instance of prediction:

- mapping sl <- a
s2 <- b

s3 <- ¢

Figure 8: Example of a prediction and its instance. The Y junction
and an instance of it in the projection of a cube over a
set of view angles. The instance’s visiblity region (R) is
the intersection of the regions of the relations that make
it up: (R1) 0 < afs1,82) <7 (R2) 0 < ofs2,83) <7

(R3) 0< os3,81) <7



(define parallelogram (sl s2 s3 sd)
(and (coincident sl-head s2-head)
(coincident s2-tail s3-head)
(coincident sl-tail s4-head)
(coincident s3-tail s4-tail)
(parallel sl-tail s3-tail)
(parallel s2-tail s4-tail)
))

(define triangle (sl s2 s3)

" (and (coincident sl-head s2-tail)
(coincident s2-head s3-tail)
(coincident s3-head sl-tail)
))

(define triangular-prism (sl s2 .. s8)

(and (parallelogram sl s2 s3 s4)
(parallelogram s5 s2 s6 s7)
(trianglesss7ss)

)
(define rhombus (sl s2 s3 s4)
(and (parallelogram sl s2 s3 s4)
(same-size 1 2)
))

Figure 9: Predictions as specializations or combinations of other predictions.



(define p (sl s2 s3)
(and (coincident sl s2)
(coincident s2 s3)
(parallel sl s3)

)

)

st - (define p' (sl s2 s3 s4)
(and (p sl s2 s3)
(coincident s3 s4)
o (coincident s4 sl)
i (parallel s2 s4)
)
)

(a) Predictions p and p'.

(b) Model m.
1 tp
2o0c 26oc¢
4« q

(c) Instances of p and p' on model m.

Figurel0O: An example of covering: (a) a prediction p and one of
its possible derivatives, p', (b) a model, m, whose pro-
jection satisfies both p and p' and (c) instances of both
predictions, i, and iy, that map the prediction segments
to actual segments of m. Note that ¢, covers i, because
the model segments it maps to are a superset of those

mapped to by ¢,.
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Figure 11: A view of the tetrahedron that contains 12 instances of
the endpoint coincidence prediction. The instances of two
of its derivatives, (a) snake and (b) trihedral junction, are
shown. Both derivatives covel;'all coincidence instances,
but the trihedral junction prediction does so with much
fewer instances (4 instead of 12). The snake predic-
tion has three segments connected in a chain that is not
closed in a loop; and the trihedral junction has three
segments with each pair coincident. using the same end-
points.



tetrahedron

triangular
prism

sl/s2 < 2 sl/s2 > 2
and or
s4/s3 < 2 s4/s3 > 2
house
tall box cube "

Figure 12:

The resulting prediction hierarchy compiled from views
of the objects in figure 4. The nodes represent predic-
tions and arrows indicate combination and specializa-
tion links. The predictions are represented graphically
by segments and dashed lines for parallel relations.
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Figure 13: Example run of the. matcher using the prediction hi-
erarchy in Figure 12. The matcher is initialized (itera-
tion=0) by finding all instances of the initial predictions
(coincidence and parallel). The matcher then iteratively
searches for matches between combinations and special-
izations of already matched predictions and the image.
A prediction unique to the triangular prisin object- was
matched to the image at iteration 7.




